ENG92013/01 2H SYSTEMS (Numerical Methods) - ADDITIONAL HANDOUT

Six facts about the eigenvalues/eigenvectors of an $n \times n$ matrix, A, and their application to two particular problems (some with proofs)!

1. If A is real and $\{\lambda, \boldsymbol{e}\}$ are an eigenvalue/eigenvector pair then so is $\left\{\lambda^{*}, \boldsymbol{e}^{*}\right\}$.
2. If A is real where $A^{T}=A$ then all of the eigenvalues are real.
3. $|A|=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.
4. A does not necessarily have n eigenvectors.
5. Let the eigenvectors of A be $\left\{\boldsymbol{e}^{1}, \cdots, \boldsymbol{e}^{n}\right\}, X=\left(\boldsymbol{e}^{1} \cdots \boldsymbol{e}^{n}\right)$ and let the eigenvectors form a basis $(|X| \neq 0)$, then
(a) the solution of $\frac{\mathrm{d} \boldsymbol{z}}{\mathrm{d} t}=A \boldsymbol{z}$ is $\boldsymbol{z}(t)=e^{\lambda_{1} t} \boldsymbol{e}^{1}+\cdots+e^{\lambda_{n} t} \boldsymbol{e}^{n}$.
(b) $X^{-1} A X$ is a diagonal matrix with the eigenvalues along the diagonal.
6. If A is symmetric or $\lambda_{1}, \cdots, \lambda_{n}$ are all different then the eigenvectors form a basis.

Proofs

1. $\boldsymbol{A} \boldsymbol{e}^{*}=A^{*} \boldsymbol{e}^{*}=(\boldsymbol{A} \boldsymbol{e})^{*}=(\lambda \boldsymbol{e})^{*}=\lambda^{*} \boldsymbol{e}^{*}$.
2. $\lambda\left(e^{*}\right)^{T} \boldsymbol{e}=\left(\boldsymbol{e}^{*}\right)^{T}(\lambda \boldsymbol{e})=\left(\boldsymbol{e}^{*}\right)^{T}(A \boldsymbol{e})=(A \boldsymbol{e})^{T} \boldsymbol{e}^{*}=\boldsymbol{e}^{T} A^{T} \boldsymbol{e}^{*}=\boldsymbol{e}^{T}\left(A \boldsymbol{e}^{*}\right)=$ $\boldsymbol{e}^{T}\left(\lambda^{*} e^{*}\right)=\lambda^{*} \boldsymbol{e}^{T} \boldsymbol{e}^{*}$
3. $|A-\lambda I|=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$, now set $\lambda=0$.
4. Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. This has eigenvalues $\lambda_{1}, \lambda_{2}=0$, but only one eigenvector $b(1,0)^{T}$.
5. The eigenvectors form a basis when given a vector, \boldsymbol{y}, with n-components we can write $\boldsymbol{y}=\alpha^{1} \boldsymbol{e}^{1}+\cdots+\alpha^{n} \boldsymbol{e}^{n}$ where $\alpha^{1}, \cdots, \alpha^{n}$ are unique (which
we shall see is equivalent to $|X| \neq 0)$. All proofs are for $n=2$. Asking that the eigenvectors form a basis is the same as asking that
$\binom{y_{1}}{y_{2}}=\alpha^{1}\binom{e_{1}^{1}}{e_{2}^{1}}+\alpha^{2}\binom{e_{1}^{2}}{e_{2}^{2}}=\binom{\alpha^{1} e_{1}^{1}+\alpha^{2} e_{1}^{2}}{\alpha^{1} e_{2}^{1}+\alpha^{2} e_{2}^{2}}=\left(\begin{array}{cc}e_{1}^{1} & e_{1}^{2} \\ e_{2}^{1} & e_{2}^{2}\end{array}\right)\binom{\alpha^{1}}{\alpha^{2}}=X\binom{\alpha^{1}}{\alpha^{2}}$
or put another way, α^{1}, α^{2} are unique is equivalent to asking that we can find the inverse of X, which we know is equivalent to asking that $|X| \neq 0$.
(a) Suppose $\boldsymbol{z}(t)=\alpha^{1}(t) \boldsymbol{e}^{1}+\alpha^{2}(t) \boldsymbol{e}^{2}$ then

$$
\frac{\mathrm{d} \boldsymbol{z}}{\mathrm{~d} t}=\frac{\mathrm{d} \alpha^{1}}{\mathrm{~d} t} \boldsymbol{e}^{1}+\frac{\mathrm{d} \alpha^{2}}{\mathrm{~d} t} \boldsymbol{e}^{2} \text { and } A \boldsymbol{z}=\alpha^{1} A \boldsymbol{e}^{1}+\alpha^{2} A \boldsymbol{e}^{2}=\alpha^{1} \lambda_{1} \boldsymbol{e}^{1}+\alpha^{2} \lambda_{2} \boldsymbol{e}^{2} .
$$

so that substituting in and rearranging

$$
\boldsymbol{o}=\frac{\mathrm{d} \boldsymbol{z}}{\mathrm{~d} t}-A \boldsymbol{z}=\left(\frac{\mathrm{d} \alpha^{1}}{\mathrm{~d} t}-\lambda_{1} \alpha^{1}\right) \boldsymbol{e}^{1}+\left(\frac{\mathrm{d} \alpha^{2}}{\mathrm{~d} t}-\lambda_{2} \alpha^{2}\right) \boldsymbol{e}^{2}
$$

and because \boldsymbol{e}^{1} and \boldsymbol{e}^{2} form a basis

$$
\begin{gathered}
\frac{\mathrm{d} \alpha^{1}}{\mathrm{~d} t}-\lambda_{1} \alpha^{1}=0 \quad \frac{\mathrm{~d} \alpha^{2}}{\mathrm{~d} t}-\lambda_{2} \alpha^{2}=0 \Longrightarrow \alpha^{1}(t)=b_{1} e^{\lambda_{1} t}, \alpha^{2}(t)=b_{2} e^{\lambda_{2} t} \\
\text { i.e. } \boldsymbol{z}(t)=b_{1} e^{\lambda_{1} t} \boldsymbol{e}^{1}+b_{2} e^{\lambda_{2} t} \boldsymbol{e}^{2} .
\end{gathered}
$$

(b) $X^{-1} A X=X^{-1} A\left(e^{1} e^{2}\right)=X^{-1}\left(\lambda_{1} e^{1} \lambda_{2} e^{2}\right)=X^{-1}\left(e^{1} e^{2}\right)\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)=$ $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$.
6. The first part is too tricky!

Suppose that α^{1} and α^{2} are not zero and $\alpha^{1} \boldsymbol{e}^{1}+\alpha^{2} \boldsymbol{e}^{2}=\boldsymbol{o}$ (this is equivalent to asking that $|X|=0$ if you think about it and use the theorem on page 9 of the summary).
Multiplying by A we find that $\lambda_{1} \alpha^{1} \boldsymbol{e}^{1}+\lambda_{2} \alpha^{2} \boldsymbol{e}^{2}=\boldsymbol{o}$. Hence

$$
\begin{gathered}
\left(\begin{array}{ll}
e_{1}^{1} & e_{1}^{2} \\
e_{2}^{1} & e_{2}^{2}
\end{array}\right)\binom{\alpha^{1}}{\alpha^{2}}=\binom{0}{0} \text { and }\left(\begin{array}{cc}
e_{1}^{1} & e_{1}^{2} \\
e_{2}^{1} & e_{2}^{2}
\end{array}\right)\binom{\lambda_{1} \alpha^{1}}{\lambda_{2} \alpha^{2}}=\binom{0}{0} \\
\\
\Longleftrightarrow\left(\begin{array}{ll}
e_{1}^{1} & e_{1}^{2} \\
e_{2}^{1} & e_{2}^{2}
\end{array}\right)\left(\begin{array}{cc}
\alpha^{1} & 0 \\
0 & \alpha^{2}
\end{array}\right)\left(\begin{array}{ll}
1 & \lambda_{1} \\
1 & \lambda_{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

But since λ_{1} and λ_{2} are different and $\alpha^{1}, \alpha^{2} \neq 0$ then you can find the inverses of the second and third matrices, so that $X=0$ which cannot be true.

ENG92013/01 2H SYSTEMS (Numerical Methods) - ADDITIONAL HANDOUT

Six facts about the eigenvalues/eigenvectors of an $n \times n$ matrix, A, and their application to two particular problems (some with proofs)!

1. If A is real and $\{\lambda, \boldsymbol{e}\}$ are an eigenvalue/eigenvector pair then so is $\left\{\lambda^{*}, \boldsymbol{e}^{*}\right\}$.
2. If A is real where $A^{T}=A$ then all of the eigenvalues are real.
3. $|A|=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.
4. A does not necessarily have n eigenvectors.
5. Let the eigenvectors of A be $\left\{\boldsymbol{e}^{1}, \cdots, \boldsymbol{e}^{n}\right\}, X=\left(\boldsymbol{e}^{1} \cdots \boldsymbol{e}^{n}\right)$ and let the eigenvectors form a basis $(|X| \neq 0)$, then
(a) the solution of $\frac{\mathrm{d} \boldsymbol{z}}{\mathrm{d} t}=A \boldsymbol{z}$ is $\boldsymbol{z}(t)=e^{\lambda_{1} t} \boldsymbol{e}^{1}+\cdots+e^{\lambda_{n} t} \boldsymbol{e}^{n}$.
(b) $X^{-1} A X$ is a diagonal matrix with the eigenvalues along the diagonal.
6. If A is symmetric or $\lambda_{1}, \cdots, \lambda_{n}$ are all different then the eigenvectors form a basis.

Proofs

1. $\boldsymbol{A} \boldsymbol{e}^{*}=A^{*} \boldsymbol{e}^{*}=(\boldsymbol{A} \boldsymbol{e})^{*}=(\lambda \boldsymbol{e})^{*}=\lambda^{*} \boldsymbol{e}^{*}$.
2. $\lambda\left(e^{*}\right)^{T} \boldsymbol{e}=\left(\boldsymbol{e}^{*}\right)^{T}(\lambda \boldsymbol{e})=\left(\boldsymbol{e}^{*}\right)^{T}(A \boldsymbol{e})=(A \boldsymbol{e})^{T} \boldsymbol{e}^{*}=\boldsymbol{e}^{T} A^{T} \boldsymbol{e}^{*}=\boldsymbol{e}^{T}\left(A \boldsymbol{e}^{*}\right)=$ $\boldsymbol{e}^{T}\left(\lambda^{*} e^{*}\right)=\lambda^{*} \boldsymbol{e}^{T} \boldsymbol{e}^{*}$
3. $|A-\lambda I|=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$, now set $\lambda=0$.
4. Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. This has eigenvalues $\lambda_{1}, \lambda_{2}=0$, but only one eigenvector $b(1,0)^{T}$.
5. The eigenvectors form a basis when given a vector, \boldsymbol{y}, with n-components we can write $\boldsymbol{y}=\alpha^{1} \boldsymbol{e}^{1}+\cdots+\alpha^{n} \boldsymbol{e}^{n}$ where $\alpha^{1}, \cdots, \alpha^{n}$ are unique (which
we shall see is equivalent to $|X| \neq 0)$. All proofs are for $n=2$. Asking that the eigenvectors form a basis is the same as asking that
$\binom{y_{1}}{y_{2}}=\alpha^{1}\binom{e_{1}^{1}}{e_{2}^{1}}+\alpha^{2}\binom{e_{1}^{2}}{e_{2}^{2}}=\binom{\alpha^{1} e_{1}^{1}+\alpha^{2} e_{1}^{2}}{\alpha^{1} e_{2}^{1}+\alpha^{2} e_{2}^{2}}=\left(\begin{array}{cc}e_{1}^{1} & e_{1}^{2} \\ e_{2}^{1} & e_{2}^{2}\end{array}\right)\binom{\alpha^{1}}{\alpha^{2}}=X\binom{\alpha^{1}}{\alpha^{2}}$
or put another way, α^{1}, α^{2} are unique is equivalent to asking that we can find the inverse of X, which we know is equivalent to asking that $|X| \neq 0$.
(a) Suppose $\boldsymbol{z}(t)=\alpha^{1}(t) \boldsymbol{e}^{1}+\alpha^{2}(t) \boldsymbol{e}^{2}$ then

$$
\frac{\mathrm{d} \boldsymbol{z}}{\mathrm{~d} t}=\frac{\mathrm{d} \alpha^{1}}{\mathrm{~d} t} \boldsymbol{e}^{1}+\frac{\mathrm{d} \alpha^{2}}{\mathrm{~d} t} \boldsymbol{e}^{2} \text { and } A \boldsymbol{z}=\alpha^{1} A \boldsymbol{e}^{1}+\alpha^{2} A \boldsymbol{e}^{2}=\alpha^{1} \lambda_{1} \boldsymbol{e}^{1}+\alpha^{2} \lambda_{2} \boldsymbol{e}^{2} .
$$

so that substituting in and rearranging

$$
\boldsymbol{o}=\frac{\mathrm{d} \boldsymbol{z}}{\mathrm{~d} t}-A \boldsymbol{z}=\left(\frac{\mathrm{d} \alpha^{1}}{\mathrm{~d} t}-\lambda_{1} \alpha^{1}\right) \boldsymbol{e}^{1}+\left(\frac{\mathrm{d} \alpha^{2}}{\mathrm{~d} t}-\lambda_{2} \alpha^{2}\right) \boldsymbol{e}^{2}
$$

and because \boldsymbol{e}^{1} and \boldsymbol{e}^{2} form a basis

$$
\begin{gathered}
\frac{\mathrm{d} \alpha^{1}}{\mathrm{~d} t}-\lambda_{1} \alpha^{1}=0 \quad \frac{\mathrm{~d} \alpha^{2}}{\mathrm{~d} t}-\lambda_{2} \alpha^{2}=0 \Longrightarrow \alpha^{1}(t)=b_{1} e^{\lambda_{1} t}, \alpha^{2}(t)=b_{2} e^{\lambda_{2} t} \\
\text { i.e. } \boldsymbol{z}(t)=b_{1} e^{\lambda_{1} t} \boldsymbol{e}^{1}+b_{2} e^{\lambda_{2} t} \boldsymbol{e}^{2} .
\end{gathered}
$$

(b) $X^{-1} A X=X^{-1} A\left(e^{1} e^{2}\right)=X^{-1}\left(\lambda_{1} e^{1} \lambda_{2} e^{2}\right)=X^{-1}\left(e^{1} e^{2}\right)\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)=$ $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$.
6. The first part is too tricky!

Suppose that α^{1} and α^{2} are not zero and $\alpha^{1} \boldsymbol{e}^{1}+\alpha^{2} \boldsymbol{e}^{2}=\boldsymbol{o}$ (this is equivalent to asking that $|X|=0$ if you think about it and use the theorem on page 9 of the summary).
Multiplying by A we find that $\lambda_{1} \alpha^{1} \boldsymbol{e}^{1}+\lambda_{2} \alpha^{2} \boldsymbol{e}^{2}=\boldsymbol{o}$. Hence

$$
\begin{gathered}
\left(\begin{array}{ll}
e_{1}^{1} & e_{1}^{2} \\
e_{2}^{1} & e_{2}^{2}
\end{array}\right)\binom{\alpha^{1}}{\alpha^{2}}=\binom{0}{0} \text { and }\left(\begin{array}{cc}
e_{1}^{1} & e_{1}^{2} \\
e_{2}^{1} & e_{2}^{2}
\end{array}\right)\binom{\lambda_{1} \alpha^{1}}{\lambda_{2} \alpha^{2}}=\binom{0}{0} \\
\\
\Longleftrightarrow\left(\begin{array}{ll}
e_{1}^{1} & e_{1}^{2} \\
e_{2}^{1} & e_{2}^{2}
\end{array}\right)\left(\begin{array}{cc}
\alpha^{1} & 0 \\
0 & \alpha^{2}
\end{array}\right)\left(\begin{array}{ll}
1 & \lambda_{1} \\
1 & \lambda_{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

But since λ_{1} and λ_{2} are different and $\alpha^{1}, \alpha^{2} \neq 0$ then you can find the inverses of the second and third matrices, so that $X=0$ which cannot be true.

