
 

Chapter 6 

Bäcklund transformations 

The main reference for this chapter is §5.4 of [Drazin and Johnson, 1989]. 

So far, we have constructed solutions for moving solitons only as travelling waves, which de- 

scribe the propagation of a single soliton. Our next goal will be to construct analytic solutions 

for multiple colliding solitons. In these cases it won’t be possible to reduce the partial differ- 

ential equation to an ordinary differential equation, so the existence of such exact solutions is 

much more surprising. The method that we will use in this chapter is a solution-generating 

technique called the Bäcklund transformation . 

The method was introduced in the late 19th century by the Swedish mathematician Albert 

Victor Bäcklund and by the Italian mathematician Luigi Bianchi1 in the 1880s to map be- 

tween pairs of surfaces in three-dimensional space. The sine-Gordon equation appears in this 

context when one considers hyperboloids, which are surfaces of negative curvature. 

There are two main uses of the Bäcklund transformation: 

1. To generate solutions of a difficult PDE from solutions of a simpler PDE ; 

2. To generate new solutions of a given PDE from already known solutions of the 

same PDE . 

We will mostly be interested in use 2 , but you will see examples of use 1 in Ex 26-28 in the

 

1who, notably, was born Parma, the hometown of next term’s lecturer. This is the same Bianchi after whom 

the Bianchi identities in differential geometry and general relativity are named. 
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problem sheet. Our final goal in this chapter will be to obtain multi-soliton solutions of the 

sine-Gordon equation. 

6.1 Definition 

Consider two functions u and v , and two differential equations

 

P r u s “ 0

 

(6.1) 

Q r v s “ 0

 

(6.2)

 

where P and Q are two differential operators. 

If there is a pair of relations (which could be differential equations)

 

R1r u, v s “ 0 , R2r u, v s “ 0

 

(6.3) 

between u and v such that 

- If P r u s “ 0 , i.e. (6.1), then (6.3) can be solved for v , to give a solution of (6.2), Q r v s “ 0 ; 

- If Q r v s “ 0 , i.e. (6.2), then (6.3) can be solved for u , to give a solution of (6.1), P r u s “ 0 ; 

then (6.3) is called a Bäcklund transformation (BT) . If furthermore P “ Q , so that the two 

differential equations are identical, then (6.3) is called an auto-Bäcklund transformation 

(a-BT) . 

This is useful if (6.3) is easier to solve than (6.1) or (6.2). Then we can use (6.3) to generate 

solutions of the harder equation from solutions of the easier equation. If P “ Q , we can start 

from a simple seed solution ( e.g. u “ 0 ) to generate new non-trivial solutions. 

Vocabulary

 

: 

‚ (6.1) and (6.2) are “integrability conditions” for the Bäcklund transformation (6.3). 

‚ (6.3) can be integrated for v if the integrability condition P r u s “ 0 is satisfied. 

‚ (6.3) can be integrated for u if the integrability condition Q r v s “ 0 is satisfied. 

6.2 A simple example 

Take the two-dimensional Laplace operator P “ Q “ B2 

x ` B2 

y 

in (6.1) and (6.2):

 

P r u s “ uxx ` uy y 

“ 0 (6.4) 

Q r v s “ vxx ` vy y 

“ 0 (6.5)
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and for the Bäcklund transformation (6.3)

 

R1r u, v s “ ux ´ vy 

“ 0 

R2r u, v s “ uy ` vx “ 0 .

 

(6.6) 

Let us check that (6.4)-(6.5) are integrability conditions for (6.6). Differentiating (6.6) with 

respect to x and y and adding or subtracting we find

 

0 “ `Bx 

R1 ` By 

R2 “ ` uxx ´ vy x ` uy y ` vxy 

“ uxx ` uy y 

0 “ ´By 

R1 ` Bx 

R2 “ ´ uxy ` vy y ` uy x ` vxx “ vxx ` vy y 

,

 

therefore the relations (6.6) imply (6.4) and (6.5).2 This shows that (6.6) is an auto-Bäcklund 

transformation for the two-dimensional Laplace equation. 

EXAMPLE

 

: 

v p x, y q “ 2 xy solves the Laplace equation (6.5). Let us use the a-BT to find another solution 

u of the same equation: 

# 

ux “ vy 

“ 2 x 

uy 

“ ´ vx “ ´ 2 y 

ùñ 

# 

u “ x2 ` f p y q 

f 1p y q “ ´ 2 y ñ f p y q “ ´ y2 ` c , 

so we find the function u p x, y q “ x2 ´ y2 ` c , where c is a constant. It is immediate to check 

that this u solves the Laplace equation (6.4). 

The equations R1r u, v s “ R2r u, v s “ 0 in (6.6) are nothing but the Cauchy-Riemann equa- 

tions for the holomorphic ( “ complex analytic) function w “ u ` iv of the complex variable 

z “ x ` iy . In the example above, w p z q “ z2 ` c . The equations P r u s “ 0 and Q r v s “ 0 

in (6.4)-(6.5) simply state that the real and imaginary parts of a holomorphic function are har- 

monic, that is, they solve the Laplace equation. Two such functions u and v are often called 

harmonic conjugate of each other. 

REMARKS

 

: 

1. Given v , the Bäcklund transformation (6.6) is a system of two equations for u . Generi- 

cally there won’t be any solutions for the system (6.6). For example, if we pick v “ x2, 

then the system 

# 

ux “ vy 

“ 0 

uy 

“ ´ vx “ ´ 2 x 

has no solutions for u . But v “ x2 doesn’t solve (6.5)! The integrability condition (6.5) 

is what guarantees that the system (6.6) can be consistently solved for u .

 

2Note: in this example we don’t even need to use the other differential equation. This is not always the case.
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2. This auto-Bäcklund transformation generates a new solution to the Laplace equation 

from a seed solution, but if we apply it a second time we get back the original seed solu- 

tion (up to an irrelevant integration constant that we can ignore). So this auto-Bäcklund 

transformation is an involution. To get further solutions we will need to introduce a 

parameter. 

6.3 The Bäcklund transformation for sine-Gordon 

Recall that the sine-Gordon equation written in light-cone coordinates x˘ “ 

1

 

2
p t ˘ x q is

 

u`´ “ ´ sin u

 

.

 

(6.7) 

Let us try the Bäcklund transformation

 

p u ´ v q` “ 

2

 

a 

sin 

´ u ` v

 

2 

¯ 

p u ` v q´ “ ´ 2 a sin 

´ u ´ v

 

2 

¯

 

(6.8) 

where a is a (non-zero) parameter. Cross-differentiating, and recalling that sin p A ˘ B q “ 

sin A cos B ˘ cos A sin B , which implies sin p A ` B q ` sin p A ´ B q “ 2 sin A cos B ,

 

p u ´ v q`´ “ 

1

 

a 

cos 

´ u ` v

 

2 

¯ 

¨ p u ` v q´ “ ´ 2 cos 

´ u ` v

 

2 

¯ 

sin 

´ u ´ v

 

2 

¯ 

“ ´ sin u ` sin v 

p u ` v q´` “ ´ a cos 

´ u ´ v

 

2 

¯ 

¨ p u ´ v q` “ ´ 2 cos 

´ u ´ v

 

2 

¯ 

sin 

´ u ` v

 

2 

¯ 

“ ´ sin u ´ sin v .

 

Adding and subtracting, we find that both u and v obey the sine-Gordon equation:

 

u`´ “ ´ sin u

 

(6.9) 

v`´ “ ´ sin v

 

(6.10)

 

Therefore (6.8) is an auto-Bäcklund transformation for the sine-Gordon equation, for any non- 

zero value of a . The extra parameter will allow us to generate multi-soliton solutions. We will 

start in the next section by rederiving the one-kink solution. 

6.4 First example: the sine-Gordon kink from the vacuum 

Let us take the vacuum solution

 

v “ 0

 

(6.11)
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as our initial (seed) solution. Then the auto-Bäcklund transformation (6.8) is

 

u` “ 

2

 

a 

sin 

u

 

2 

u´ “ ´ 2 a sin 

u

 

2 

.

 

(6.12) 

We can integrate both equations by separation of variables, using the indefinite integral 

ż 

du

 

sin 

u

 

2 

“ 2 log tan 

u

 

4 

up to an integration constant. We get

 

# 

2

 

a 

x` “ 2 log tan 

u

 

4 

` f p x´q 

´ 2 ax´ “ 2 log tan 

u

 

4 

` g p x`q

 

(6.13) 

where the functions f and g are “constants” of integration. They are only constant with respect 

to the variable that is integrated, but they can (and do!) depend on the other variable. 

Subtracting and rearranging, we get

 

2

 

a 

x`
` g p x`

q “ ´ 2 ax´
` f p x´

q .

 

(6.14) 

The left-hand-side is only a function of x`, while the right-hand-side is only a function of x´. 

Since the two sides are equal, they must therefore be equal to a constant, which we set to be 

´ 2 c for future convenience. Hence

 

f p x´
q “ 2 ax´

´ 2 c 

g p x`
q “ ´

2

 

a 

x`
´ 2 c

 

and so 

2 log tan 

u

 

4 

“ 

2

 

a 

x`
´ 2 ax´

` 2 c , 

that is

 

u “ 4 arctan 

´ 

e 

1

 

a 

x`´ ax´` c 

¯

 

.

 

(6.15) 

Finally, we convert to p x, t q coordinates: 

1

 

a 

x`
´ ax´

“ 

1

 

2 a
p t ` x q´ 

a

 

2
p t ´ x q “ 

1

 

2 

„ˆ 

a ` 

1

 

a 

˙ 

x ´ 

ˆ 

a ´ 

1

 

a 

˙ 

t 

ȷ 

“ 

1 ` a2

 

2 a 

ˆ 

x ´ 

a2 ` 1

 

a2 ´ 1 

t 

˙ 

.
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Defining

 

v : “ 

a2 ´ 1

 

a2 ` 1 

ϵ : “ sign p a q 

γ : “ 

1

 

?

 

1 ´ v2 

“ 

˚ Ex 

1 ` a2

 

2 | a |

 

,

 

(6.16) 

the solution (6.15) generated by an auto-Bäcklund transformation of the vacuum is

 

u p x, t q “ 4 arctan 

`

eϵγ p x ́  x0´ v t q 

˘

 

,

 

(6.17) 

where we traded the integration constant c for x0. This solution describes a kink or an anti- 

kink moving at velocity v . 

Properties:

 

a ą 0 : kink | a | ą 1 : right-moving 

a ă 0 : anti-kink | a | ă 1 : left-moving

 

a ă ´ 1 :

 

´ 1 ă a ă 0

 

0 ă a ă 1

 

a ą 1

 

Right-moving

 

Left-moving

 

Left-moving

 

Right-moving

 

anti-kink

 

anti-kink

 

kink

 

kink

 

So the auto-Bäcklund transformation creates a kink/anti-kink from the vacuum! By varying 

the parameter a P R zt 0 u and the integration constant x0 

or c , we reproduce all the kink and 

anti-kink solutions derived in section 3.2 as travelling waves. 

The amazing fact is that this holds more generally: the auto-Bäcklund transformation (almost) 

always adds a kink or an anti-kink to the seed solution.3 (The only exception is if one tries to 

add a soliton with the same velocity as one already present.) Therefore we can think of the 

auto-Bäcklund transformation as a solution-generating technique which “adds” kinks or 

anti-kinks. 

We will use the following graph to denote the action of a Bäcklund transformation on with 

parameter a and integration constant c on a seed solution u1, which adds a kink or anti-kink 

and generates the new solution u2:

 

3Which of the two is added depends on the seed. More about this later.
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u1

 

u2

 

a

 

c

 

We can add a kink/anti-kink wherever we like (by choosing c ) and with whatever velocity we 

like (by choosing a ). For example

 

u0

 

u1

 

u2

 

u3

 

a1

 

c1

 

a2

 

c2

 

a3

 

c3

 

adds three kinks/anti-kinks to the seed solution u0. 

The problem with this is that the integrations get harder and harder as we keep adding solitons. 

Luckily, a nice theorem tells us that, having found one-soliton solutions, we can obtain multi- 

soliton solutions without doing any further integrals. 

6.5 The theorem of permutability 

Let’s apply the Bäcklund transformation twice, with parameters a1 

and a2, in the two possible 

orders:

 

u0

 

u1

 

u2

 

u3

 

u4

 

a1

 

a2

 

a1

 

a2

 

The final results u3 

and u4 

both look like the seed solution u0 

with two added solitons, with 

parameters a1 

and a2. Could they actually be the same solution? The answer is yes, according 

to the following theorem: 

THEOREM

 

(Bianchi 1902): 

For any u1 

and u2, the integration constants in the second Bäcklund transformations, 

which generate u3 

and u4, can be arranged such that u3 

and u4 

are equal.

 

In other words, the a1 

and a2 

BT’s can be made to commute . Diagrammatically:
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u0

 

u1

 

u2

 

u3

 

a1

 

a2

 

a2

 

a1

 

I will spare you the proof of the theorem, which is a bit involved. Hopefully the statement 

makes intuitive sense, given the soliton content of u3 

and u4. 

This result has a nice application. We have two ways of getting to u3 

from u0: either through 

u1 

or through u2. By comparing these two ways we will be able to get rid of all derivatives 

in the Bäcklund transformations and thereby obtain an algebraic relation between the four 

solutions u0 

, u1 

, u2 

, u3. 

Let’s start by considering the B` 

parts of the transformations, and let’s look at the upper route 

first:

 

u0

 

u1

 

u3

 

a1

 

a2

 

We have

 

p u1 ´ u0q` “ 

2

 

a1 

sin 

u1 ` u0

 

2 

p u3 ´ u1q` “ 

2

 

a2 

sin 

u3 ` u1

 

2 

.

 

(6.18) 

Adding the two equations to cancel u1 

out in the left-hand side, we get

 

p u3 ´ u0q` “ 

2

 

a1 

sin 

u1 ` u0

 

2 

` 

2

 

a2 

sin 

u3 ` u1

 

2

 

.

 

(6.19) 

For the lower route
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u0

 

u2

 

u3

 

a2

 

a1

 

we swap a1 Ø a2, u1 Ø u2 

and get

 

p u3 ´ u0q` “ 

2

 

a2 

sin 

u2 ` u0

 

2 

` 

2

 

a1 

sin 

u3 ` u2

 

2

 

.

 

(6.20) 

We have found two different expressions for p u3´ u0q`. Equating them, we obtain an algebraic 

relation between u0 

, u1 

, u2 

, u3:

 

1

 

a1 

sin 

u1 ` u0

 

2 

` 

1

 

a2 

sin 

u3 ` u1

 

2 

“ 

1

 

a2 

sin 

u2 ` u0

 

2 

` 

1

 

a1 

sin 

u3 ` u2

 

2

 

.

 

(6.21) 

This is very useful: for example, starting from u0 

equal to the vacuum and two one-soliton 

solutions u1 

, u2, we can generate a 2-soliton solution u3 

algebraically. We can then iterate the 

procedure and get a 3-soliton solution, then a 4-soliton solution, and so on and so forth. What 

we have found is akin to a “non-linear superposition principle” : the Bäcklund transfor- 

mation and the permutability theorem provide us with a machinery to “add” solutions of a 

non-linear equation! 

To check that this procedure is consistent, let’s see what happens for the B´ 

part of the Bäck- 

lund transformations. For the upper route

 

u0

 

u1

 

u3

 

a1

 

a2

 

we have

 

p u1 ` u0q´ “ ´ 2 a1 sin 

u1 ´ u0

 

2 

p u3 ` u1q´ “ ´ 2 a2 sin 

u3 ´ u1

 

2 

.

 

(6.22) 

Subtracting the two equations we get

 

p u0 ´ u3q´ “ 2 a2 sin 

u3 ´ u1

 

2 

´ 2 a1 sin 

u1 ´ u0

 

2

 

.

 

(6.23)
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For the lower route

 

u0

 

u2

 

u3

 

a2

 

a1

 

we swap again a1 Ø a2, u1 Ø u2 

and get

 

p u0 ´ u3q´ “ 2 a1 sin 

u3 ´ u2

 

2 

´ 2 a2 sin 

u2 ´ u0

 

2

 

.

 

(6.24) 

Equating (6.23) and (6.24), we find the algebraic relation

 

a2 sin 

u3 ´ u1

 

2 

´ a1 sin 

u1 ´ u0

 

2 

“ a1 sin 

u3 ´ u2

 

2 

´ a2 sin 

u2 ´ u0

 

2

 

.

 

(6.25) 

Consistency requires that the two algebraic relations (6.21) and (6.25) agree. To see that, let’s 

first rewrite (6.21) in the following form: 

1

 

a1 

´ 

sin 

u1 ` u0

 

2 

´ sin 

u3 ` u2

 

2 

¯ 

“ 

1

 

a2 

´ 

sin 

u2 ` u0

 

2 

´ sin 

u3 ` u1

 

2 

¯ 

. 

Multiplying by a1 

a2{ 2 and using the identity sin A ˘ sin B “ 2 sin 

A ̆  B

 

2 

cos 

A ̄  B

 

2 

, this becomes

 

a2 sin 

u1 ` u0 ´ u3 ´ u2

 

4 � 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

cos 

u1 ` u0 ` u3 ` u2

 

4 

“ a1 sin 

u2 ` u0 ´ u3 ´ u1

 

4 � 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

cos 

u2 ` u0 ` u3 ` u1

 

4

 

(6.26) 

where we are allowed to simplify the common cosine factor in the two sides because the 

argument is a function of x and t which is generically different from π { 2 modulo π . 

Similarly, (6.25) can be rearranged as 

a1 

´ 

sin 

u3 ´ u2

 

2 

` sin 

u1 ´ u0

 

2 

¯ 

“ a2 

´ 

sin 

u3 ´ u1

 

2 

` sin 

u2 ´ u0

 

2 

¯ 

, 

which upon using the same trigonometric identity as above becomes

 

a1 sin 

u3 ´ u2 ` u1 ´ u0

 

4 � 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

cos 

u3 ´ u2 ´ u1 ` u0

 

4 

“ a2 sin 

u3 ´ u1 ` u2 ´ u0

 

4 � 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

cos 

u3 ´ u1 ´ u2 ` u0

 

4

 

(6.27)
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which agrees with equation (6.26) upon simplification. So everything is consistent. 

To conclude this discussion, let’s manipulate (the simplified version of) equation (6.26) a bit 

further, with the aim of determining u3 

given u0 

, u1 

and u2. Letting A “ p u0 

´ u3q{ 4 and 

B “ p u1 ´ u2q{ 4 , (6.26) becomes

 

a1 sin p A ´ B q “ a2 sin p A ` B q 

ùñ a1p sin A cos B ´ sin B cos A q “ a2p sin A cos B ` sin B cos A q .

 

Dividing through by cos A cos B , we find

 

a1p tan A ´ tan B q “ a2p tan A ` tan B q . 

ùñ p a1 ´ a2q tan A “ p a1 ` a2q tan B .

 

In terms of u0 

, u1 

, u2 

, u3, this reads

 

tan 

u0 ´ u3

 

4 

“ 

a1 ` a2

 

a1 ´ a2 

tan 

u1 ´ u2

 

4

 

,

 

(6.28) 

which is an improvement on (6.26) since u3 

appears only once. Equivalently, we can write

 

tan 

u3 ´ u0

 

4 

“ 

a2 ` a1

 

a2 ´ a1 

tan 

u1 ´ u2

 

4

 

.

 

(6.29) 

Either of (6.28) or (6.29) allow us to express u3 

in terms of u0 

, u1 

, u2. 

6.6 The two-soliton solution 

Finally a payoff. Take the vacuum as the seed solution, i.e. u0 “ 0 . Then u1 

and u2 

are known 

from before: they are single kinks or antikinks. Equation (6.29) gives the double Bäcklund 

transformed u3 

as

 

tan 

u3

 

4 

“ 

a2 ` a1

 

a2 ´ a1 

tan 

u1 ´ u2

 

4 

“ 

a2 ` a1

 

a2 ´ a1 

tan 

u1

 

4 

´ tan 

u2

 

4

 

1 ` tan 

u1

 

4 

tan 

u2

 

4 

,

 

(6.30) 

where we used the trigonometric identity 

tan p A ´ B q “ 

tan A ´ tan B

 

1 ` tan A ¨ tan B 

for the second equality. The 1-soliton ( i.e. kink or antikink) solutions are

 

tan 

ui

 

4 

“ eθi

 

p i “ 1 , 2 q

 

(6.31)
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where

 

θi “ 

x`

 

ai 

´ ai 

x´
` ci “ ϵi 

γip x ´ ¯ xi ´ vi 

t q

 

,

 

(6.32) 

as seen in section 6.4. Here ¯ x1 , 2 

are the centres of the two solitons at t “ 0 . Substituting 

equation (6.31) in equation (6.30) we find the 2-soliton solution

 

tan 

u3

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2

 

(6.33) 

where

 

µ “ 

a2 ` a1

 

a2 ´ a1

 

(6.34) 

REMARK

 

: 

If the two solitons have the same velocity v1 “ v2, which means 

a2 

1 ´ 1

 

a2 

1 ` 1 

“ 

a2 

2 ´ 1

 

a2 

2 ` 1 

ùñ a1 “ ˘ a2 

, 

then µ “ 0 or 8 and the 2-soliton solution (6.33) breaks down. In particular, there is no static 

2-soliton solution! As we will see later, this is because the two solitons exert a force on one 

another. 

But this is too fast. We haven’t confirmed yet that equation (6.33) contains two solitons. Let’s 

understand that next. 

6.7 Asymptotics of multisoliton solutions 

We will focus here on the 2-soliton solution of the sine-Gordon equation, but the method 

applies more generally to any multi-soliton solutions of integrable equations ( e.g. the KdV 

equation). 

Our goal will be to study the new solution (6.33) and identify two solitons hidden in its asymp- 

totics for t Ñ ¯8 , namely BEFORE and AFTER the collision. Here is an example of what the 

solution may look like at early times (before the collision) and at late times (after the collision) 

in the case of a collision of a kink and an anti-kink:
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It is not completely obvious how to find the early time and late time asymptotics analytically. 

If we just take t ˘ 8 with x fixed, the two solitons will be at spatial infinity and we will miss 

them (unless one of the two has zero velocity, in which case we will see that soliton). We 

should instead follow one or the other soliton by letting

 

t Ñ ˘8 with XV 

“ x ´ V t fixed

 

,

 

(6.35) 

for some appropriate constant velocity V . If there is a soliton moving at velocity V in the 

original p x, t q coordinates, it will appear stationary in the p XV 

, t q coordinates. For this reason 

p XV 

, t q is called a “comoving frame” : they are coordinates for a reference frame which moves 

together with an object ( e.g. a soliton) of velocity V . 

Let us try this for the solution (6.33) which we obtained from a double Bäcklund transformation 

of the vacuum. We will now use u to denote the field in the resulting solution, which reads 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

with 

µ “ 

a2 ` a1

 

a2 ´ a1 

, θi “ ϵi 

γip x ´ vi 

t ´ ¯ xiq . 

If we switch to a comoving frame with velocity V , the exponents read

 

θi “ ϵi 

γip x ´ V t ` V t ´ vi 

t ´ ¯ xiq 

“ ϵi 

γip XV 

´ p vi ´ V q t ´ ¯ xiq ,

 

(6.36) 

where we see the appearance of the “relative velocity” vi 

´ V , that is the velocity in the 

comoving frame. 

For each soliton we now have three cases for the limit (6.35), corresponding to a positive, zero 

or negative relative velocity for the soliton: 

Case

 

t Ñ ´8

 

t Ñ `8

 

V ă vi

 

θi Ñ ` ϵi8

 

θi Ñ ´ ϵi8 

V “ vi

 

θi 

finite

 

θi 

finite 

V ą vi

 

θi Ñ ´ ϵi8

 

θi Ñ ` ϵi8
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Recall that ϵi “ ˘ 1 is a sign, and γi ą 0 so it does not affect the sign of θi 

in the limit. 

This tells us that if V ‰ v1 

, v2

 

, then θ1 

, θ2 Ñ ˘8 as | t | Ñ 8 . This implies that4 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

Ñ ˘8 or 0 . 

So u { 4 tends to an integer multiple of π { 2 , which means that u tends to an integer multiple 

of 2 π : the field is in the vacuum. The conclusion is that if we go off to infinity in the original 

p x, t q plane in any direction apart from 

dx

 

dt 

“ v1 

, v2, then u Ñ 2 π n for some n P Z . 

If instead V “ v1 

or v2

 

, we need to study the limit more carefully. We will consider a single 

case a1 

, a2 ą 0

 

, leaving the other cases for the exercises. Since a1 

‰ a2 

for the solution to 

exist, let us take without loss of generality 

a2 ą a1 ą 0

 

ùñ v2 ą v1 

, ϵ1 “ ϵ2 “ 1 , µ ą 0 . 

Consider V “ v1

 

first, or "let’s ride the slower soliton". In the comoving frame the exponents 

θi 

read

 

θ1 “ γ1p x ´ v1 

t ´ ¯ x1q “ γ1p Xv1 ´ ¯ x1q 

θ2 “ γ2p x ´ v2 

t ´ ¯ x2q “ γ2p Xv1 ´ p v2 ´ v1q t ´ ¯ x2q

 

(6.37) 

so θ1 

stays finite, whereas θ2 Ñ ¯8 as t Ñ ˘8 with Xv1 

fixed (I used that v2 ą v1). 

One of the two limits is easier to analyse, so let’s start with that: 

1. t Ñ `8

 

: 

In this limit θ2 Ñ ´8 , so eθ2 Ñ 0 and

 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

Ñ µeθ1 

“ µeγ1p Xv1´ ¯ x1q 

“ e
γ1 

´ 

x ́  v1 

t ́  ¯ x1` 

1

 

γ1 

log µ 

¯ 

,

 

4According to the signs of the limits of θ1 

and θ2, the limit of tan p u { 4 q is as follows:

 

`` : tan p u { 4 q Ñ 0 

`´ : tan p u { 4 q Ñ `8 

´` : tan p u { 4 q Ñ ´8 

´´ : tan p u { 4 q Ñ 0 .
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where in the last line we have expressed the finite limit in the comoving coordinates in 

terms of the original p x, t q coordinates. 

This is a kink, the centre of which moves with velocity v1 

along the trajectory

 

x “ v1 

t ` ¯ x1 ´ 

1

 

γ1 

log 

a2 ` a1

 

a2 ´ a1

 

.

 

(6.38) 

The last term is negative and represents a backward shift in space of the slower soliton 

compared to where it would have been at the same time in the absence of the faster 

soliton. (Equivalently, we can view this as a time delay for reaching a fixed value of x .) 

2. t Ñ ´8

 

: 

In this limit θ2 Ñ `8 , so eθ2 Ñ `8 and

 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

Ñ ´ µe´ θ1 .

 

Recalling that tan 

`

A ˘ 

π

 

2 

˘

“ ´ 

1

 

tan A
, this means that

 

tan 

´ u

 

4 

˘ 

π

 

2 

¯ 

Ñ µ´ 1 eθ1 

“ e
γ1 

´ 

x ́  v1 

t ́  ¯ x1´ 

1

 

γ1 

log µ 

¯ 

.

 

Therefore 

u
ˇ

ˇ 

t Ñ´8 , Xv1 

finite « ˘ 2 π ` 4 arctan e
γ1 

´ 

x ́  v1 

t ́  ¯ x1´ 

1

 

γ1 

log µ 

¯ 

. 

(The ˘ sign ambiguity can be fixed by continuity. It turns out that ´ 2 π is correct.) 

This is a kink, the centre of which moves with velocity v1 

along the trajectory

 

x “ v1 

t ` ¯ x1 ` 

1

 

γ1 

log 

a2 ` a1

 

a2 ´ a1

 

.

 

(6.39) 

The last term is positive and represents a forward shift of the slower soliton compared 

to where it would have been at the same time in the absence of the faster soliton. (Equiv- 

alently, we can view this as a time advancement.) 

Comparing the trajectories at early times ( t Ñ ´8 ) and at late times ( t Ñ `8 ), we see that 

the collision with the faster soliton shifts the slower soliton backwards by 

2

 

γ1 

log 

a2 ` a1

 

a2 ´ a1 

, 

as exemplified by this figure:
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We say that the slower soliton has a negative phase shift:

 

PHASE SHIFTslower “ ´ 

2

 

γ1 

log 

a2 ` a1

 

a2 ´ a1

 

(6.40) 

We conclude that the slower kink emerges from the collision with the same shape and velocity, 

but delayed by a finite phase shift. 

Now consider V “ v2

 

, or "let’s ride the faster soliton". The calculation is similar to what we 

did above, so I’ll let you work out the details in [Ex 30] . If you do this exercise you will 

find a surprise: even though a2 

ą 0 , so that acting on the vacuum with the a2-Bäcklund 

transformation produces a kink, the component of the two-soliton solution (6.33) that moves 

at velocity v2 

is actually an anti-kink! So, even though the Bäcklund transformation always 

adds a soliton, the nature of the added soliton depends on what is already there. 

The shifts have opposite signs to before, as exemplified by this figure:
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This results in a positive phase shift:

 

PHASE SHIFTfaster “ ` 

2

 

γ2 

log 

a2 ` a1

 

a2 ´ a1

 

.

 

(6.41) 

Summarising, we have the following picture for the collision of the anti-kink and the kink:

 

Figure 6.1: Schematic summary of the kink-antikink solution. 

See also here for the plot of the kink-antikink solution with parameters a1 

“ 1 . 1 and a2 

“ 2 , 

here for a contour plot of its energy density, which clearly shows the trajectories of the kink 

and the anti-kink, and here for an animation of the time evolution. 

REMARK

 

: 

From the plot of the exact solution or the contour plot of its energy density we see that the 

kink and the anti-kink attract each other. Indeed we observe that they get closer during the 

interaction. 

The remaining cases for the signs of a1 

and a2 

can be analysed similarly, see [Ex 31] and [Ex 

32] . In particular, the 2-soliton solution that contains two kinks is depicted in figure 6.7.5 (See 

also here for a plot of the kink-kink solution with parameters a1 

“ 0 . 6 and a2 

“ ´ 1 . 5 , here 

for a contour plot of its energy density, which clearly shows the trajectories of the two kinks, 

and here for an animation of the time evolution.)

 

5The solution that contains two anti-kinks can be obtained by sending u ÞÑ ´ u .

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_animation.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink_animation.gif
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Figure 6.2: Schematic summary of the kink-kink solution. 

From the plot of the exact solution or the contour plot of its energy density we see that the 

two kinks repel each other. Indeed they get further apart during the interaction. Curiously, 

they also seem to swap their identities! 

INTERPRETATION:

 

ATTRACTIVE FORCE between kink and anti-kink 

REPULSIVE FORCE between kink and kink 

REPULSIVE FORCE between anti-kink and anti-kink

 

So kinks and anti-kinks behave similarly to elementary particles with electric charge, such as 

the electron and the positron. The role of electric charge is played here by the topological 

charge: 

Solitons with like topological charges repel 

Solitons with opposite topological charges attract.

 

It is quite amazing that lump of fields can behave so similarly to pointlike elementary particles. 

In the 1950’s and 1960’s, Tony Skyrme used versions of kinks (and anti-kinks) in four spacetime 

dimensions to model the behaviour of protons and neutrons in atomic nuclei. This is a very far-

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink_energy_density.jpg
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reaching idea, which unfortunately we don’t have time to investigate further in this module. 

We have seen that kinks and anti-kinks attract each other. This raises a natural question: 

can they stick together, or in physics parlance “form a bound state”? The answer is yes. The 

resulting bound state of a kink and an anti-kink is the “breather”, which we now turn to. 

6.8 The breather 

Recall the general 2-soliton solution (6.33) of the sine-Gordon equation, that we rewrite here 

for convenience: 

u “ 4 arctan 

ˆ 

a2 ` a1

 

a2 ´ a1 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

˙

 

. 

This is a solution of the sine-Gordon equation for any values of the Bäcklund parameters a1 

and a2 

(and integration constants c1 

and c2), even complex values. However, the sine-Gordon 

field u is an angle and so it must be real. There are essentially two options to achieve this:6 

1. a1 

, a2 

(and c1 

, c2) P R :

 

this is what we have considered so far; 

2. a2 “ a˚ 

1 

(and c2 “ c˚ 

1 ):

 

this is what we will consider next. But let’s first check that the 

corresponding u is real:

 

u˚
“ 

„ 

4 arctan 

ˆ 

a2 ` a1

 

a2 ´ a1 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

˙ȷ˚ 

“ 4 arctan 

˜ 

a˚ 

2 ` a˚ 

1

 

a˚ 

2 ´ a˚ 

1 

eθ
˚ 

1 ´ eθ
˚ 

2

 

1 ` eθ
˚ 

1 ` θ˚ 

2 

¸ 

“ 4 arctan 

ˆ 

a1 ` a2

 

a1 ´ a2 

eθ2 ´ eθ1

 

1 ` eθ2` θ1 

˙ 

“ 4 arctan 

ˆ 

a2 ` a1

 

a2 ´ a1 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

˙ 

“ u .

 

To get to the second line we used the fact that arctan p z q and ez are complex analytic 

functions, therefore r arctan p z qs
˚

“ arctan p z˚q and r ezs
˚

“ ez
˚ . To get to the third line 

we used θ2 “ θ˚ 

1 , which follows from a2 “ a˚ 

1 

and c2 “ c˚ 

1 . 

Let us then consider option 2 and try a solution with arbitrary a1 

“ a˚ 

2 

” a and with c1 

“

 

6To be precise, one can also add to the integration constants c1 

and c2 

an integer multiple of π i . This has the 

effect of permuting the two solitons if the multiple is odd, and has no effect if the multiple is even.
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c2 “ 0 for simplicity. Define

 

a1 “ a “ A ` iB “ | a | eiφ 

a2 “ ¯ a “ A ´ iB “ | a | e´ iφ

 

(6.42) 

where A “ Re p a q , B “ Im p a q , φ “ arg p a q , and let

 

θ1 “ α ` iβ 

θ2 “ α ´ iβ

 

,

 

(6.43) 

with α and β real functions of x, t to be determined below. Then

 

tan 

u

 

4 

“ 

| a |p e´ iφ ` eiφq

 

| a |p e´ iφ ´ eiφq
¨ 

eα ̀  iβ ´ eα ́  iβ

 

1 ` e2 α 

“ 

2 cos φ

 

´ 2 i sin φ
¨ 

2 i sin β

 

2 cosh α

 

which simplifies to

 

tan 

u

 

4 

“ ´
cos φ

 

sin φ 

sin β

 

cosh α

 

.

 

(6.44) 

To finish the calculation, let’s determine the functions α , β in terms of the coordinates x, t and 

the parameters | a | and φ :

 

α ` iβ “ θ1 “ 

1

 

a 

x`
´ ax´ 

“ 

¯ a

 

| a |2 

x`
´ ax´

“ 

A ´ iB

 

| a |2 

x`
´ p A ` iB q x´ .

 

(6.45) 

Therefore

 

α “ Re p θ1q “ 

A

 

| a |2 

x`
´ Ax´ 

“ 

A

 

| a | 

ˆ 

1

 

| a | 

x`
´ | a | x´ 

˙ 

.

 

We can now do similar manipulations to those after equation (6.15) to find

 

α “ 

A

 

| a | 

γ p x ´ v t q “ 

(6.42) 

cos φ ¨ γ p x ´ v t q

 

,

 

(6.46) 

where

 

v “ 

| a |2 ´ 1

 

| a |2 ` 1 

γ “ 

1

 

?

 

1 ´ v2 

“ 

1 ` | a |2

 

2 | a |

 

.

 

(6.47)
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˚ EXERCISE

 

: Show that similarly [Ex 33]

 

β “ 

B

 

| a | 

γ p v x ´ t q “ 

(6.42) 

sin φ ¨ γ p v x ´ t q

 

.

 

(6.48) 

Substituting these expressions in (6.44) we find the breather solution

 

tan 

u

 

4 

“ ´ cot φ ¨ 

sin p sin φ ¨ γ p v x ´ t qq

 

cosh p cos φ ¨ γ p x ´ v t qq

 

.

 

(6.49) 

REMARK

 

: 

• The ratio of the prefactor and the denominator in the RHS, 

´ cot φ

 

cosh p cos φ ¨ γ p x ´ v t qq 

, 

defines an envelope which moves at the group velocity v . Recall that | v | ă 1 , where 1 

is the speed of light, so this is consistent with the laws of special relativity. 

• The numerator 

sin p sin φ ¨ γ p x ´ v t qq 

defines a carrier wave which moves at the phase velocity 1 { v . 

To see why the solution (6.49) is called a breather, let us set | a | “ 1 , or equivalently v “ 0 . 

(This can be achieved by switching to a comoving frame if v ‰ 0 .) Then the breather simplifies 

to

 

tan 

u

 

4 

“ cot φ ¨ 

sin p sin φ ¨ t q

 

cosh p cos φ ¨ x q

 

(6.50) 

and the field looks like a bouncing (or “breathing”) bound state of a kink and an anti-kink, 

with time period

 

τ “ 

2 π

 

| sin φ |

 

.

 

(6.51) 

See figure (6.3) for a summary of the v “ 0 breather solution, this for a plot of the breather 

solution with v “ 0 and φ “ π { 10 , this for a contour plot of its energy density, which clearly 

shows the trajectories of the breathing pair of kink and anti-kink, and this for an animation 

of the time evolution.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather_animation.gif
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Figure 6.3: Summary of the v “ 0 breather solution. 

One can show7 that the v “ 0 breather has energy Ebreather “ 16 cos φ . Since a static kink and 

a static anti-kink have energy Ekink 

“ Eantikink 

“ 8 , the binding energy of the kink and the 

anti-kink in the breather is 

Ebinding “ Ebreather ´ Ekink ´ Eantikink “ ´ 16 p 1 ´ cos φ q . 

This is negative as expected: the binding lowers the energy of the solution. 

As φ Ñ 0

 

, the binding energy tends to zero. It is immediate to see from equation (6.51) that 

the time period of the bounce diverges: τ „ 1 {| φ | Ñ 8 . The spatial size of the breather also 

diverges like [Ex 34] 

xmax „ ´ log | φ |

 

Ñ 8 . 

In this limit the kink and the antikink become more and more loosely bound. The resulting 

solution 

u “ 4 arctan p t ¨ sech p x qq 

describes a kink and an anti-kink starting infinitely far away from one another and doing half 

an oscillation. Since sech p x q « 2 e´| x | as | x | Ñ 8 , the kink and the anti-kink do not follow 

linear trajectories as t Ñ ˘8 . Rather, the asymptotic trajectories of the kink and the anti-kink 

are given by | x | „ log | t | .

 

7This is a good but technical exercise, which is not in the problem sheet.
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