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Six facts about the eigenvalues/eigenvectors of an n×n matrix, A, and
their application to two particular problems (some with proofs)!

1. If A is real and {λ, e} are an eigenvalue/eigenvector pair then so is
{λ∗, e∗}.

2. If A is real where AT = A then all of the eigenvalues are real.

3. |A| = λ1λ2 · · ·λn.

4. A does not necessarily have n eigenvectors.

5. Let the eigenvectors of A be {e1, · · · , en}, X = (e1 · · · en) and let the
eigenvectors form a basis (|X| 6= 0), then

(a) the solution of dz
dt = Az is z(t) = eλ1te1 + · · ·+ eλnten.

(b) X−1AX is a diagonal matrix with the eigenvalues along the diag-
onal.

6. If A is symmetric or λ1, · · · , λn are all different then the eigenvectors
form a basis.

Proofs

1. Ae∗ = A∗e∗ = (Ae)∗ = (λe)∗ = λ∗e∗.

2. λ(e∗)Te = (e∗)T (λe) = (e∗)T (Ae) = (Ae)Te∗ = eTATe∗ = eT (Ae∗) =
eT (λ∗e∗) = λ∗eTe∗

3. |A− λI| = (λ1 − λ) · · · (λn − λ), now set λ = 0.

4. Let A =

(
0 1
0 0

)
. This has eigenvalues λ1, λ2 = 0, but only one

eigenvector b(1, 0)T .

5. The eigenvectors form a basis when given a vector, y, with n-components
we can write y = α1e1+· · ·+αnen where α1, · · · , αn are unique (which



we shall see is equivalent to |X| 6= 0). All proofs are for n = 2. Asking
that the eigenvectors form a basis is the same as asking that(
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or put another way, α1, α2 are unique is equivalent to asking that we
can find the inverse of X, which we know is equivalent to asking that
|X| 6= 0.

(a) Suppose z(t) = α1(t)e1 + α2(t)e2 then

dz

dt
=

dα1

dt
e1+

dα2

dt
e2 and Az = α1Ae1+α2Ae2 = α1λ1e

1+α2λ2e
2.

so that substituting in and rearranging

0 =
dz

dt
− Az =

dα1

dt
− λ1α

1

 e1 +

dα2

dt
− λ2α

2

 e2

and because e1 and e2 form a basis

dα1

dt
−λ1α

1 = 0
dα2

dt
−λ2α

2 = 0 =⇒ α1(t) = b1e
λ1 t, α2(t) = b2e

λ2 t

i.e. z(t) = b1e
λ1te1 + b2e

λ2te2.

(b) X−1AX = X−1A(e1 e2) = X−1(λ1e
1 λ2e

2) = X−1(e1 e2)

(
λ1 0
0 λ2

)
=(

λ1 0
0 λ2

)
.

6. The first part is too tricky!

Suppose that α1 and α2 are not zero and α1e1 + α2e2 = 0 (this is
equivalent to asking that |X| = 0 if you think about it and use the
theorem on page 9 of the summary).

Multiplying by A we find that λ1α
1e1 + λ2α

2e2 = 0. Hence(
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) (
1 λ1

1 λ2

)
=

(
0 0
0 0

)

But since λ1 and λ2 are different and α1, α2 6= 0 then you can find
the inverses of the second and third matrices, so that X = 0 which
cannot be true.
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