
4H Numerical Linear Algebra & PDE’s MATH4041
Epiphany Term: Problems

1. Discuss the convergence of the Jacobi and Gauss-Seidel methods for the coefficient matrix

A =

(
1 ρ
ρ 1

)
with |ρ| < 1.

2. For the coefficient matrix A =

(
a b
c d

)
show that the Jacobi and Gauss-Seidel methods converge

or diverge together. When they converge, which has the faster convergence?

3. Use the Jacobi and Gauss-Seidel methods to solve the equations

10x1 + x2 + x3 = 15
x1 + 10x2 + x3 = 24
x1 + x2 + 10x3 = 33

If x(0) = (0, 0, 0)T how many Jacobi iterations would ensure a solution accurate to 6 decimal
places?

4. For the tridiagonal matrix

A =

1 a 0
a 1 a
0 a 1


with a > 0, prove that both the Jacobi and Gauss-Seidel methods converge if a < 1/

√
2 and

both diverge if a>1/
√

2. Establish that when a < 1/
√

2 the Gauss-Seidel method converges
faster than Jacobi’s method. Compare the two methods for

x1 + 0.5x2 = 2
0.5x1 + x2 + 0.5x3 = 4

0.5x2 + x3 = 4

5. Verify that the Gauss-Seidel method for Ax = b may be expressed as

x(k+1) = Bx(k) + c = x(k) + D−1[b− (D + U)x(k) − Lx(k+1)].

Express the successive relaxation formula

x(k+1) = x(k) + ωD−1[b− (D + U)x(k) − Lx(k+1)]

in the form x(k+1) = Mx(k) + d. Obtain the characteristic equation of M when A is a 2 × 2
matrix, and prove that in that case

(λ− 1 + ω)2 = λω2µ,

where λ is an eigenvalue of M and µ is the largest in modulus eigenvalues of B. Defining
the asymptotic rate of convergence as − log ρ(M), compare the rates of convergence of the
Gauss-Seidel method and the overrelaxation method with ω = 1.5, when µ = 1− ε and ε � 1.



6. Let MJ and MGS denote the iteration matrices for the Jacobi and Gauss-Seidel methods. For
the matrix

A =


4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4


prove that ρ(MJ) = cos(π/3). Find the asymptotic rates of convergence − log ρ(MJ) and
− log ρ(MGS).

7. The system (
1 −1
1 1

) (
x1

x2

)
=

(
1
3

)
is to be solved by an iterative method, starting with x

(0)
1 = 0 = x

(0)
2 . Prove that neither Jacobi’s

method nor the Gauss-Seidel method will converge. Find a value of the parameter ω such that
the SOR method converges (see Problem 10.1).

8. Let A and 2D − A be symmetric positive definite matrices, where D is the diagonal of the
matrix A. Defining MJ := −D−1(L + U) to be the usual Jacobi iteration matrix and letting λ
be any eigenvalue of MJ with corresponding eigenvector u, show that

λ = 1− 2uT Au

uT (2D − A)u + uT Au
.

Hence deduce that the Jacobi iteration will converge.

9. A modified Jacobi iteration for the linear system Ax = b is given by

Dx(k+1) = ωb + (1− ω)Dx(k) − ω(L + U)x(k)

where ω is a real number and L, D and U have their usual meaning. (Note that this is the
AOR method with r = 0). Show that the iteration matrix for this process may be expressed as

M = I − ωD−1A

and show that if the process converges its limit is the solution of the system Ax = b.
Let {λi}n

i=1 be the set of eigenvalues of the Jacobi iteration matrix, i.e., for the case ω = 1.
Show that the eigenvalues {µi}n

i=1 of the modified Jacobi iteration matrix are given by

µi = 1− ω(1− λi), i = 1, . . . , n.

Show also that if all the eigenvalues λi are real then the greatest magnitude of the eigenvalues
of the modified Jacobi iteration matrix may be minimised by taking

ω =
2

2− (λ̄ + λ)
where λ = min

i
λi and λ̄ = max

i
λi.



For

A =

 2 −1 −1
−1 2 1
−1 1 2


show that the Jacobi process does not converge, and find a modified Jacobi process which does
converge.

10. Assume that u is analytic about (jh, nk). Using Taylor’s series expansions for u(x, t) about
(jh, nk) show that

(a)
un+1

j − un
j

k
= ut +

k

2!
utt + · · · .

(b)
un

j+1 − un
j−1

2h
= ux +

h2

3!
uxxx + · · · .

(c)
un+1

j − un−1
j

2k
= ut +

k2

3!
uttt + · · · .

where the derivatives on the right are evaluated at (jh, nk).

11. Consider the scheme
Un+1

j − Un
j

k
=

δ2Un
j

h2

for the PDE ut = uxx. Show that the truncation error satisfies T n
j = O(h4) provided µ = k

h2 = 1
6

as k, h → 0.

12. (a) The PDE ut = uxx + aux is called a convection-diffusion equation with a constant. uxx is
the diffusion term, and aux is the convection term. A possible finite difference scheme is

Un+1
j − Un

j

k
=

δ2Un
j

h2
+ a

[
Un

j+1 − Un
j−1

2h

]
Find the truncation error. Is the scheme consistent?

(b) Suppose ut + aux = 0 with constant a > 0 is approximated by the scheme

Un+1
j − Un

j

k
+

a

2

[
Un+1

j+1 − Un+1
j

h
+

Un
j − Un

j−1

h

]
= 0

Show that the truncation error tends to zero as h, k → 0.

13. Find the truncation error T n
j for the following discretizations of ut = uxx:

(a)
Un+1

j − Un−1
j

2k
=

Un
j+1 − 2((1− θ)Un−1

j + θUn+1
j ) + Un

j−1

h2

Fix µ = k
h2 = 1

2
. For what values of θ does T n

j → 0 as k, h → 0?



(b)
Un+1

j − Un
j

k
=

Un
j+1 − 2Un+1

j + Un
j−1

h2

What condition ensures that T n
j → 0 as k, h → 0?

14. This question concerns some linear algebra issues relating to the tridiagonal matrix

A =


d1 c1 0 . . . 0

a2 d2 c2
. . .

...

0 a2 d3
. . . 0

...
. . . . . . . . . cm−1

0 . . . 0 am dm

 ∈ Rm×m.

(a) Consider the special case ai = a = ci, di = d, a, d ∈ R. By considering vectors xk of the
form xk

j = sin( kπj
m+1

), j = 1, . . . ,m, show that the eigenvalues of A are λk = d+2a cos( kπ
m+1

).

(b) Show that finding U solving AU = b for a general tridiagonal A and b ∈ Rm given is
equivalent to solving

ajUj−1 + djUj + cjUj+1 = bj, j = 1, . . . ,m

where U0 = 0 = Um, and a1,cm are chosen arbitrarily. Now define sequences {ej}, {fj}
recursively by

ej = − cj

dj + ajej−1

, fj =
bj − ajfj−1

dj + ajej−1

for j = 1, . . . ,m where e0 = 0 = f0. Show that the solution of AU = b is given by the
recursion

Uj = ejUj+1 + fj, j = m, m− 1, . . . .0

15. Let S denote the space of all bounded bi-infinite sequences. Show that ‖V ‖∞ = supj∈Z |Vj|
defines a norm on S. Similarly, if S now denotes the space of all (in general complex) bi-infinite

sequences V with
∑

j∈Z h|Vj|2 < ∞ show that ‖V ‖2 = {
∑
j∈Z

h|Vj|2}
1
2 is a norm on S. To verify

the triangle inequality for ‖ ·‖2, it is useful to introduce the inner product (V , W ) =
∑
j∈Z

hVjWj

and recall the Cauchy-Schwarz inequality from Linear Algebra.

16. Consider the problem

ut = uxx + u, t > 0, x ∈ (0, 1)

u(x, 0) = u0(x) = sin πx, x ∈ (0, 1)

u(0, t) = 0 = u(1, t), t > 0.

Show that u(x, t) = e(−π2+1)t sin πx is the exact solution. Consider the finite difference scheme:

Un+1
j = (1 + µδ2)Un

j + kUn
j



with U0
j = u0(

j

J
), j = 0, . . . , J and Un

0 = 0 = Un
J , n ≥ 1.

Investigate for what µ the scheme is unstable.

17. Consider the θ-method for solving ut = uxx, subject to initial condition u(x, 0) = u0(x). Show
that the truncation error is O(k) + O(h2) in general, and O(k2) + O(h2) when θ = 1

2
.

18. Consider the scheme
Un+1

j − Un
j

k
=

Un
j+1 − 2Un+1

j + Un
j−1

h2

for the PDE ut = uxx, subject to initial condition u(x, 0) = u0(x). Show that this scheme is
stable for all µ = k

h2 . What condition on µ ensures that it is convergent? If h = 1
j
, how should k

be chosen as J →∞ to ensure convergence? What will be the rate of convergence as J →∞?

19. Consider Problem 12a with µ = k
h2 in the finite difference scheme and define λ = k

h
. Show that

the scheme will be stable if a2λ262µ and µ61
2

hold. Show that these conditions imply λ6 1
a
.

20. The θ-method for the problem

ut = uxx + u, t > 0, x ∈ (0, 1), u(x, 0) = sin πx and u(0, t) = 0 = u(1, t)

is
Un+1

j = Un
j + µ[θδ2Un+1

j + (1− θ)δ2Un
j ] + kUn

j .

Find the matrices M1 and M2 when the method is written in the form

M1U
n+1 = M2U

n

where Un = (Un
1 , . . . , Un

J−1)
T .

21. Let a = a(x) be a function depending only on x and consider the first order wave equation

ut|+ (au)x = 0, t > 0, x ∈ R

subject to u(x, 0) = u0(x), x ∈ R. By following the procedure given in lectures, derive the
following generalization of the Lax-Wendroff method for variable a: i.e. derive

Un+1
j = Un

j −
1

2
λ[aj+1U

n
j+1 − aj−1U

n
j−1] +

1

2
λ2δ[ajδ(ajU

n
j )]

where aj = a(jh) and δUn
j = Un

j+ 1
2

− Un
j− 1

2

. Show that the truncation error for this scheme is

O(k2) + O(h2).

22. Indicate how the artificial diffusion scheme affects the numerical solution when

u(x, 0) = u0(x) =

{
1 x < 0

0 x>0



23. The leap-frog scheme approximating ut + aux = 0 can be written as

1
2
Un+1

j = 1
2
Un−1

j − λ
2

(
aj+1U

n
j+1 − aj−1U

n
j−1

)
.

Show that it is consistent. Assuming that the CFL condition holds and a constant show that
the scheme is stable.

24. Consider the second order elliptic equation

∂2u

∂x2
+

∂2u

∂y2
= 0 on Ω = (0, 1)× (0, 1).

Using the finite volume method and making approximations of the type∫ xi+1

xi

∂u

∂y
(x, yj)dx ≈

∫ xi+1

xi

∂u

∂y
(xi +

1

2
h, yj)

≈ h

h

(
u(xi +

1

2
h, yj +

1

2
h)− u(xi +

1

2
h, yj −

1

2
h)

)
.

derive the standard five point difference operator based on cell centres; this is called the cell-
centred finite volume method.

25. The Crank-Nicholson scheme for the convection-diffusion equation ut + ux = 0 can be written
as

−λ

4
Un+1

j−1 + Un+1
j +

λ

4
Un+1

j+1 =
λ

4
Un

j−1 + Un
j −

λ

4
Un

j+1

Without deriving the local truncation error, explain why you would expect the method to be
second order in both space and time.
Given the boundary conditions u(0, t) = f(t) and u(1, t) = g(t) show in matrix form how the
values at time level nk are obtained. Show that the method is only marginally stable. Indicate
graphically how this marginality affects the numerical solution when u0(x) is as given in Problem
22.

26. Consider a finite difference approximation of Poisson’s equation

−∆u = f on Ω = [0, 1]× [0, 1]

subject to u = g on Γ, the boundary of Ω, on a uniform mesh of width h = 1
j

in each of the

x and y directions. Ordering the unknowns Uj,k ≈ u(ih, jh), j, k = 1, . . . , J − 1 into a single
vector of the form

U = (U1,1, . . . , UJ−1,1, U1,2, . . . , UJ−1,2, . . . , UJ−1,J−1)

find A where the system of linear equations is written in the form

AU = h2f .



27. If xl = (xl,1, xl,2), l = 1, 2, 3 and the nodes of the triangle are arranged in anti-clockwise order,
show that ∣∣∣∣∣∣

1 xi,1 xi,2

1 xj,1 xj,2

1 xk,1 xk,2

∣∣∣∣∣∣ = 2|τ |

for any cyclic permutation (i, j, k) of (1, 2, 3). [Hint: Consider (xj − xi) ∧ (xk − xi) where ∧
denotes the cross product. ]

28. The function u(x, t) satisfies the PDE

ut = uxx on (0, 1)× (0, T ) u(x, 0) = u0(x), ux(0, t) = 0, u(1, t) = 1

and is approximated by the forward Euler difference scheme. Express the difference equations
in the form Un+1 = AUn and use Gerschgorin’s theorem to find the stability condition on k.

29. Describe how the standard five-point difference scheme can be developed to approximate the
wave equation

utt − uxx = 0, x ∈ (0, 1), t>0,

u(x, 0) = f(x), ut(x, 0) = g(x), u(0, t) = u(1, t) = 0.

with appropriate modifications to take into account the initial conditions and k, h are the time
and space parameters respectively. Show that the scheme is stable provided k/h61,

30. The two dimensional advection equation

∂u

∂t
+ a

∂u

∂x
+ a

∂u

∂y
= 0

where a and b are constants is to be solved on a mesh in the x-y plane with uniform spacing in
both the x and y directions of h. Let k be the time step. Using Taylor expansions show that

∂u

∂t
=

un+1
i,j − un

i,j

k
+ O(k) and

∂u

∂x
=

un+1
i+1,j − un

i−1,j

2h
+ O(h2).

evaluated at the point (ih, jh, nk) where un
ij = u(ih, jh, nk). Use these approximations to find

a method for approximating un
ij.

31. A finite difference scheme for Laplace’s equation

uxx + uyy = 0

on a standard square grid is

Ui+1,j+1 + Ui+1,j−1 + Ui−1,j+1 + Ui−1,j−1 − 4Ui+1,j+1 = 0,

where Uij ≈ u(ih, jh). Using Taylor series show that the scheme is second-order accurate.
Apply the scheme to Laplace’s equation on a unit square with h = 1

3
and boundary conditions

u(0, y) = u(x, 0) = 0, u(1, y) = u(x, 1) = 1. At the corner points where the boundary conditions
are discontinuous, assume that the value is an average of the two values on adjacent sides.
Starting with Ui,j carry out one step of the Gauss-Seidel iteration.



32. Write down the weak formulations of

(a) −uxx = f x ∈ (0, 1) u(0) = 0, u′(1) = 1.

(b) −uxx = e−100(x−0.5)2 x ∈ (0, 1) u(0) = u(1) = 0.

Write down the continuous the piecewise linear finite element approximation, uh, of this problem
and find the resulting matrix equations. For problem (b) find uh where xi = i

3
(i = 0, 1, 2, 3)

Hint: you may have to use the Trapezium rule.

33. Consider the problem

−u′′(x) = f(x) x ∈ (0, 1), u′(0) = u′(1) = 0,

∫ 1

0

u(x) dx = 0

where
∫ 1

0
f(x) dx = 0. Show that if a smooth solution exists it must be unique. Let uh be the

piecewise linear finite element approximation with
∫ 1

0
uh(x) dx = 0. Using uh(xi) − uh(xj) =∫ xi

xj

d
dx

uh(x) dx, show that |uh(xi)|6
(∫ 1

0
| d
dx

uh(x)|2 dx
)1/2

and hence prove∫ 1

0

uh(x)2 dx6

∫ 1

0

[
d

dx
uh(x)

]2

dx.

34. For the problem
−∆u = f on Ω = (0, 1)× (0, 1)

with u = g on ∂Ω. Consider the piecewise linear finite element method where Ω has a right-
angled triangulation, in which each sub-square is bisected by the north-east diagonal, with step
size h = 1

4
, see figure below.
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Find the element stiffness matrix.

35. Write down the weak formulation of

−uxx − uyy = 1 on (0, 1)2, u = 10 on ∂Ω.

Suppose the nodes of the triangulation are (0, 0), (0, 1), (1, 1), (1, 1), (1
2
, 1

2
) and each triangle

of the triangluation consists of neighbouring edge nodes and the centre node. Find the finite
element approximation on this triangulation.



36. On the reference triangle τ̂ with points (0, 0), (0, 1) and (1, 0) prove that it is sufficient to
evaluate the quadratic

a + bx + cy + dxy + ex2 + fy2.

at the nodes and the midpoints of the edges in order that a, · · · f are uniquely determined.

37. On the reference square τ̂ with points (0, 0), (0, 1), (1, 1) and (0, 1) labelled P1, P2, P3 and P4

prove that

(a) It is sufficient to evaluate bi-linear the function

a + bx + cy + dxy

at P1, P2, P3 and P4 to determine a, b, c, d uniquely. Furthermore, find the basis functions,
φi(x, y) such that φi(Pj) = δij.

(b) It is sufficient to evaluate the bi-quadratic

a + bx + cy + dx2 + exy + fy2 + gx2y + hxy2 + ix2y2

at Pi i = 1, · · · , 4 and the midpoints of the edges and at the centre of τ̂ .

38. Let τ̂ be the equilateral triangle in the x-y plane with vertices (−1
2
, 0), (1

2
, 0) and (0,

√
3

2
) labeled

P1, P2 and P3 respectively.
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Figure 1: The reference triangle τ

Calculate the linear basis functions φi(x, y) for i = 1, 2, 3 where φi(Pj) = δij (j = 1, 2, 3).

39. Let τ̂ be the triangle with vertices, (0, 0), (1, 0), (0, 1). Prove that the integration rule∫
τ̂

f(x) dx ≈ 1

6

[
f(

1

2
, 0) + f(0,

1

2
) + f(

1

2
,
1

2
)

]
is exact for all quadratics.



40. Let πhv be the piecewise linear interpolant for any v ∈ C[0, 1] on the partition 0 = x0 < · · ·xJ =
1. Show for u ∈ C2[0, 1] that

max
x∈[0,1]

|v(x)− πhv(x)|6Ch2 and max
x∈[0,1]

| d

dx
[v(x)− πhv(x)]|6Ch.

41. Show that on any triangle

06φi(x)61 and
∑
xi∈τ

φi(x) = 1.

42. Draw the Gerschgorin discs for the matrices

A =

2 2 2
2 4 1
1 1 10

 , B =

−5 0 1
1 1 −2
1 0 −4

 , C =


3 1 0 2i
1 3 −2i 0
0 2i 1 1
−2i 0 1 1

 .

43. Use Gerschgorin’s theorems, with suitable similarity transformations, to estimate the eigenval-
ues of the matrix

A =

 0.9 0.01 0.02
−0.01 2.2 0.01
0.01 0.02 −2.8


44. If λ1, λ2 and λ3 are the eigenvalues of the matrix

B =

0.9 0 0
0 0.4 0
0 0 0.2

 + 10−5

 0.1 0.4 −0.2
−0.1 0.5 0.1
0.2 0.1 0.3


in order of decreasing magnitude, find upper bounds for |λ1−(0.9+10−6)|, |λ2−(0.4+5×10−6)|
and |λ3 − (0.2 + 3 × 10−6)|. Obtain improved bounds on the eigenvalues of B by consid-
ering the similar matrices D−1

i BDi, where D1 = diag(105, 1, 1), D2 = diag(1, 105, 1) and
D3 = diag(1, 1, 105).

45. Starting with the vector (−0.6, 1,−0.6)T, carry out three iterations of the power method to esti-

mate the dominant eigenvalue and a corresponding eigenvector of the matrix

 2 −1 0
−2 2 −1
0 −1 2

.

Comment on the accuracy of your final estimate of the eigenvalue.

46. Use the power method to estimate the dominant eigenvalue and a corresponding eigenvector of

the matrix

1 1 1
1 2 2
1 2 3

.



47. Use the power method to compute the largest eigenvalue of the matrix
6 4 4 1
4 6 1 4
4 1 6 4
1 4 4 6


Given that this matrix has one negative eigenvalue, use the power method with a suitable shift
of origin, to find it.

48. Let λ be a computed approximation for an eigenvalue of a 3×3 matrix A. To find a corresponding
eigenvector by inverse iteration:

(a) choose some vector y0, e.g., (1, 1, 1)T

(b) solve (A− λI)z1 = y0

(c) define y1 = z1/‖z1‖∞
(d) solve (A− λI)z2 = y1

(e) define y2 = z2/‖z2‖∞.

The process may be continued as required. By thinking of y0 as a linear combination of
eigenvectors of A, discover the idea on which this procedure is based. Use two iterations of this
method to calculate the eigenvectors of

A =

4 5 0
5 −1 −5
0 −5 4


given the approximations 8.99, 4.01 and −5.99 for its eigenvalues.

49. Calculate the Rayleigh quotient corresponding to your final eigenvector estimate in Problem 45
and comment on its accuracy as an approximation for the corresponding eigenvalue.

50. Given that the eigenvector corresponding to the lowest eigenvalue of the matrix 1 2
√

2
2 3 0√
2 0 1


is of the form (−2, 1, k)T , use the Rayleigh quotient and its stationary property to find the value
of k.

51. Let the real vector u and the number ρ approximate an eigenvector of a symmetric matrix A
and the corresponding eigenvalue. Let r = Au−ρu, the residual. Show that, for a given vector
u, the norm ‖r‖2 is minimised by taking ρ to be the Rayleigh quotient uT Au/uT u. Point out
where you have used the symmetry of A in your argument.


