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In this article we will determine the symmetry groups of 
the platonic solids by a combination of some elementary 
group theory and use of the computer algebra package 
Maple. The five platonic solids are the tetrahedron, the 
cube, the octahedron, the dodecahedron, and the icosa­
hedron. By determining a symmetry group, we lllean 
not just to determine its elements but to identify it, 
up to isomorphism, with a well-known group, such as a 
symmetric or alternating group. As we will see, we can 
use Maple not just to determine the elements of a sym­
metry group but to identify the group, once we apply 
the appropriate group theory. 

The symmetry group of a 3-dimensional figure is the 
set of all distance preserving maps, or isometries, of ~3 
which map the figure to itself, and with composition as 
the operation. To make this more concrete, we view 
each platonic solid centered at the origin. An isom­
etry which sends the solid to itself then must fix the 
origin. We recall that an isometry which preserves the 
origin is a linear transformation, and is represented by 
a matrix A satisfying AT A = f3 (see [1, eh. 4, Prop. 
5.16]) Thus, the symmetry group of a platonic solid 
is isomorphic to a subgroup of the orthogonal group 
03(lR) = {A E G12 (lR): ATA = f}. Elements of03(lR) 
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are either rotations or reflections across a plane, depend­
ing 011 whether the matrix has determinant 1 or -1. The 
set of rotations is then the subgroup S03(IR) of 03(IR). 

Let G be the symluetry group of a platonic solid, viewed 
as a subgroup of03(IR). If R = GnS03(IR), then R is the 
subgroup of rotations in G. We note that if z : IR3 ~ IR3 
is defined by z(x) = -x for all x E IR3, then z is a 
reflection, z is a central element in 03(IR), and 03(IR) = 
S03(IR) x (z) ~ S03(IR) X Z2. These facts are all easy to 
prove. Thus, [03(IR) : S03(IR)] = 2. As a consequence, 
[G : R] :::; 2. The element z is a symmetry of all the 
platonic solids except for the tetrahedron, and there are 
reflections which preserve the tetrahedron. Therefore, 
[G : R] = 2 in all cases, and G ~ R x ~ for the four" 
largest solids. Thus, for them, it will be sufficient to 
determine the rotation subgroup R. 

Our approach to computing the symmetry groups of the 
platonic solids is two-fold. The first step is to determine 
the order of the group. We will do this by using a simple 
counting argument to find an upper bound for the order 
of the symmetry group G. We will then choose two 
rotations in G and use Maple to show that the group Ro 
generated by them has order exactly equal to half this 
upper bound. Since IRI = ! IGI, this calculation shows 
that R = Ro and that IGI is equal to our upper bound. 

To come up with our counting argument, we first iden­
tify a symmetry group as a subgroup of the permutation 
group of the solid's vertices. By numbering the vertices, 
we can then view the symmetry group as a subgroup of 
the symmetric group Sn" for some n. We point out that 
any sYluluetry of a platonic solid is determined by its 
action on three vertices, as long as they do not lie on a 
plane through the origin; this is because any such sym­
Inetry is a linear transformation, and so is determined 
by its action on three linearly independent vectors. We 
will use this fact without further comment. 

--------~--------
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Once we have the order of a symmetry group, we will use 
a result from the theory of group actions to detennine 
the group up t.o isomorphism. If 8 is a set, we denote 
by Perm( S) the group of permutations of S. If R is a 
group and H a subgroup of R, then there is a homomor­
phism r.p : R ~ Perm(R/ H), where R/ H is the set of 
left cosets of H in R, defined as follows. For 9 E R, the 
permutation r.p(g) is defined by xH ~ gxH The ker­
nel of r.p is the largest normal subgroup of R contained 
in H If [R : H] = 17" then Perm(R/ H) ~ Sn, so r.p 
yields a homomorphism from R to Sn. Proofs of these 
facts can be found in [2, Theorem 2.9.2] or [3, Theorem 
2.4.2]. Maple can calculate the kernel of r.p; this normal 
subgroup is called the core of H in R. 

The second step of our calculation of the symmetry 
groups is, for each solid, to find an appropriate sub­
group H of the rotation group R in order to apply the 
result of the previous paragraph. For each of the four 
largest platonic solids, we will let H be t.he normalizer 
of a p-Sylow subgroup of R, with p = 3 for the cube and 
the octahedron, and p = 2 for the dodecahedron and 
icosahedron. In all cases the core of H in R is the iden­
tity subgroup. For the former two solids we get, froln 
Maple, that I R I = 24 and [R : H] = 4, and so we have 
an injective homomorphism R ---t S4. We then conclude 
R ~ 8 4 . For the latter two solids we have, from Maple, 
that IRI = 60 and [R : H] = 5, and so R is isomorphic 
to a subgroup of S5 of order 60. Since A5 is the only 
such subgroup, we get R ~ A 5. To help understand our 
choice of H we consider the cube. If we are to use the 
result of the previous paragraph, we need to find a sub­
group H of R with [R : H] = 4 and whose core in R 
is trivial in order to get an injective map into 8 4 . Such 
concerns led to the choice of H in each case. 

We summarize our calculations in Table 1. 
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Solid Rotation group Symmetry group 

Tetrahedron A4 S4 
Cube S4 S4 x 1:2 
Octahedron S4 S4 x 1:2 
Dodecahedron A5 A5 x 1:2 
Icosahedron A5 A5 x 1:2 

It is no coincidence that the symmetry group of the oc­
tahedron and the symmetry group of the cube are iso­
morphic, as are the groups for the dodecahedron and 
icosahedron. There is a notion of duality of platonic 
solids. If we take a platonic solid, put a point in the 
center of each face, and connect all these points, we get 
the skeleton of another platonic solid. The resulting 
solid is called the dual of the first. For instance, the 
dual of the octahedron is the cube, and the dual of the 
cube is the octahedron. By viewing the dual solid as be­
ing built from another solid in this way, any symmetry 
of the solid will yield a symmetry of its dual, and vice­
versa. Thus, the symmetry groups of a platonic solid 
and its dual are isomorphic. 

In the following calculations, we denote by G the sym­
rnetry group of a given platonic solid and R = G n 
S03(IR) its subgroup of rotations. We choose two rota­
tions a, h and denote by Ro the subgroup of R generated 
by a and h. We will show R = Ro by finding an upper 
bound for IGI and by having Maple calculate IRol. We 
will see that I Ro I is equal to half of the upper bound for 
IGI. Since [G : R] = 2, we then conclude that R = Ro 
and that IG I is equal to this upper bound. 

To help understand the Maple commands we use, we 
point out that the cycle notation in Maple is similar to, 
but not the same as, the usual notation for cycles. For 
example, the transposition which interchanges 1 and 2 is 
denoted by [[1,2]]' and [[1,2], [3,4]] represents the prod­
uct of transpositions (1 2) and (3 4). Maple uses the 

Table 1. 
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command permgroup(n, {a, b}) to denote the subgroup 
of 8n generated by a, b. Finally, Maple denotes the iden­
tity subgroup of 8n as generated by the empty set. In 
other words, permgroup(n, {}) represents the identity 
subgroup of 8n . The meaning of the other commands 
we use will be clear from their syntax. 

1. The Tetrahedron 

The tetrahedron is a solid with four faces and four ver­
tices. Thus, we identify G with a subgroup of 8 4 , It 
is clear that IG I :::; 1841 = 24; this is the one case in 
which we don't need a counting argument to get an up­
per bound for I G I. It is easier to determine the symme­
try group of the tetrahedron than for the other solids; 
in particular, we do not need to apply the technique 
mentioned in the introduction. 

We now show that G is isomorphic to 8 4. Let a be 
the counterclockwise rotation of 1200 that fixes vertex 4 
and let b be the counterclockwise rotation of 1200 that 
fixes vertex 1, and let c be the reflection across the plane 
containing the center and vertices 3 and 4. We now have 
Maple determine the group Go generated by a, h, c and 
the group Ro generated by a, b (see Table 2). 

> with(group): 
> a:=[[1,2,3]]: 
> b:=[[4,2,3]]: 
> c: = [[ 1,2]]: 
> GO: = permgroup( 4, {a,b,c} ): 
> grouporder(GO); 

> RO:= permgroup( 4, {a,b}): 
> grouporder(RO); 

24 

12 
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From the l\IIaple output and our upper bound, we see 
that IGI = 24 since 24 = IGol :::; IGI :::; 24. Since G is iso­
morphic to a subgroup of S4, we conclude that G ~ S4. 
Furthermore, the rotation group R of the tetrahedron is 
then isomorphic to A4, since A4 is the only subgroup of 
S4 of index 2. 4 

2. The Cube 
1 

The cube has six faces and eight vertices. We thus view 
G as a subgroup of S8. We use a counting argument to Figure 3. 

get an upper bound for IGI. First, there are eight choices 
for where vertex 1 can be sent. Once vertex 1 has been 
sent sOlnewhere, there are three choices for where vertex 
2 can be sent because there are three vertices connected 
to any given vertex. Finally, there are two choices for 
where vertex 4 can be sent since it must be sent to a 
vertex connected to the image of vertex 1 but not to the 
image of vertex 2. Since any isometry is determined by 
its action on three vertices, we see that IGI :::; 8·3·2 = 48. 
Since [G : R] = 2, we have the upper bound IRI ~ 24. 

Let a be the counterclockwise rotation by 90° that fixes 
the top and bottom f~ces and let b the rotation of 90° 
that sends the top face to the front face. We then use 
Maple to get the output shown in Table 3. As with the 
tetrahedron, we let Ro be the subgroup of R generated 
by a and b. 

> a: = [[ 1 ,2,3,4 ],[5,6,7,8]]: 
> b: = [[1,4,8,5],[2,3,7,6]]: 
> RO: = permgroup(8, {a,b} ): 
> grouporder(RO); 

> P : = Sylow(RO,3): 
> H : = normalizer(RO,P): 
> grouporder(H); 

> core(H,RO); 

24 

6 

permgroup(8, {}) Table 3. 
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From this and our upper bound, we see that Ro = R; 
therefore, IRI = 24. Furthermore, since H is a subgroup 
of R of order 6, and since the core of H in R is trivial, 
we see that the homomorphism R -+ Perm(R/ H) ~ S4 
obtained from [3, Theorem 2.4.2.] is injective, and so 
R ~ S4 since these groups have the same order. We 
pointed out earIi~r that G ~ R x~. Thus, G ~ S4 X Z2. 

3. The Octahedron 

The octahedron is a solid with eight faces and six ver­
tices. We view its symmetry group as a subgroup of 
S6. To get an upper bound for IGI, we note that there 
are six choices for where vertex 1 is sent, and once it 
is determined, there are four choices for where vertex 2 
goes, since each vertex is connected to four other ver­
tices. Finally, there are two choices for where vertex 
5 is sent, since it must be send to a vertex connected 
both to the image of 1 and to the image of 2. Thus, 
IGI ::; 6 4 2 = 48, and so IRI ::; 24. 

Let a be the counterclockwise rotation of 90° that fixes 
the top and bottom vertices, b be the rotation of 120° 
that sent vertex 1 to 2 and vertex 2 to 5. We have the 
Maple output given in Table 4. 

From the output, we get IRI = 24, and as with the 
case of the cube~ we see that R is isomorphic to S4' 
Therefore, G f'V R x ~ ~ S4.x ~. 

> a : = [[1,2,3,4]]: 
> b : = [[5,1,2],[6,3,4]]: 
> RO:= permgroup(6,{a,b}): 
> grouporder(RO); 

> P:= Sylow(RO,3): 
> H:= normalizer(RO,P): 
> grouporder(H); 

> core(H,RO); 

24 

6 

permgroup( 6, {}) 

--____ ~LAAAAA~~ ______ _ 
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4. The Dodecahedron 

The dodecahedron has twelve faces and twenty vertices. 
We view its symmetry group as a subgroup of S20. Be­
cause the picture above does not show all the vertices, 
we explain the numbering scheme. The vertices of the 
top face are numbered 1 t.hrough 5 in counterclockwise 
order, and the vertices of the bottom face are numbered 
16 through 20. The 'middle' ten vertices are then num­
bered 6 through 16 in counterclockwise order. To get an 
upper bound for IGI, we note that vert.ex 1 can be sent 
to any of the twenty vertices. Once the image of vertex 
1 is determined, vertex 2 must be sent to one of three 
vertices since each vertex is connected to three others. 
Finally, there are two choices for where vertex 6 is sent 
since it must also go to a vertex connected to the image 
of vertex 1. Thus, IGI ~ 20·3·2 = 120, and so IRI :S 60. 

Let a be the counterclockwise rotation of 72° that fixes 
the top and bottom faces, let b the rotation of 72° sends 
vertex 1 to 6 and vertex 6 to 7. The Maple output is 
shown in Table 5. 

We conclude that IRI = 60. Since H is a subgroup of R 
of index 60/12 = 5, and the core of H in R is trivial, we 

Figure 5. 

Table 5. 

> a: = [[1,2,J,4,5],[6,8,10,12,14].[7,9,11,13,15],[16,17,18.19,20]]: 

> b: = [[1,6,7,8,2],[3,5,15,16,9],[4,14,20,17,10],[12,13.19,18.11]]: 
> RO: = permgroup(20, {a,b} ): 
> grouporder(RO); 

> P: Sylow(RO,2): 

> H: = normalizer(RO,P): 

> grouporder(H); 

> core(H,RO); 

60 

12 

permgroup(20, {}) 
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> a: = [[1,2,3,4,5], [7,8,9,10,11]]: 
> b: = [[ 1,2,6],[3,5,7],[ 4,11,8],[9,1 0,12]]: 

> RO: = permgroup(20, {a,b} ): 
> grouporder(RO)~ 

> P: = Sy\ow(RO,2): 
> H: = norma\izer(RO,P): 
> grouporder(H); 

> core(H,RO); 

60 

12 

permgroup(20, {}) 

have an injective homomorphism R ~ 8 5 . We recall 
that the only subgroup of 8 5 of order 60 is A 5 . Thus, 
R ~ A 5 . As we mentioned earlier, G ~ R x ~, so 

3 G ~ A5 X Z2. 
1 

Figure 6. 
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5. The Icosahedron 

The icosahedron has twenty faces and twelve vertices, so 
we view its symmetry group as a subgroup of 8 12 . Let 
a be the counterclockwise rotation of 72° that fixes the 
top and bottom vertices, and let b be the 120° rotation 
that sends vertex 1 to 2 and vertex 2 to 6. We then have 
the Maple 6utput, (see Table 6). 

From the output we have the same conclusion as for the 
dodecahedron; the group R is isomorphic to A 5 , and G 
is isomorphic to A5 x Z2· 

Suggested Reading 

[1] M Artin,Algebra, Prentice Hall, Englewood Cliffs, Nj, 1991. 

[2] I Herstein, Topics in Algebra, Xerox Colt Publ., Lexington, MA, 1975. 

[3] E Walker,lntroduction to Abstract Algebra, Random House, New York, 

1987. 

________ LAAftAAA __ -----­
~A v V V V V v RESONANCE I August 2004 


