
 

Chapter 2 

Waves, dispersion and dissipation 

The main reference for this chapter is §1.1 of the book [Drazin and Johnson, 1989]. 

2.1 Dispersion 

Usually, localised waves spread out ( “disperse” ) as they travel. This prevents them from 

being solitons. Let’s understand this phenomenon first. 

EXAMPLES

 

: 

1. ADVECTION EQUATION (linear, 1st order):

 \label {1.1} \boxed {\frac {1}{v} u_t+u_x = 0} 







   

 

(2.1) 

ÝÑ Solution 

u p x, t q “ f p x ´ v t q for any function f , 

i.e. a wave moving with velocity v (right-moving if v ą 0 , left-moving if v ă 0 ). The 

wave keeps a fixed profile f p ξ q and moves rigidly at velocity v (indeed ξ “ x ´ v t ):
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So in this case there is no dispersion, but nothing else happens either. 

2. “THE” WAVE EQUATION or D’ALEMBERT EQUATION (linear, 2nd order):

 \label {1.2} \boxed {\frac {1}{v^2} u_{tt}-u_{xx} = 0}\qquad (v>0~\mathrm {wlog}) 







   



  

 

(2.2) 

ÝÑ Solution 

u p x, t q “ f p x ´ v t q ` g p x ` v t q for any functions f , g , 

i.e. the superposition of a right-moving and a left-moving wave with velocities ˘ v :

 

All waves move at the same speed, so there is no dispersion, but there is no interaction 

either, so this is also not very interesting for our purposes. 

3. KLEIN-GORDON EQUATION1 (linear, 2nd order):

 \label {1.3} \boxed {\frac {1}{v^2} u_{tt}-u_{xx}+m^2 u = 0}~, 







     





 

(2.3) 

where we take v ą 0 wlog. 

This is a more interesting equation. Let us try a complex “plane wave” solution2

 \label {1.4} \boxed {u(x,t)=\pw }~. 

  





 

(2.4) 

Substituting the plane wave (2.4) in the Klein-Gordon equation (2.3), we find:

 &-\frac {\w ^2}{v^2} \pw +k^2 \pw +m^2 \pw =0\\ &\qquad \quad ~ \Longrightarrow ~~-\frac {\w ^2}{v^2}+k^2+m^2=0~.























  
 



                

              

                

               

  

                    

                

                   





     

 

So the plane wave (2.4) is a solution of the Klein-Gordon equation (2.3) provided that ω 

satisfies

 \label {1.5} \boxed {\omega =\w (k)= {\color {teal} \pm } ~v~\sqrt {k^2+m^2}} ~. 

    





 





 

(2.5) 

We will usually ignore the sign ambiguity and only consider the ` sign in (2.5) and 

similar equations.3 

VOCABULARY

 

: 

k wavenumber 

ω angular frequency 

λ “ 

2 π

 

k 

wavelength (periodicity in x ) 

τ “ 

2 π

 

ω 

period (periodicity in t ) 

A formula like (2.5) relating ω to k : dispersion relation . 

The maxima of a real plane wave, like for instance Re ei p k x ́  ω p k q t q or Im ei p k x ́  ω p k q t q, are 

called “wave crests” . By a slight abuse of terminology, we will refer to the wave crests 

of the real or imaginary part of a complex plane wave like (2.4) simply as the wave crests 

of the complex plane wave. 

By rewriting the complex plane wave solution (2.4) of the Klein-Gordon equation as 

eik p x ́  c p k q t q, we see that its wave crests move at the velocity

  c(k)=\frac {\w (k)}{k} = v ~\sqrt {1+\frac {m^2}{k^2}} ~\sgn (k)~. 

























 

Plane waves with different wavenumbers move at different velocities , so if we try 

to make a lump of real Klein-Gordon field by superimposing different plane waves

 \label {1.6} \boxed {u(x,t)=\re \intinf dk~f(k)~\pwk }~, 

  





  





 

(2.6) 

it will disperse . 

In fact, there are two different notions of velocity for a wave: 

- PHASE VELOCITY

 \label {1.7} \boxed {c(k)=\frac {\w (k)}{k}}~, 













 

(2.7) 

which is the velocity of wave crests.

 

3We do not lose generality here, since we can obtain the plane wave solution with opposite ω by taking the 

complex conjugate plane wave solution and sending k Ñ ´ k .
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- GROUP VELOCITY

 \label {1.8} \boxed {c_g(k)=\frac {d\w (k)}{dk}}~, 













 

(2.8) 

which is the velocity of the lump of field while it disperses. 

We will understand better the relevance of the group velocity in the next section. 

REMARK

 

: 

The energy (and information) carried by a wave travels at the group velocity , not at the 

phase velocity. For a relativistic wave equation with speed of light v , no signals can be 

transmitted faster than the speed of light. So it should be the case that | cgp k q| ď v

 

for all 

wavenumbers k , but there is no analogous bound on the phase velocity. For example, for the 

Klein-Gordon equation (2.3), we can calculate 

- |Group velocity|: 

| cgp k q| “ 

ˇ

ˇ

ˇ

ˇ 

dω p k q

 

dk 

ˇ

ˇ

ˇ

ˇ

“ 

v

 

b

 

1 ` 

m2

 

k2 

ď v 

consistently with the principles of relativity. 

- |Phase velocity|: 

| c p k q| “ 

ˇ

ˇ

ˇ

ˇ 

ω p k q

 

k 

ˇ

ˇ

ˇ

ˇ

“ v 

c

 

1 ` 

m2

 

k2 

ě v , 

which is faster than the speed of light v for all k , but this is not a problem. 

2.2 Example: the Gaussian wave packet 

The simplest example of a localised field configuration obtained by superposition of plane 

waves is the “GAUSSIAN WAVE PACKET”, which is obtained by choosing a Gaussian 

f p k q “ e´ a2p k ´k̄ q2 

p a ą 0 , k̄ P R q 

in the general superposition (2.6). This represents a lump of field with 

average wavenumber k̄ 

spread of wavenumber „ 1 { a , 

see fig. 2.1.
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Figure 2.1: Gaussian wavepacket in Fourier space. 

Then u p x, t q “ Re z p x, t q is a real solution of the Klein-Gordon equation, where

 \label {1.9} \boxed {z(x,t)=\intinf dk~ e^{-a^2(k-\bar {k})^2} \pwk }~, 

 













 

(2.9) 

provided that ω p k q “ v
?

 

k2 ` m2.4 

Since most of the integral (2.9) comes from the region k « k̄ , we can obtain a good approxi- 

mation to (2.9) by Taylor expanding ω p k q about k “ k̄ . Expanding to first order in p k ´ k̄ q we 

obtain

  \begin {split} \w (k)&=\w (\bar k) + \w '(\bar k)\cdot (k-\bar k) + \cO ((k-\bar k)^2)\\ &=\w (\bar k) + c_g(\bar k)\cdot (k-\bar k) + \cO ((k-\bar k)^2)\\ &\approx \w (\bar k) + c_g(\bar k)\cdot (k-\bar k) ~,\\ \end {split} 

   
  

  





     

  





     



 

where in the second line we used (2.8) and in the third line we introduced a short-hand « to

 

4 z p x, t q is a complex solution of the Klein-Gordon equation. Since the Klein-Gordon equation is a linear 

equation with real coefficients, the complex conjugate z p x, t q˚ is also a solution of the Klein-Gordon equation, 

as are Re z p x, t q and Im z p x, t q .
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avoid writing O pp k ´ k̄ q2q every time. Substituting in (2.9), we find

  \begin {split} z(x,t) &\approx \intinf dk~ e^{-a^2(k-\bar {k})^2} e^{i\{kx-[\w (\bar k)+c_g(\bar k)\cdot (k-\bar k)]t\}}\\ &=e^{i[\bar k x-\w (\bar k)t]} \intinf dk~ e^{-a^2(k-\bar {k})^2} e^{i(k-\bar k)[x-c_g(\bar k)t]}\\ &\hspace {-10pt}\underset {k\to k+\bar k}{=}e^{i[\bar k x-\w (\bar k)t]} \intinf dk~ e^{-a^2k^2+ik[x-c_g(\bar k)t]}\\ &\hspace {-15pt}\underset {\substack {\mathrm {complete}\\ \mathrm {the~square}}}{=} e^{i[\bar k x-\w (\bar k)t]} e^{-\frac {1}{4a^2}[x-c_g(\bar k)t]^2} \intinf dk~ e^{-a^2\left \{k-\frac {i}{2a^2}[x-c_g(\bar k)t]\right \}^2} \\ &\hspace {-12pt}\underset {\substack {\mathrm {Gaussian}\\ \mathrm {integral}}}{=} \quad \underbrace {e^{i[\bar k x-\w (\bar k)t]}}_{\text {CARRIER WAVE}} \quad \cdot \quad \underbrace {\frac {\sqrt {\pi }}{a} e^{-\frac {1}{4a^2}[x-c_g(\bar k)t]^2}}_{\text {ENVELOPE}}~, \end {split} 

 


































































































 

where in the second line we factored out a plane wave with k “ k̄ , in the third line we 

changed integration variable replacing k by k ` k̄ , in the fourth line we completed the square 

Ak2 ` B k “ A p k ` 

B

 

2 A
q2 ´ 

B2

 

4 A
, and in the last line we used the Gaussian integral formula 

ż `8` ic 

´8` ic 

e´ Ak2 

“ 

c

 

π

 

A 

, 

which holds for all A ą 0 and c P R . The final result is the product of a: 

1. “CARRIER WAVE” : 

a plane wave moving at the phase velocity 

c pk̄ q “ 

ω pk̄ q

 

k̄

 

2. “ENVELOPE” : 

a localised profile (or “wave packet”) mov- 

ing at the group velocity 

cgpk̄ q “ ω1
pk̄ q .

 

Click here to see an animation of a Gaussian wavepacket with a (Gaussian) envelope and a 

carrier wave moving at different velocities. In the animation the phase velocity is much larger 

than the group velocity. 

To this order of approximation, the spatial width of the lump has the parametric dependence

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/GroupPhaseVelocity2.gif
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WIDTH „ a , 

meaning that the width doubles if a is doubled, and is constant in time. (Indeed, a simultaneous 

rescaling of x ´ cgpk̄ q t and a by the same constant λ leaves the envelope invariant.) 

˚ EXERCISE

 

: Improve on the previous approximation by including the 2nd order in k ´ k̄ . 

Show that [Ex 10] 

WIDTH2 „ a2 ` 

ω2pk̄ q

 

4 a2 

t2 

and that the amplitude of the wave packet also decreases as time increases. 

This leads to the phenomenon of DISPERSION , whereby the profile of the wave packet 

changes as it propagates. In particular, starting from a localised wave packet, dispersion makes 

the wave packet spread out: the width of the initial wave packet grows and the amplitude de- 

creases as time increases. See this animation of the time evolution of the Gaussian wave-packet 

up to second order in p k ´ k̄ q . 

2.3 Dissipation 

So far we have considered wave equations which lead to a real dispersion relation, so ω p k q P R . 

If instead ω p k q P C , then a new phenomenon occurs: DISSIPATION , where the amplitude 

of the wave decays (or grows) exponentially in time . For a plane wave

 \label {1.10} u(x,t)=\pwk = e^{i\left (kx-\re \w (k)\cdot t)\right )} e^{\im \w (k) \cdot t} 

  
    

 

(2.10) 

and we have two cases: 

• Im ω p k q ă 0 : “PHYSICAL DISSIPATION” 

The amplitude decays exponentially with time. 

• Im ω p k q ą 0 : “UNPHYSICAL DISSIPATION” 

The amplitude grows exponentially with time (physically unacceptable). 

EXAMPLES

 

: 

1.

 \label {1.11} \boxed {\frac {1}{v}u_t+u_x+\alpha u=0} \qquad (\alpha >0,~v>0) 







     



    

 

(2.11) 

Sub in a plane wave u “ ei p k x ́  ω t q:

  \begin {split} -i\frac {\w }{v}+ik+\alpha = 0 \quad \Longrightarrow \quad \w (k)=v(k-i\alpha ) ~, \end {split} 









           

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/GaussianWPDispersion.gif
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leading to a complex dispersion relation. The plane wave solution is therefore 

u p x, t q “ eik p x ́  v t q e´ αv t 

and the wave decays exponentially, or “dissipates” , to zero as t Ñ `8 . This is an 

example of physical dissipation. ( α v ă 0 would have led to unphysical dissipation.) 

2. HEAT EQUATION:

 \label {1.12} \boxed {u_t-\alpha u_{xx}=0} \qquad (\alpha >0) 

   



 

 

(2.12) 

˚ EXERCISE

 

: Sub in a plane wave and derive the dispersion relation ω p k q “ ´ iα k2. 

So the plane wave solution of the heat equation is 

u p x, t q “ eik x e´ αk2 t 

and the waves dissipates as time passes. 

2.4 Summary 

• Linear wave equation ÝÑ (Complex) plane wave solutions u “ ei p k x ́  ω t q . 

Sub in to get ω “ ω p k q dispersion relation . 

• Wave crests move at c p k q “ ω p k q{ k phase velocity . 

(If ω p k q P C , then we define the phase velocity as c p k q “ Re ω p k q{ k .) 

• Lumps of field 

/wave packets 

move at cgp k q “ ω1p k q group velocity . 

(If ω p k q P C , then we define the group velocity as cgp k q “ Re ω1p k q .) 

• Dispersion (real ω , width increases and amplitude decreases) and dissipation (complex 

ω , amplitude decreases exponentially) smooth out and destroy localised lumps of energy 

in linear wave (or field) equations. 

• Non-linearity can have an opposite effect (steepening and breaking, see chapter 1). 

• For solitons the competing effects counterbalance one another precisely, leading to 

stable lumps of energy, unlike for ordinary waves.
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