
 

Chapter 7 

The Hirota method 

The main reference for this chapter is §5.3 of [Drazin and Johnson, 1989]. 

This is an alternative to the Bäcklund transformationas a way to generate multi-soliton solu- 

tions, which is sometimes available when the Bäcklund transformation is not. It was devised 

by Hirota [Hirota, 1971] to write N -soliton solutions of the KdV equation, and was then 

generalised to a large class of equations. We will focus on the KdV equation in this chapter. 

7.1 Motivations 

7.1.1 Series solutions 

Let us substitute

 \label {6.1} \boxed {u=w_x} 

 

 

(7.1) 

in the KdV equation 

ut ` 6 uux ` uxxx “ 0 . 

We find the equation 

wxt ` 6 wx 

wxx ` wxxxx “ 0 , 

which we can integrate with respect to x : 

wt ` 3 w2 

x ` wxxx “ g p t q . 

We will drop the integration “constant” (with respect to x ) g p t q in what follows, since it can 

be absorbed in a redefinition of w that does not change u “ wx: 

woldp x, t q “ wnewp x, t q ` 

ż t 

t0 

dt1 g p t1q . 
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Using the new w (and dropping the subscript “new”), we have the following equation:

 \label {6.2} \boxed {w_t + 3 w_x^2 +w_{xxx}=0}~. 

 

   





 

(7.2) 

For w small, the w2 

x 

term is negligible and the equation is linear – and hence, easier to solve. 

To be more systematic, we can look for a series solution

  w = \epsilon w_1 + \epsilon ^2w_2+\dots \,. 

        

 

Substituting in and solving order by order in ϵ :

 \epsilon ^1~:&\quad w_1{}_t+w_1{}_{xxx}=0\qquad &\mbox {the linear equation}\\ \epsilon ^2~:&\quad w_2{}_t+3w_1{}_x{}^2+w_2{}_{xxx}=0\qquad &\mbox {the first `correction'}

        

   


     

 

and so on. In principle we can solve these equations in turn, rather as we did for the Gardner 

transform. 

Bad news: We’d need to continue infinitely far to find an exact formula for w . 

Good news: The method would be saved if it happened that wm 

“ 0 for all m ą n for some 

n . Then the approximate solution up to order n would turn out the be exact . 

Bad news: This phenomenon does not happen for the simple scheme just described. Some- 

thing more subtle will be needed, which is exactly what Hirota discovered. 

7.1.2 Some hints 

A close relative of KdV is Burger’s equation :

  u_t+uu_x-\lambda u_{xx}=0~, 

      

 

where λ is a parameter. Substituting u “ ´ 2 λvx{ v “ ´ 2 λ 

B

 

B x
p log v q (exercise!) turns this into 

the linear heat equation

  v_t=\lambda v_{xx}\,. 

 



 

Further evidence that logarithmic derivatives might have a role to play comes if we recall the 

one-soliton solution of KdV:

  u=2\mu ^2 ~\sech ^2\left [\mu (x-x_0-4\mu ^2 t)\right ] 

  



   


 

with

  \mu = \frac {\sqrt {v}}{2}~. 















 

This one-soliton solution can be written as u “ wx 

with

  w=2\mu ~ \tanh \left [\mu (x-x_0-4\mu ^2 t)\right ]\,. 
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We can integrate the right-hand side once more, using tanh y “ 

d

 

dy 

log cosh y to find

  u = 2 \frac {\de ^2}{\de x^2} \log \cosh \left [\mu (x-x_0-4\mu ^2 t)\right ]\,. 

 











   




 

This can be simplified further. Letting X “ x ´ x0 ´ 4 µ2 t ,

 u &= 2 \frac {\de ^2}{\de x^2} \log \frac {e^{-\mu X}(1+e^{2\mu X})}{2}\\ &= 2 \frac {\de ^2}{\de x^2} \left [-\mu X -\log 2+\log \left (1+e^{2\mu X}\right )\right ]\\ &= 2 \frac {\de ^2}{\de X^2} \log \left (1+e^{2\mu X}\right )~.

 









 















    



 















 





 

In terms of the original variables,

  \boxed {u(x,t) = 2 \frac {\de ^2}{\de x^2} \log \left (1+e^{2\mu (x-x_0-4\mu ^2 t)}\right )}~. 

  











 







 

This is the form of the one-soliton solution of KdV that we will refer to in the following. 

7.2 KdV equation in bilinear form 

7.2.1 The quadratic form of the KdV equation 

Inspired by the rewritten form of the one-soliton solution, let’s substitute

 \label {6.9} \boxed {w= 2 \frac {\de }{\de x} \log f = \frac {f_x}{f}} \quad \Longleftrightarrow \quad \boxed {u= 2 \frac {\de ^2}{\de x^2} \log f} 

 







 









  









 

(7.3) 

in equation (7.2).1 Then

  \begin {split} \frac {1}{2}w_t &= \frac {f_{xt}f-f_x f_t}{f^2}~,\\ \frac {1}{2}w_x &= \frac {f_{xx}f-f_x^2}{f^2}~, \\ \frac {1}{2}w_{xx} &= \dots \qquad \qquad \qquad {\text {\Ex {35}}} \\ \frac {1}{2}w_{xxx} &= \frac {f_{xxxx}}{f}-4 \frac {f_{xxx}f_x}{f^2}-3 \frac {f_{xx}^2}{f^2}+12 \frac {f_{xx}f_x^2}{f^3}-6 \frac {f_x^4}{f^4}~, \end {split} 











 



















  















     



























































 

(7.4) 

and equation (7.2) for w becomes [Ex 35] 

fxt

 

f 

´ 

fx 

ft

 

f 2 

` 3 

f 2 

xx

 

f 2 

´ 4 

fxxx 

fx

 

f 2 

` 

fxxxx

 

f 

“ 0

 

1In the literature on integrable systems, the function f is now called the τ -function.
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for f . 

Multiplying by f 2, we find the so called quadratic form of the KdV equation :

 \label {6.11} \boxed {f f_{xt}-f_x f_t +3 f_{xx}^2-4f_x f_{xxx}+f f_{xxxx}=0}~. 

 

  

 

   





 

(7.5) 

Some cancellations have taken place to get to the quadratic form (7.5) of the KdV equation, but 

at first sight this might not seem progress on the initial equation (7.2). But (7.5) is quadratic 

in f and it can be rewritten in a neat way. A hint for that is that 

B

 

B x 

B

 

B t 

ˆ

1

 

2 

f 2 

˙ 

“ 

B

 

B x
p f ftq “ f fxt ` fx 

ft 

. 

This is almost like the first two terms in (7.5), except for the relative sign. We will fix this sign 

problem shortly. 

7.2.2 Hirota’s bilinear operator 

Hirota defined a bilinear differential operator D which maps a pair of functions p f , g q into a 

single function D p f ¨ g q . If we work on C8 functions, then

 D~: \qquad C^\infty \times C^\infty & \to C^\infty \\ (f,g) & \mapsto D(f\cdot g)~,

 




     

 

and bilinearity means that

  \begin {split} D(a_1 f_1 + a_2 f_2\cdot g )&=a_1 D(f_1\cdot g)+ a_2 D(f_2\cdot g)\\ D(f\cdot b_1 g_1 + b_2 g_2) &=b_1 D(f\cdot g_1)+ b_2 D(f\cdot g_2) \end {split} 



 

   

   

 

 

 

 

   

 

 

for any constants a1 

, a2 

, b1 

, b2. 

REMARK

 

: 

This is unlike the usual linear differential operators that you are familiar with, such as 

` 

B

 

B x 

˘n, 

which maps a single function f to a single function 

B 

n f

 

B xn . 

For any integers m, n ě 0 , we define Hirota’s bilinear differential operator D 

m 

t 

D 

n 

x 

by

 \label {6.12} \boxed { [D_t^m D_x^n (f\cdot g)](x,t):= \left (\frac {\de }{\de t}-\frac {\de }{\de t'}\right )^m \left (\frac {\de }{\de x}-\frac {\de }{\de x'}\right )^n f(x,t)g(x',t')\bigg |_{\substack {x'=x\\ t'=t}} }~. 











   



































  

















 

(7.6)
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Let us look at a few examples. We start with

 \label {6.13} \begin {split} [D_t(f\cdot g)](x,t) &= \left (\frac {\de }{\de t}-\frac {\de }{\de t'}\right ) f(x,t)g(x',t')\bigg |_{\substack {x'=x\\ t'=t}}\\ &= f_x(x,t)g(x',t')-f(x,t)g_{t'}(x',t')\bigg |_{\substack {x'=x\\ t'=t}} \\ & = f_t(x,t) g(x,t)- f(x,t) g_t(x,t)~, \end {split} 

   


















  













       













        

 

(7.7) 

so 

Dtp f ¨ g q “ ft 

g ´ f gt 

and Dtp f , f q “ 0 , 

and similarly for Dx. Next we look at

  \begin {split} [D_t D_x(f\cdot g)](x,t) &= \left (\frac {\de }{\de t}-\frac {\de }{\de t'}\right )\left (\frac {\de }{\de x}-\frac {\de }{\de x'}\right ) f(x,t)g(x',t')\bigg |_{\substack {x'=x\\ t'=t}}\\ &= \left (\frac {\de }{\de t}-\frac {\de }{\de t'}\right )\left (f_x(x,t)g(x',t')-f(x,t)g_{x'}(x',t')\right )\bigg |_{\substack {x'=x\\ t'=t}} \\ & = f_{xt}(x,t) g(x,t)-f_t(x,t) g_x(x,t)-f_x(x,t) g_t(x,t) + f(x,t) g_{xt}(x,t)~, \end {split} 



   

































  
































      













                

 

so

 \label {6.15} D_t D_x (f\cdot g) = f_{xt}g-f_t g_x-f_x g_t+f g_{xt} \qquad \text {and} \qquad D_t D_x (f\cdot f) = 2(f f_{tx}-f_t f_x)~. 



   

 

 

 



      



 

(7.8) 

This is promising, because the right-hand-side of the last expression reproduces the first two 

terms in the quadratic form of the KdV equation (7.5), up to an overall factor of 2 . Let’s proceed 

and compute

 \label {6.16} D_x^2(f\cdot g) = f_{xx} g-2f_x g_x + f g_{xx}~, 



   

 

 



 

(7.9) 

which implies 

D2 

xp f ¨ f q “ 2 p f fxx ´ f 2 

xq . 

REMARK

 

: 

Note that D2 

xp f ¨ f q ‰ 0 even though Dxp f ¨ f q “ 0 . This is not inconsistent, because 

D2 

xp f ¨ f q ‰ Dx p Dxp f ¨ f qq . In fact, the right-hand side of this last expression is meaningless, 

since the outer Dx 

must act on a pair of functions, but Dxp f ¨ f q is a single function. 

Finally, we can calculate

  \begin {split} D_x^4(f\cdot g)&= \dots \qquad \qquad \qquad \text {\Ex {36}}\\ &= f_{xxxx}g-4f_{xxx}g_x+6 f_{xx}g_{xx}-4 f_x g_{xxx}+f g_{xxxx}~. \end {split} 



       



 

 

 

 



 

Note that the result is like B4 

xp f g q , but with alternating signs! So

 \label {6.18}D_x^4 (f\cdot f)=2(f f_{xxxx}-4 f_x f_{xxx}+3 f_{xx}^2)~. 



      

  



 

(7.10)
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Here is the miracle: the KdV equation in its quadratic form (7.5) can be recast as

 \label {6.19} \boxed {(D_t D_x+D_x^4)(f\cdot f)=0} 



 

    

 

(7.11) 

where the bilinear operator Dt 

Dx ` D4 

x 

is defined by linearity on the space of operators of the 

type (7.6), namely p Dt 

Dx ` D4 

xqp f ¨ g q “ Dt 

Dxp f ¨ g q ` D4 

xp f ¨ g q . Equation (7.11) is called the 

bilinear form of the KdV equation . 

REMARK

 

: 

Observe that we can formally factor the Hirota operator as 

Dt 

Dx ` D4 

x “ p Dt ` D3 

xq Dx 

, 

which is a shorthand for 

p Dt 

Dx ` D4 

xqp f , g q “ pBt ´ Bt1 ` pBx ´ Bx1q
3
qpBx ´ Bx1q f p x, t q g p x1 , t1q 

ˇ

ˇ

ˇ

ˇ

x1“ x 

t1“ t 

. 

This is not an accident. It is related to the fact that the differential operator Bt ` B3 

x 

appears in 

the linearised KdV equation for u , and therefore the differential operator pBt ` B3 

xqBx 

appears 

in the linearisation of the equation for w (before integration with respect to x ). 

7.3 Solutions 

We will need two ideas to find multi-soliton solutions. The first is inspired by a rather basic 

observation: if we take f “ 1 , then the KdV field is the vacuum u “ 0 ; if instead we take 

f “ 1 ` e2 µ p x ́  x0´ 4 µ2 t q , 

then the u is the one-soliton (travelling wave) solution of KdV. Since (7.11) is a bilinear equa- 

tion, this suggests that multi-soliton solutions might be obtained from an f which is a sum of 

exponentials of linear functions of x and t , with 1 “ e0 as the trivial case. But before we get 

to the general case, let us check the Hirota formalism by rederiving this one-soliton solution. 

7.3.1 Example: the 1-soliton 

Let’s try

 \label {6.20} \boxed {f=1+e^\theta } 

   

 

(7.12) 

with

  \theta =ax+bt+c~, 

      

 

where a, b, c are constants. To treat this and later cases, the following lemma is helpful.



 

CHAPTER 7. THE HIROTA METHOD 84 

Lemma 1. If θi “ ai 

x ` bi 

t ` ci 

( i “ 1 , 2 ), then [Ex 38]

 \label {6.22} \boxed {D_t^m D_x^n (e^{\theta _1}\cdot e^{\theta _2})=(b_1-b_2)^m(a_1-a_2)^n e^{\theta _1+\theta _2}}~. 











     


 






 

(7.13) 

In particular

 \label {6.23} \begin {split} &D_t^m D_x^n (e^\theta \cdot e^\theta )=0 \qquad \qquad \text {(unless $m=n=0$)}\\ &D_t^m D_x^n (e^\theta \cdot 1)=(-1)^{m+n} D_t^m D_x^n (1\cdot e^\theta )=b^m a^n e^\theta ~. \end {split} 











         











   










    

 

(7.14) 

Therefore the bilinear form of the KdV equation for f “ 1 ` eθ is

  \begin {split} 0~~ &=~~~~ (D_t D_x + D_x^4)(1+e^\theta \cdot 1+e^\theta )\\ &\hspace {-12.5pt}\underset {\text {bilinearity}}{=} (D_t D_x + D_x^4) \left [(1\cdot 1)+(1\cdot e^\theta )+(e^\theta \cdot 1)+(e^\theta \cdot e^\theta )\right ] \\ &\hspace {-5pt} \underset {\eqref {6.23}}{=}~~~ 2(D_t D_x +D_x^4)(e^\theta \cdot 1)\\ &\hspace {-5pt} \underset {\eqref {6.23}}{=}~~~ 2(ba+a^4)e^\theta = 2a(b+a^3)e^\theta ~. \end {split} 

 

 

     






 





             








 

 





 

   

 

Given that eθ is nonzero, there are two ways to satisfy this equation: 

1. a “ 0 :

 

then f is independent of x , and u “ 0 . 

2. b “ ´ a3:

 

then 

f “ 1 ` eax ́  a3 t ̀  c , 

and

 \label {6.25} \boxed {u= 2 \frac {\de ^2}{\de x^2}\log \left (1+e^{ax-a^3t+c}\right )}~, 

 











 







 

(7.15) 

which is nothing but the one-soliton solution with velocity v “ a2, up to redefinitions 

of the constants. 

7.3.2 The N -soliton solution (sketch) 

The second idea is to look for a power series solution (or a so-called “perturbative expansion” 

in an auxiliary parameter ϵ ,

 \label {6.26} \boxed {~f(x,t)= \sum _{n=0}^\infty \epsilon ^n ~f_n(x,t)~ \quad \text {with} \quad f_0=1~}~, 

  






     





 

(7.16) 

and hope that the series terminates at some value of n , so that we can take ϵ to be finite and 

eventually set it to 1 .
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We will write the bilinear form of KdV as

  \boxed {B(f\cdot f)=0} \qquad \text {with} \qquad \boxed {B=D_t D_x +D_x^4}~. 

    



  

 







 

Substituting in (7.16), we find

  \begin {split} 0&= B(\sum _{n_1=0}^\infty \epsilon ^{n_1}f_{n_1}\cdot \sum _{n_2=0}^\infty \epsilon ^{n_2}f_{n_2})~\\ &= \sum _{n_1=0}^\infty \sum _{n_2=0}^\infty \epsilon ^{n_1+n_2} B( f_{n_1}\cdot f_{n_2}) \end {split} 

 



























 

 

where in the second line we used the bilinearity of the Hirota operator B . Gathering terms of 

the same degree n “ n1 ` n2 

in ϵ , we can rewrite this as

 \label {6.28} \boxed { 0=\sum _{n=0}^\infty \epsilon ^n \sum _{m=0}^n B(f_{n-m}\cdot f_m) \underset {B(1\cdot 1)=0}{=} \sum _{n=1}^\infty \epsilon ^n \sum _{m=0}^n B(f_{n-m}\cdot f_m) }~. 















  















 





 

(7.17) 

Let’s solve this equation order by order in ϵ . We find that

 \label {6.30} \boxed {\sum _{m=0}^n B(f_{n-m}\cdot f_m)=0 \quad \forall ~n=1,2,\dots } 






           

 

(7.18) 

with f0 “ 1 . Writing (7.18) as

 \label {6.31} \boxed {B(f_n\cdot 1)+B(1\cdot f_n)=(\text {expression in } f_1,f_2,\dots ,f_{n-1})}~, 

         



    





 

(7.19) 

makes it clear that we can solve (7.18) recursively to determine the Taylor coefficients of f . 

We will need another lemma: 

Lemma 2. [Ex 39] For any function f ,

  \boxed {D_t^m D_x^n (f\cdot 1)=(-1)^{m+n} D_t^m D_x^n (1\cdot f) = \frac {\de ^m}{\de t^m} \frac {\de ^n}{\de x^n}f}~. 











   










   























 

Using this lemma, we can write the recursion relation (7.19) more explicitly as

 \label {6.33} \boxed { \frac {\de }{\de x} \left (\frac {\de }{\de t}+\frac {\de ^3}{\de x^3}\right ) f_n = -\frac {1}{2} \sum _{m=1}^{n-1}B(f_{n-m}\cdot f_m)}~, 
























 











 





 

(7.20) 

which is valid for all n “ 1 , 2 , . . . . In the following this recursion relation, which determines 

fn 

in terms of all the fm 

with m ă n , will be referred to as An.
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For n “ 1 , A1 

reduces to 

B

 

B x 

ˆ

B

 

B t
` 

B3

 

B x3 

˙ 

f1 “ 0 

or, with appropriate boundary conditions,

  \boxed { \left (\frac {\de }{\de t}+\frac {\de ^3}{\de x^3}\right ) f_1 = 0}~, 


















 





 

which is a linear equation. A simple solution is

 \label {6.35} \boxed {f_1 = \sum _{i=1}^N e^{a_i x - a_i^3 t + c_i} \equiv \sum _{i=1}^N e^{\theta _i}}~, 



























 

(7.21) 

where ai 

and ci 

are, as usual, constants. 

The higher fn 

can then be determined recursively using An 

(7.20). The amazing fact is that 

with f1 

as in equation (7.21), the expansion (7.16) terminates at order N . All the higher equa- 

tions An ą N 

are solved with fn ą N 

“ 0 ! This is quite non-trivial: it requires that f1 

, . . . , fN 

satisfy the consistency conditions that the RHS of An 

vanish for n “ N ` 1 , . . . , 2 N . 

The N -soliton solution of KdV is then given by

  \boxed {f=1+f_1+f_2+ \dots + f_N}~, 

           





 

where we set ϵ “ 1 (or absorbed it in the constants ci). 

EXAMPLES

 

: 

N “ 1

 

In this case 

f1 “ ea1 

x ́  a3 

1 

t ̀  c1 ” eθ1 

and A2 

reads 

BxpBt ` B
3 

xq f2 “ ´
1

 

2 

B p eθ1 ¨ eθ1q “ 

(7.14) 

0 . 

So we can take f2 “ 0 (and f3 “ f4 “ ¨ ¨ ¨ “ 0 as well). Setting ϵ “ 1 , or absorbing ϵ in c1, we 

get 

f “ 1 ` eθ1 , 

which is the one-soliton solution found in (7.15).
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N “ 2

 

Next we take 

f1 “ eθ1 ` eθ2 

and equation A2 

becomes

 \de _x (\de _t+\de _x^3)f_2~~ &= ~~ -\frac {1}{2}B(e^{\theta _1}+e^{\theta _2}\cdot e^{\theta _1}+e^{\theta _2}) \nonumber \\[7pt] &\hspace {-12pt} \underset {\substack {\text {bilinearity}\\ + \eqref {6.22}}}{=} -B(e^{\theta _1}\cdot e^{\theta _2}) \nonumber \\[7pt] &\hspace {-22pt} \underset {\substack {B=D_tD_x+D_x^4\\ + \eqref {6.22}}}{=} -(a_1-a_2)[-a_1^3+a_1^3+(a_1-a_2)^3]e^{\theta _1+\theta _2}\nonumber \\[7pt] &= ~~ 3a_1 a_2 (a_1-a_2)^2 e^{\theta _1+\theta _2}~.

 











     







 










 

 

   





 


 

To solve this we can try 

f2 “ Aeθ1` θ2 

for some constant A to be determined. Substituting in the previous equation we find

 (a_1+a_2)[-a_1^3-a_2^3+(a_1+a_2)^3]A e^{\theta _1+\theta _2} &= 3a_1 a_2 (a_1-a_2)^2 e^{\theta _1+\theta _2}\nonumber \\[8pt] \Rightarrow \quad 3 a_1 a_2(a_1+a_2)^2 A &=3a_1a_2(a_1-a_2)^2 \nonumber \\[8pt] \Rightarrow \quad A &= \left (\frac {a_1-a_2}{a_1+a_2}\right )^2~.

 

 

   

 

 




 
 

 


 



 



 





 

So we get

 \label {6.39} \boxed {f=1+e^{\theta _1}+e^{\theta _2}+ \left (\frac {a_1-a_2}{a_1+a_2}\right )^2 e^{\theta _1+\theta _2}} 

      



 



 





 

(7.22) 

for the 2-soliton solution of KdV, where again we set ϵ “ 1 or absorbed it into shifts of c1 

and 

c2. 

˚ EXERCISE

 

: Strictly speaking, we haven’t yet shown that it’s consistent to stop the ex- 

pansion at this stage. Fill this gap by showing that for these choices of f1 

and f2, B p f1 ¨ f2q “ 0 and B p f2 ¨ f2q “ 0 , so that one can consistently set 

f3 “ f4 “ ¨ ¨ ¨ “ 0 . [Ex 40] 

General N

 

To get a clue how things will work for larger values of N , let’s first rewrite the 2-soliton



 

CHAPTER 7. THE HIROTA METHOD 88 

solution (7.22) that we have just found:

 f &=(1+e^{\theta _1})(1+e^{\theta _2})-e^{\theta _1+\theta _2} + \left (\frac {a_1-a_2}{a_1+a_2}\right )^2 e^{\theta _1+\theta _2}\\[4pt] &=(1+e^{\theta _1})(1+e^{\theta _2})- \frac {4a_1 a_2}{(a_1+a_2)^2} e^{\theta _1+\theta _2}\\[4pt] &= \det \begin {pmatrix} 1+e^{\theta _1} & \frac {2a_1}{a_1+a_2}e^{\theta _2}\\ \frac {2a_2}{a_1+a_2}e^{\theta _1} & 1+e^{\theta _2} \end {pmatrix}\,.

        



 



 





     







 







 















  





 

This gives what turns out to be a correct hint for general N :

  \boxed {f=\det (S)}~, \quad \text {where} \quad \boxed {S_{ij}=\delta _{ij}+ \frac {2a_i}{a_i+a_j}e^{\theta _j}}~, 

 



 

 





 







 

(7.23) 

and i, j P t 1 . . . N u .2 

This can be proved by induction. One can also show that 

fn “ 

ÿ 

1 ď i1ă i2ă¨¨¨ă inď N 

eθi1` θi2`¨¨¨` θin 

ź 

1 ď j ă k ď n 

ˆ 

aij 

´ aik

 

aij 

` aik 

˙2 

. 

7.4 Asymptotics of 2-soliton solutions and phase shifts 

To see that the N “ 2 solution (7.22) does indeed involve two solitons, we can follow the 

same logic as in section 6.7, where we studied the asymptotics of 2-soliton solutions of the 

sine-Gordon equation. Namely, we switch to an appropriate comoving frame and only then 

take t Ñ ˘8 . 

Recall that 

f “ 1 ` eθ1 ` eθ2 ` Aeθ1` θ2 

where 

θi “ ai 

x ´ a3 

i 

t ` ci 

, A “ 

ˆ 

a1 ´ a2

 

a1 ` a2 

˙2 

. 

We can take 0 ă a1 ă a2

 

without loss of generality3 so v1 

“ a2 

1 

ă v2 

“ a2 

2. Let’s follow the 

slower soliton first:

  \boxed {t \to \pm \infty \quad \text {with} \quad X_{a_1^2}=x-a_1^2 t \quad \text {fixed}}~. 

   



  









 

2Note that using eθi instead of eθj in the definition of the matrix element Sij 

produces the same determinant. 

3Convince yourself of this statement.
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Then

  \begin {split} \theta _1 &= a_1 X_{a_1^2}+c_1\\ \theta _2 &= a_2 \left (X_{a_1^2}-(a_2^2-a_1^2)t\right )+c_2~. \end {split} 

 






 








 









 

Let us consider the two limits in turn. 

1. t Ñ `8

 

: in this limit θ1 

stays fixed and θ2 Ñ ´8 , so

  f \to 1+e^{\theta _1}~. 

    

 

This describes a KdV soliton centred at

  \boxed {x_{\text {centre}}(t)=a_1^2 t-\frac {c_1}{a_1}}~. 

 















 

2. t Ñ ´8

 

: in this limit θ1 

stays fixed and θ2 Ñ `8 , so

  f \to e^{\theta _2} (1+Ae^\theta _1)~. 

   



 

The prefactor eθ2 does not matter, because

  \begin {split} u &= 2 \frac {\de ^2}{\de x^2} \log f \equiv 2 \frac {\de ^2}{\de x^2} \left [\theta _2+\log (1+Ae^{\theta _1})\right ]\\ &= 2 \frac {\de ^2}{\de x^2} \log (1+Ae^{\theta _1})\\ &= 2 \frac {\de ^2}{\de x^2} \log \left (1+e^{a_1x-a_1^3 t+c_1+\log A}\right )~. \end {split} 

 







  









   










 













 











 

where in the second line we used that θ2 

is linear in x , and in the third line we expressed 

the result in the original p x, t q coordinates. This describes a KdV soliton centred at

  \boxed {x_{\text {centre}}(t)=a_1^2 t-\frac {c_1+\log A}{a_1}}~. 

 





  









 

Therefore the slower soliton has a negative phase shift:

  \boxed {\text {PHASE SHIFT}_{\text {slower}}= \frac {1}{a_1}\log A = - \frac {2}{a_1} \log \left |\frac {a_2+a_1}{a_2-a_1}\right |<0 }~. 

 







  

















 



 















 

Next, let’s follow the faster soliton:

  \boxed {t \to \pm \infty \quad \text {with} \quad X_{a_2^2}=x-a_2^2 t \quad \text {fixed}}~. 
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Then

  \begin {split} \theta _1 &= a_1 \left (X_{a_2^2}-(a_1^2-a_2^2)t\right )+c_1\\ \theta _2 &= a_2 X_{a_2^2}+c_2~. \end {split} 

 








 







 








 

Again, we consider the two limits in turn. 

1. t Ñ ´8

 

: in this limit θ1 Ñ ´8 and θ2 

stays fixed, so 

f Ñ 1 ` eθ2 . 

This describes a KdV soliton centred at

  \boxed {x_{\text {centre}}(t)=a_2^2 t-\frac {c_2}{a_2}}~. 

 















 

2. t Ñ `8

 

: in this limit θ1 Ñ `8 and θ2 

stays fixed, so 

f Ñ eθ1p 1 ` Aeθ 

2q , 

which describes a KdV soliton centred at

  \boxed {x_{\text {centre}}(t)=a_2^2 t-\frac {c_2+\log A}{a_2}}~. 

 





  









 

Therefore the faster soliton has a positive phase shift:

  \boxed {\text {PHASE SHIFT}_{\text {faster}}= -\frac {1}{a_2}\log A = \frac {2}{a_2} \log \left |\frac {a_2+a_1}{a_2-a_1}\right |>0 }~. 

  







 

















 



 















 

Summarising, from the analysis of the asymptotics of the 2-soliton solution we have obtained 

the picture in Fig. 7.1. We have therefore verified that KdV solitons satisfy the third defining 

property 3 of a soliton: when two of them collide, they emerge from the collision with the 

same shapes and velocities as they had before the collision. The effect of the interaction is in 

the phase shifts of the two solitons, which capture the advancement of the faster soliton and 

the delay of the slower soliton. 

We can also look at plots of the exact 2-soliton solution encoded in (7.3) and (7.22) to get a 

better feel for what happens during the collision. Here is a 3d plot of the 2-soliton solution 

with parameters a1 

“ 0 . 7 and a2 

“ 1 , while the contour plot in Fig. 7.2 below clearly shows 

the trajectories of the two KdV solitons and how they repel each other and swap identities 

when they get close, resulting in a phase shift. Finally, here is an animation of their time 

evolution.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/2-solitons_KdV.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/2-solitons_KdV_animation.gif
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Figure 7.1: Schematic summary of the 2-soliton solution of KdV.

 

Figure 7.2: A two-soliton solution of the KdV equation.
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