ENG92013/01 2H SYSTEMS (Numerical Methods) — ADDITIONAL HANDOUT

Six facts about the eigenvalues/eigenvectors of an $n \times n$ matrix, A, and their application to two particular problems (some with proofs)!

- 1. If A is real and $\{\lambda, e\}$ are an eigenvalue/eigenvector pair then so is $\{\lambda^*, e^*\}$.
- 2. If A is real where $A^T = A$ then all of the eigenvalues are real.
- 3. $|A| = \lambda_1 \lambda_2 \cdots \lambda_n$.
- 4. A does not necessarily have n eigenvectors.
- 5. Let the eigenvectors of A be $\{e^1, \dots, e^n\}$, $X = (e^1 \dots e^n)$ and let the eigenvectors form a basis $(|X| \neq 0)$, then
 - (a) the solution of $\frac{d\mathbf{z}}{dt} = A\mathbf{z}$ is $\mathbf{z}(t) = e^{\lambda_1 t} \mathbf{e}^1 + \dots + e^{\lambda_n t} \mathbf{e}^n$.
 - (b) $X^{-1}AX$ is a diagonal matrix with the eigenvalues along the diagonal.
- 6. If A is symmetric or $\lambda_1, \dots, \lambda_n$ are all different then the eigenvectors form a basis.

PROOFS

- 1. $Ae^* = A^*e^* = (Ae)^* = (\lambda e)^* = \lambda^*e^*$.
- 2. $\lambda(e^*)^T e = (e^*)^T (\lambda e) = (e^*)^T (Ae) = (Ae)^T e^* = e^T A^T e^* = e^T (Ae^*) = e^T (\lambda^* e^*) = \lambda^* e^T e^*$
- 3. $|A \lambda I| = (\lambda_1 \lambda) \cdots (\lambda_n \lambda)$, now set $\lambda = 0$.
- 4. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. This has eigenvalues $\lambda_1, \lambda_2 = 0$, but only one eigenvector $b(1,0)^T$.
- 5. The eigenvectors form a basis when given a vector, \boldsymbol{y} , with n-components we can write $\boldsymbol{y} = \alpha^1 \boldsymbol{e}^1 + \cdots + \alpha^n \boldsymbol{e}^n$ where $\alpha^1, \cdots, \alpha^n$ are unique (which

we shall see is equivalent to $|X| \neq 0$). All proofs are for n = 2. Asking that the eigenvectors form a basis is the same as asking that

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \alpha^1 \begin{pmatrix} e_1^1 \\ e_2^1 \end{pmatrix} + \alpha^2 \begin{pmatrix} e_1^2 \\ e_2^2 \end{pmatrix} = \begin{pmatrix} \alpha^1 e_1^1 + \alpha^2 e_1^2 \\ \alpha^1 e_2^1 + \alpha^2 e_2^2 \end{pmatrix} = \begin{pmatrix} e_1^1 & e_1^2 \\ e_2^1 & e_2^2 \end{pmatrix} \begin{pmatrix} \alpha^1 \\ \alpha^2 \end{pmatrix} = X \begin{pmatrix} \alpha^1 \\ \alpha^2 \end{pmatrix}$$

or put another way, α^1, α^2 are unique is equivalent to asking that we can find the inverse of X, which we know is equivalent to asking that $|X| \neq 0$.

(a) Suppose $z(t) = \alpha^1(t)e^1 + \alpha^2(t)e^2$ then

$$\frac{\mathrm{d}\boldsymbol{z}}{\mathrm{d}t} = \frac{\mathrm{d}\alpha^1}{\mathrm{d}t}\boldsymbol{e}^1 + \frac{\mathrm{d}\alpha^2}{\mathrm{d}t}\boldsymbol{e}^2 \text{ and } A\boldsymbol{z} = \alpha^1 A\boldsymbol{e}^1 + \alpha^2 A\boldsymbol{e}^2 = \alpha^1 \lambda_1 \boldsymbol{e}^1 + \alpha^2 \lambda_2 \boldsymbol{e}^2.$$

so that substituting in and rearranging

$$\mathbf{o} = \frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} - A\mathbf{z} = \left(\frac{\mathrm{d}\alpha^1}{\mathrm{d}t} - \lambda_1\alpha^1\right)\mathbf{e}^1 + \left(\frac{\mathrm{d}\alpha^2}{\mathrm{d}t} - \lambda_2\alpha^2\right)\mathbf{e}^2$$

and because e^1 and e^2 form a basis

$$\frac{\mathrm{d}\alpha^{1}}{\mathrm{d}t} - \lambda_{1}\alpha^{1} = 0 \qquad \frac{\mathrm{d}\alpha^{2}}{\mathrm{d}t} - \lambda_{2}\alpha^{2} = 0 \Longrightarrow \alpha^{1}(t) = b_{1}e^{\lambda_{1}t}, \ \alpha^{2}(t) = b_{2}e^{\lambda_{2}t}$$
i.e. $\mathbf{z}(t) = b_{1}e^{\lambda_{1}t}\mathbf{e}^{1} + b_{2}e^{\lambda_{2}t}\mathbf{e}^{2}$.

(b)
$$X^{-1}AX = X^{-1}A(\mathbf{e}^1 \mathbf{e}^2) = X^{-1}(\lambda_1 \mathbf{e}^1 \lambda_2 \mathbf{e}^2) = X^{-1}(\mathbf{e}^1 \mathbf{e}^2) \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}.$$

6. The first part is too tricky!

Suppose that α^1 and α^2 are not zero and $\alpha^1 e^1 + \alpha^2 e^2 = \mathfrak{o}$ (this is equivalent to asking that |X| = 0 if you think about it and use the theorem on page 9 of the summary).

Multiplying by A we find that $\lambda_1 \alpha^1 e^1 + \lambda_2 \alpha^2 e^2 = 0$. Hence

$$\begin{pmatrix} e_1^1 & e_1^2 \\ e_2^1 & e_2^2 \end{pmatrix} \begin{pmatrix} \alpha^1 \\ \alpha^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} e_1^1 & e_1^2 \\ e_2^1 & e_2^2 \end{pmatrix} \begin{pmatrix} \lambda_1 \alpha^1 \\ \lambda_2 \alpha^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} e_1^1 & e_1^2 \\ e_2^1 & e_2^2 \end{pmatrix} \begin{pmatrix} \alpha^1 & 0 \\ 0 & \alpha^2 \end{pmatrix} \begin{pmatrix} 1 & \lambda_1 \\ 1 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

But since λ_1 and λ_2 are different and $\alpha^1, \alpha^2 \neq 0$ then you can find the inverses of the second and third matrices, so that X = 0 which cannot be true.

ENG92013/01 2H SYSTEMS (Numerical Methods) — ADDITIONAL HANDOUT

Six facts about the eigenvalues/eigenvectors of an $n \times n$ matrix, A, and their application to two particular problems (some with proofs)!

- 1. If A is real and $\{\lambda, e\}$ are an eigenvalue/eigenvector pair then so is $\{\lambda^*, e^*\}$.
- 2. If A is real where $A^T = A$ then all of the eigenvalues are real.
- 3. $|A| = \lambda_1 \lambda_2 \cdots \lambda_n$.
- 4. A does not necessarily have n eigenvectors.
- 5. Let the eigenvectors of A be $\{e^1, \dots, e^n\}$, $X = (e^1 \dots e^n)$ and let the eigenvectors form a basis $(|X| \neq 0)$, then
 - (a) the solution of $\frac{d\mathbf{z}}{dt} = A\mathbf{z}$ is $\mathbf{z}(t) = e^{\lambda_1 t} \mathbf{e}^1 + \dots + e^{\lambda_n t} \mathbf{e}^n$.
 - (b) $X^{-1}AX$ is a diagonal matrix with the eigenvalues along the diagonal.
- 6. If A is symmetric or $\lambda_1, \dots, \lambda_n$ are all different then the eigenvectors form a basis.

PROOFS

- 1. $Ae^* = A^*e^* = (Ae)^* = (\lambda e)^* = \lambda^*e^*$.
- 2. $\lambda(e^*)^T e = (e^*)^T (\lambda e) = (e^*)^T (Ae) = (Ae)^T e^* = e^T A^T e^* = e^T (Ae^*) = e^T (\lambda^* e^*) = \lambda^* e^T e^*$
- 3. $|A \lambda I| = (\lambda_1 \lambda) \cdots (\lambda_n \lambda)$, now set $\lambda = 0$.
- 4. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. This has eigenvalues $\lambda_1, \lambda_2 = 0$, but only one eigenvector $b(1,0)^T$.
- 5. The eigenvectors form a basis when given a vector, \boldsymbol{y} , with n-components we can write $\boldsymbol{y} = \alpha^1 \boldsymbol{e}^1 + \cdots + \alpha^n \boldsymbol{e}^n$ where $\alpha^1, \cdots, \alpha^n$ are unique (which

we shall see is equivalent to $|X| \neq 0$). All proofs are for n = 2. Asking that the eigenvectors form a basis is the same as asking that

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \alpha^1 \begin{pmatrix} e_1^1 \\ e_2^1 \end{pmatrix} + \alpha^2 \begin{pmatrix} e_1^2 \\ e_2^2 \end{pmatrix} = \begin{pmatrix} \alpha^1 e_1^1 + \alpha^2 e_1^2 \\ \alpha^1 e_2^1 + \alpha^2 e_2^2 \end{pmatrix} = \begin{pmatrix} e_1^1 & e_1^2 \\ e_2^1 & e_2^2 \end{pmatrix} \begin{pmatrix} \alpha^1 \\ \alpha^2 \end{pmatrix} = X \begin{pmatrix} \alpha^1 \\ \alpha^2 \end{pmatrix}$$

or put another way, α^1, α^2 are unique is equivalent to asking that we can find the inverse of X, which we know is equivalent to asking that $|X| \neq 0$.

(a) Suppose $z(t) = \alpha^1(t)e^1 + \alpha^2(t)e^2$ then

$$\frac{\mathrm{d}\boldsymbol{z}}{\mathrm{d}t} = \frac{\mathrm{d}\alpha^1}{\mathrm{d}t}\boldsymbol{e}^1 + \frac{\mathrm{d}\alpha^2}{\mathrm{d}t}\boldsymbol{e}^2 \text{ and } A\boldsymbol{z} = \alpha^1 A\boldsymbol{e}^1 + \alpha^2 A\boldsymbol{e}^2 = \alpha^1 \lambda_1 \boldsymbol{e}^1 + \alpha^2 \lambda_2 \boldsymbol{e}^2.$$

so that substituting in and rearranging

$$\mathbf{o} = \frac{\mathrm{d}\mathbf{z}}{\mathrm{d}t} - A\mathbf{z} = \left(\frac{\mathrm{d}\alpha^1}{\mathrm{d}t} - \lambda_1\alpha^1\right)\mathbf{e}^1 + \left(\frac{\mathrm{d}\alpha^2}{\mathrm{d}t} - \lambda_2\alpha^2\right)\mathbf{e}^2$$

and because e^1 and e^2 form a basis

$$\frac{\mathrm{d}\alpha^{1}}{\mathrm{d}t} - \lambda_{1}\alpha^{1} = 0 \qquad \frac{\mathrm{d}\alpha^{2}}{\mathrm{d}t} - \lambda_{2}\alpha^{2} = 0 \Longrightarrow \alpha^{1}(t) = b_{1}e^{\lambda_{1}t}, \ \alpha^{2}(t) = b_{2}e^{\lambda_{2}t}$$
i.e. $\mathbf{z}(t) = b_{1}e^{\lambda_{1}t}\mathbf{e}^{1} + b_{2}e^{\lambda_{2}t}\mathbf{e}^{2}$.

(b)
$$X^{-1}AX = X^{-1}A(\mathbf{e}^1 \mathbf{e}^2) = X^{-1}(\lambda_1 \mathbf{e}^1 \lambda_2 \mathbf{e}^2) = X^{-1}(\mathbf{e}^1 \mathbf{e}^2) \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}.$$

6. The first part is too tricky!

Suppose that α^1 and α^2 are not zero and $\alpha^1 e^1 + \alpha^2 e^2 = \mathfrak{o}$ (this is equivalent to asking that |X| = 0 if you think about it and use the theorem on page 9 of the summary).

Multiplying by A we find that $\lambda_1 \alpha^1 e^1 + \lambda_2 \alpha^2 e^2 = 0$. Hence

$$\begin{pmatrix} e_1^1 & e_1^2 \\ e_2^1 & e_2^2 \end{pmatrix} \begin{pmatrix} \alpha^1 \\ \alpha^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} e_1^1 & e_1^2 \\ e_2^1 & e_2^2 \end{pmatrix} \begin{pmatrix} \lambda_1 \alpha^1 \\ \lambda_2 \alpha^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} e_1^1 & e_1^2 \\ e_2^1 & e_2^2 \end{pmatrix} \begin{pmatrix} \alpha^1 & 0 \\ 0 & \alpha^2 \end{pmatrix} \begin{pmatrix} 1 & \lambda_1 \\ 1 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

But since λ_1 and λ_2 are different and $\alpha^1, \alpha^2 \neq 0$ then you can find the inverses of the second and third matrices, so that X = 0 which cannot be true.