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The geometry of spectrahedra

Cynthia Vinzant

Abstract. Spectrahedra are convex, semialgebraic sets that are fundamental
objects in the theory of semidefinite programming, and more generally matrix
theory, convex optimization, and real algebraic geometry. Here we develop
some of the relevant background from real algebraic and convex geometry, and
explore its impacts on the geometry of spectrahedra and applications to cones
of sums of squares and moments.

1. Introduction

A spectrahedron is the intersection of the cone of positive semidefinite matrices
with an affine linear space. These appear in convex optimization as the feasible sets
of semidefinite programs. In what follows, we investigate the geometry of spectrahe-
dra using tools from real algebraic geometry and convexity and discuss implications
for spectrahedra related to sums of squares. The geometry of spectrahedra depends
heavily on the geometry of the cone of positive semidefinite matrices.

Definition 1.1. A real symmetric matrix A is positive definite, denoted A ! 0,
if all of its eigenvalues are positive. The matrix A is positive semidefinite, denoted
A " 0, if all of its eigenvalues are nonnegative.

There are several equivalent characterizations of positive semidefinite-ness. For
an N × N real symmetric matrix A, the following conditions are equivalent:

(i) all eigenvalues of A are nonnegative,
(ii) all principal minors of A, det(AI,I) for I ⊆ {1, . . . , N}, are nonnegative,
(iii) vT Av ≥ 0 for all v ∈ RN , and
(iv) there exists a matrix B ∈ RN×k where k = rank(A) and

A = BBT = (〈ri, rj〉)1≤i,j≤N =
k∑

i=1

cic
T
i

where r1, . . . , rN , c1, . . . , ck are the rows and columns of B.

Let SN denote the vector space of real symmetric N ×N matrices and SN
+ de-

note the set of N×N positive semidefinite matrices. The set SN
+ is a full-dimensional

convex semialgebraic cone in the real vector space SN ∼= R(N+1
2 ). General convex
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Figure 1. The spectrahedron in S4 defined by (1.1) and its image
under the coordinate projection (x, y, z) *→ (x, z).

and semialgebraic sets will be defined and discussed in Section 2. One example is
the intersection of SN

+ with an affine linear subspace of SN .

Definition 1.2. A spectrahedron is the intersection of the cone of positive
semidefinite matrices with an affine linear space. The affine linear space can be
parametrized as L = {A(x) : x ∈ Rm} where A(x) = A0 +

∑m
i=1 xiAi is a linear

matrix pencil given by A0, . . . , Am ∈ SN . This linearly identifies the spectrahedron
with

L ∩ SN
+

∼=

{
x ∈ Rm : A(x) = A0 +

m∑

i=1

xiAi " 0

}
.

We will refer to both sets (and any set linearly isomorphic to them) as spectrahedra.

Example 1.3. Consider the three-dimensional affine linear space parametrized

(1.1) A(x, y, z) = A0 + xA1 + yA2 + zA3 =





1 x y z
x 1 x y
y x 1 x
z y x 1





where (x, y, z) runs over R3 and the matrices A0, A1, A2, A3 ∈ S4 have the form
(Ak)ij = 1 if |i − j| = k and 0 otherwise. The intersection of this affine space
with the cone of 4 × 4 positive semidefinite matrices S4

+ gives the spectrahedron
S = {(x, y, z) ∈ R3 : A(x, y, z) " 0} shown on the left in Figure 1. .

Example 1.4. Another important example of a spectrahedron is any poly-
hedron. A polyhedron is the set of points satisfying finitely many affine linear
inequalities. That is, it is a set that can be written as

P =

{
x ∈ Rm : a0j +

m∑

i=1

aijxi ≥ 0, j = 1, . . . , N

}
,

where aij ∈ R for all i = 0, . . . , m and j = 1, . . . , N . We can represent P as a
spectrahedron using diagonal matrices. Indeed, for each i = 0, . . . , m, let Ai be the
N × N diagonal matrix with diagonal entries (ai1, . . . , aiN ). For any x ∈ Rm, the
linear combination A0 +

∑m
i=1 Aixi is again a diagonal matrix, which is positive

semidefinite if and only if its diagonal entries are nonnegative. This writes P as
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the spectrahedron,

P =

{
x ∈ Rm : A0 +

m∑

i=1

Aixi " 0

}
.

.

Another important class of convex semialgebraic sets are spectrahedral shadows,
which are the image of spectrahedra under linear projections. One can define these
as sets that can be written in the form


(x1, . . . , xm) ∈ Rm : ∃(y1, . . . , yn) ∈ Rn with A0 +
m∑

i=1

xiAi +
n∑

j=1

yjBj " 0






for some matrices Ai, Bj ∈ SN . For example, the projection of the spectrahedron
S in Example 1.3 onto the coordinates (x, z) is shown on the right in Figure 1. As
we will see, spectrahedral shadows are not always spectrahedra. This is a major
distinction with polyhedra – the image of a polyhedron under linear projection is
always a polyhedron.

Like the cone of positive semidefinite matrices, spectrahedra and spectrahedral
shadows are convex, semialgebraic sets, and we can analyze both their algebraic
and convex structure.

In what follows we build up some of the necessary background from real alge-
braic geometry and convexity (Section 2), introduce convex duality with a focus on
spectrahedral cones (Section 3), examine the facial structure of the cone of positive
semidefinite matrices and spectrahedra (Section 4), and end by discussing applica-
tions of this theory to sums of squares and nonnegative polynomials (Section 5).

2. Background

Throughout, we use the standard Euclidean inner product on Rn, where for
two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), 〈x,y〉 =

∑n
i=1 xiyi. On SN , we

use the trace inner product 〈A, B〉 = trace(AB).

2.1. Real algebraic geometry and semialgebraic sets. The fundamental
building blocks of real algebraic geometry are semialgebraic sets, which are sets
defined by polynomial equations and inequalities. For more details on the subject,
see [3,10]. Formally, we have the following:

Definition 2.1. A basic closed semialgebraic set in Rn is a set of the form

{p ∈ Rn : g1(p) ≥ 0, . . . , gs(p) ≥ 0}

where g1, . . . , gs ∈ R[x1, . . . , xn] are polynomials. A semialgebraic set is one that
can be written as a finite boolean combination of basic closed semialgebraic sets,
that is, one built from a finite collection of basic closed semialgebraic sets using
finitely many complements, intersections, and unions.

Example 2.2. A disk and a square are both basic closed semialgebraic subsets
of R2. Their union will be a closed semialgebraic set, but might not be a basic one.
If D is the unit disk defined by x2+y2 ≤ 1 and S is the square defined by 0 ≤ x ≤ 2
and −1 ≤ y ≤ 1, then the union D ∪ S is semialgebraic, but not basic. These are
shown is Figure 2.
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D S D ∪ S

basic closed basic closed not basic closed

Figure 2. The semialgebraic sets of Example 2.2.

To see this, suppose that D ∪ S can be described by some set of polynomial
inequalities, g1(x, y) ≥ 0, . . . , gs(x, y) ≥ 0. Because this description is finite, there
must be some polynomial gi that changes sign and thus vanishes with odd multiplic-
ity along the left half of the circle defined by x2 + y2 = 1. That is, for almost every
choice of a ∈ [−1, 1], the univariate polynomial gi(x, a) ∈ R[x] has a root of odd
multiplicity at x = −

√
1 − a2. However, any polynomial in R[x, y] that vanishes on

the left half of the circle {(−
√

1 − a2, a) : a ∈ [−1, 1]} must also vanish on the right
half of the circle {(

√
1 − a2, a) : a ∈ [−1, 1]}. In the language of algebraic geometry,

the Zariski closure of the left half is the entire circle. In particular this is true for

gi and its derivatives
(

∂
∂x

)k
gi with respect to x. Therefore gi must also vanish with

odd multiplicity on the right half of this circle, implying that gi is negative at some
point in D ∪ S, and giving a contradiction. .

The cone of positive semidefinite matrices is a basic closed semialgebraic set in

SN ∼= R(N+1
2 ) defined by the non-negativity of principal minors. For example,

S2
+ =

{(
a11 a12

a12 a22

)
∈ S2 : a11a22 − a2

12 ≥ 0, a11 ≥ 0, a22 ≥ 0

}
.

More generally, the principal minors det(AI,I) of a symmetric matrix A are polyno-
mials in its entries and SN

+ is defined by the nonnegativity of all these polynomials.
This gives an explicit description of SN

+ as a basic closed semialgebraic set.
The property of being a basic closed semialgebraic set is inherited by spectra-

hedra SN
+ ∩ L. (Note that we can impose an equality !(x) = 0 by imposing the

two inequalities !(x) ≥ 0 and −!(x) ≥ 0.) One can also see this in the coordinates
x = (x1, . . . , xm) of the parametrization L = {A(x) : x ∈ Rm}. The spectrahedron
S = {x ∈ Rm : A(x) " 0} is defined by the nonnegativity of the principal minors
of A(x), which are polynomials in x.

Example 1.3 cont’d. The determinant of the matrix A(x, y, z) in (1.1) is
a polynomial of degree four that factors into two quadratics. The semialgebraic
description of S given by the principal minors of A(x, y, z) can be simplified to

S = {(x, y, z) ∈ R3 : (y + x)2 ≤ (z + 1)(x + 1), (y − x)2 ≤ (z − 1)(x− 1), x2 ≤ 1}.

Its projection onto coordinates (x, z), seen in Figure 1, is the semialgebraic set

π(S) = {(x, z) : −1 ≤ z ≤ 4x3−3x, x ≤ 1/2}∪{(x, z) : 4x3−3x ≤ z ≤ 1,−1/2 ≤ x}.

We can see that π(S) is not basic closed using an argument similar to that of
Example 2.2. In any polynomial description, g1 ≥ 0, . . . , gs ≥ 0 of π(S), some
polynomial gi would have to vanish with odd multiplicity along the curve given
by z = 4x3 − 3x, which forms part of the boundary of π(S). However this curve
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Figure 3. The convex and conic hull of a set S in R2.

also passes through the interior of π(S), on which gi can only vanish with even
multiplicity. So no such representation can exist.

Since it is not basic closed, the convex semialgebraic set π(S) cannot be written
as a spectrahedron! .

One fundamental theorem in real algebraic geometry is the Tarski-Seidenberg
theorem, which states that the projection of a semialgebraic set is semialgebraic.
As we see in Example 1.3, it is not always true that the projection of a basic closed
semialgebraic set is basic.

2.2. Convex geometry and faces. Many important features of spectrahe-
dra come from their structure as convex sets. We refer readers to [1] for more
background on convexity and in particular [1, §II.12] for its relevance to the posi-
tive semidefinite cone and spectrahedra.

A set S ⊂ Rn is convex if for any points x,y ∈ S, the line segment joining
them, {λx + (1 − λ)y : 0 ≤ λ ≤ 1} is contained in S. We call S a convex cone
if it is also invariant by nonnegative scaling, or equivalently if for any two points
x,y ∈ S, the set of conic combinations {λx + µy : λ, µ ∈ R≥0} is contained in S.

For example, SN
+ is a convex cone. To see this, suppose that A, B ∈ SN

+ . Then
for every nonzero vector v ∈ RN , vT Av and vT Bv are nonnegative. It follows
that for any λ, µ ∈ R≥0, vT (λA + µB)v = λvT Av + µvT Bv ≥ 0, giving that the
conic combination λA + µB is also positive semidefinite. One can check that the
intersection of any convex sets is convex. Since λx + (1 − λ)y is an affine linear
combination of x and y, any affine linear space is convex. Putting this together
with the convexity of SN

+ , we find that a spectrahedron S = L ∩ SN
+ is convex.

The convex hull of a set S ⊂ Rn is the smallest convex set containing S and
its conic hull is the smallest convex cone containing S. See Figure 3. We can write
these as

conv(S) =

{
k∑

i=1

λipi : k ∈ N, pi ∈ S, λi ≥ 0,
k∑

i=1

λi = 1

}
, and

conicHull(S) =

{
k∑

i=1

λipi : k ∈ N, pi ∈ S, λi ≥ 0

}
.

In a convex set some points belong to the convex hull of others. This relation-
ship gives rise to the facial structure of S. A face of S is a subset F ⊆ S with
the property that for any point in F and every way to write it as a (strict) convex
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combination of some elements of S, these elements must belong to F . That is, for
every p ∈ F , if p = λx+(1−λ)y for some λ ∈ (0, 1) where x,y ∈ S, then x,y ∈ F .
Note that the same condition with λ = 0 or 1 cannot impose any restrictions on the
points x or y, respectively, which is why we restrict to strict convex combinations
with λ ∈ (0, 1). Both ∅ and S are always faces of S and we call these the trivial faces
of S. A nonempty face F of S with F 5= S is called nontrivial. An extreme point
of S is a point p ∈ S that forms a singleton face of S. This is a point p with the
property that every way of writing p as a strict convex combination λx + (1− λ)y
of points x, y in S with λ ∈ (0, 1) satisfies x = y = p.

Krein-Milman Theorem. A convex compact set in Rn is the convex hull of
its extreme points.

For any linear function ! on Rn, the set of points F maximizing ! over S is a
face of S. Indeed, if, for some c ∈ R, the inequality !(x) ≤ c holds for all x ∈ S,
then the set of points in S satisfying !(x) = c is a face of S. To see this, note that
if !(p) = c and p = λx + (1 − λ)y for some λ ∈ (0, 1) and x,y ∈ S, then

c = !(p) = λ!(x) + (1 − λ)!(y) ≥ λc + (1 − λ)c = c.

Equality of the left and right hand sides forces !(x) = !(y) = c.
We call faces of the form {x ∈ S : !(x) = c} exposed and say that ! exposes the

face. Note that the trivial faces of S are always exposed using the zero function
!(x) = 0. The set ∅ is the set of points satisfying !(x) = 1 and S is the set of points
satisfying !(x) = 1. If ! is non-zero, then the set of points {x ∈ Rn : !(x) = c}
forms an affine hyperplane H and F = S ∩H. Similarly, if F = S ∩H is a face of S
for some affine hyperplane, then it is the set of points maximizing ! where !(x) = c
is the defining equation for H with signs chosen so that !(x) ≤ c for all x ∈ S.
Therefore a nontrivial face of S is exposed if and only if it can be written as S ∩H
for some affine hyperplane.

Example 2.2 cont’d. All three sets from Example 2.2 are convex. The non-
trivial faces of the disk D are the singleton sets consisting of a point on its boundary,
each of which is exposed. For example, the point (0, 1) is exposed by the linear
function y, as it equals the set of points maximizing y over (x, y) ∈ D. The square
S has finitely many faces, namely ∅, its four vertices, its four edges, and S itself.
These faces are all exposed, as highlighted in Figure 4.

D S D ∪ S

Figure 4. Extreme points of the convex sets in Example 2.2.

The facial structure of D ∪ S is more complicated. Its nontrivial faces consist
of its extreme points, which are the points on the left half of the circle bounding
D and two of the vertices of S as well as three edges of S. Note however that the
points (0, 1) and (0,−1) are not exposed on D ∪ S. Up to scaling, the only linear
function ! that maximizes (0, 1) over D ∪ S is !(x, y) = y, but every point on the
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top edge attains this maximum. As promised by the Krein-Milman Theorem, each
set is the convex hull of its extreme points. .

In their seminal paper on spectrahedra, Ramana and Goldman show that all
faces of a spectrahedron are exposed [13]. We discuss this theorem further and
give a proof in Section 4.2. This gives another way of verifying that a convex
semialgebraic set cannot be written as a spectrahedron.

Example 1.3 cont’d. The spectrahedron S in Figure 1 has a curve segment
worth of extreme points, namely points of the form (x, y, z) = (t, 2t2 − 1, 4t3 − 3t)
for t ∈ [−1, 1]. As promised by the Krein-Milman Theorem, S is the convex hull of
this curve segment. The other faces of S are the edges joining points on this curve
to one of the end points (±1, 1, ±1), along with the trivial faces ∅ and S.

Figure 5. Extreme points of the convex sets in Figure 1.

The image π(S) under projection π(x, y, z) = (x, z) is again a compact, convex
set and is the convex hull of its extreme points, shown in Figure 5. The projection
π(S) also has a non-exposed face. The point (x, z) = (−1/2, 1) is a face of π(S), as
it cannot be written as a strict convex combination of other points in the set. Up
to scaling, the only linear function maximized at this point is !(x, z) = z, which
attains the maximum value z = 1. However the face of π(S) exposed by this linear
function is the line segment {(λ, 1) : λ ∈ [−1/2, 1]}. Therefore the singleton face
{(−1/2, 1)} of π(S) is not exposed. This provides yet another reason that π(S)
cannot be written as a spectrahedron. .

We see here that one way to understand the structure of a convex set is through
the affine linear functions that are nonnegative on it. The set of such functions form
a convex set in their own right, known as the dual.

3. Convex duality

Given a set S ⊂ Rn, we can define the dual convex set of S as

S∗ = {c ∈ Rn : 1 + 〈c,x〉 ≥ 0 for all x ∈ S}.

One can check that S∗ is a closed convex set that contains the origin. Moreover, if
S is semialgebraic, then so is S∗. The definition gives a semialgebraic formula for
S∗ involving a quantifier. The theory of quantifier elimination over R (see e.g. [3])
then implies that S∗ has a quantifier-free description as a semialgebraic set.

Some readers may instead be familiar with the polar of convex set, given by
S◦ = {c ∈ Rn : 1 ≥ 〈c,x〉 for all x ∈ S}. But one can check that these two sets are
the negative of each other, S∗ = −S◦.
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D S D ∪ S

D∗ S∗ (D ∪ S)∗

Figure 6. The convex sets of Example 2.2 and their duals.

From the definition, one can check that duality reverses inclusions and that the
dual of a union of two convex sets is the intersection of their duals, i.e.

S ⊆ T ⇒ T ∗ ⊆ S∗ and (S ∪ T )∗ = S∗ ∩ T ∗

Moreover, if S is a closed convex set containing the origin, then (S∗)∗ = S, see e.g.
[1, Theorem IV.1.2].

Example 2.2 cont’d. Consider the duals of the convex sets in Example 2.2.
The dual of each is semialgebraic. In this case, it so happens all three dual sets are
basic closed semialgebraic sets, namely

D∗ = {(a, b) ∈ R2 : a2 + b2 ≤ 1},

S∗ = {(a, b) ∈ R2 : −1 ≤ b ≤ 1,−2a − 1 ≤ b ≤ 2a + 1}, and

(D ∪ S)∗ = D∗ ∩ S∗ = {(a, b) ∈ R2 : a2 + b2 ≤ 1,−2a − 1 ≤ b ≤ 2a + 1}.

These sets are defined by eliminating (x, y) from the inequalities ax + by + 1 ≥ 0
and (x, y) ∈ D, S, or D ∪ S, respectively, and pictured in Figure 6.

It is instructive to imagine moving a point (a, b) in the dual set and the corre-
sponding line ax + by + 1 = 0 in the plane of the original set, as is done for four
points in Figure 7. For any (a, b) in (D ∪ S)∗, the original, D ∪ S, belongs to the
halfspace ax+by+1 ≥ 0 bounded by this line, but when (a, b) belong to the bound-
ary of the (D∪S)∗, the line intersects D∪S. By considering ((D∪S)∗)∗ = D∪S,
we can also visualize a point (x, y) in D ∪ S as a valid inequality ax + by + 1 ≥ 0
on points (a, b) in D ∪ S, as seen in Figure 7. .

One convenient interpretation of the dual convex set involves working with
convex cones in one dimension higher. Formally, given a set S ⊆ Rn, define the
cone over S, denoted cone(S), to be the convex cone in Rn+1 defined by

cone(S) = {(λ,λx) : λ ∈ R≥0, x ∈ S} .

Note that we can recover S from its cone by restricting the points with first coor-
dinate equal to one. Furthermore, the operation of coning over sets behaves nicely
with duality.

Proposition 3.1. The operations of taking the cone over a set and taking its
dual commute. That is, for a convex set S ⊆ Rn, we have

cone(S)∗ = cone(S∗).
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Figure 7. Point-line correspondences in a convex set and its dual.

Proof. Consider a point (c0, c) in Rn+1 with c0 > 0.

(c0, c) ∈ cone(S∗) ⇔ 1
c0

c ∈ S∗

⇔ 1 + 〈 1
c0

c,y〉 ≥ 0 for all y ∈ S

⇔ c0 + 〈c,y〉 ≥ 0 for all y ∈ S

⇔ λ(c0 + 〈c,y〉) = 〈(c0, c), (λ,λy)〉 ≥ 0 for all y ∈ S and all λ ≥ 0

⇔ 〈(c0, c), (x0,x)〉 ≥ 0 for all (x0,x) ∈ cone(S)

⇔ (c0, c) ∈ (cone(S))∗.

Finally we note that both cone(S)∗ and cone(S∗) belong to the halfspace defined
by c0 ≥ 0, so to finish, we need only worry about points with c0 = 0.

Note that if (0, c) belongs to cone(S)∗, then 1 + 〈c,λy〉 = λ(1/λ + 〈c,y〉) ≥ 0
for all y ∈ S and λ ≥ 0. In particular, then ε+ 〈c,y〉 is also nonnegative for y ∈ S
for ε > 0. Then (ε, c) belongs to cone(S)∗ for every ε > 0 and by the arguments
above also cone(S∗). Taking ε to zero then shows that (0, c) belongs to the closure
of this cone. Similarly, if (0, c) belongs to the closure of cone(S∗), then it is a
limit of points in this cone with nonzero first coordinate, which must also belong
to cone(S)∗. By definition, cone(S)∗ is closed, so it also contains these points. !

In particular, this shows that to understand duality of convex sets (up to issues
of closure), it suffices to understand duality of convex cones, which is in many
ways simpler. If K is a convex cone, then it is invariant under multiplication by
nonnegative scalars. Then c belongs to K∗ if and only if 1 + 〈c,λx〉 = 1 + 〈λc,x〉
is nonnegative for all x ∈ K and λ ≥ 0. From this, we see that K∗ is also a convex
cone, known as the dual cone of K, and

K∗ = {c ∈ Rn : 〈c,x〉 ≥ 0 for all x ∈ K}.

One can check that the following hold for any closed convex cones C, K ⊆ Rn:

(3.1) (C∗)∗ = C and (C ∩ K)∗ = C∗ + K∗.

More formally, given a convex cone K in a real vector space V , its dual is the
set of linear functions on V that are nonnegative on K,

K∗ = {! ∈ V ∗ : !(x) ≥ 0 for all x ∈ K}.
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Fixing an inner product identifies the vector space V with its dual V ∗. For example,
under the usual inner product 〈x,y〉 on Rn, the nonnegative orthant is self-dual:

(Rn
≥0)

∗ = {y ∈ Rn : 〈x,y〉 ≥ 0 for all x ∈ Rn
≥0} = Rn

≥0.

The self-duality of the nonnegative orthant plays an important role in many
algorithms for linear programming. For semidefinite programming, the cone of
positive semidefinite matrices plays a similar role.

Proposition 3.2. Under the inner product 〈X, Y 〉 = trace(XY ), the cone of
positive semidefinite matrices is self-dual:

(SN
+ )∗ = {Y ∈ SN : 〈X, Y 〉 ≥ 0 for all X ∈ SN

+ } = SN
+ .

Proof. If Y is positive semidefinite, then it can be written as BBT for some
real matrix B. If X is also positive semidefinite, then we can check that the inner
product 〈X, BBT 〉 = trace(XBBT ) = trace(BT XB) is nonnegative, since BT XB
is positive semidefinite. On the other hand, if Y is not positive semidefinite, then
there is some vector v ∈ RN for which vT Y v < 0. The rank-one matrix X = vvT

belong to SN
+ , but its inner product with Y is negative: 〈vvT , Y 〉 = vT Y v < 0.

Therefore Y does not belong to the dual cone of SN
+ . !

3.1. Dual operations: linear restriction and projection. Another im-
portant property of convex duality is how it interacts with linear projection and
restriction. Let L be a m-dimensional linear subspace of Rn. Given a basis
{a1, . . . , am} for L, consider the maps

πL : Rn → Rm given by πL(v) = (〈ai,v〉)i=1,...,m, and

π∗
L : Rm → Rn given by π∗

L(x) =
m∑

i=1

xiai.

Explicitly, if A is an m × n matrix with rows {a1, . . . , am}, then these maps are
defined by πL(v) = Av and π∗

L(x) = AT x. Note that πL is surjective and the image
is isomorphic to L. Its kernel consists of L⊥ = {v ∈ Rn : 〈u,v〉 = 0 for all u ∈ L}.
Similarly, the pullback π∗

L is injective and its image equals the linear space L.
Any linear function on Rm defines a map on Rn via the pullback π∗

L. Explicitly,
given a linear function y *→ 〈x,y〉 on Rm, its pullback is given by v *→ 〈x,πL(v)〉.
Then, as the notation suggests, this linear function sends v ∈ Rn to

〈x,πL(v)〉 =
m∑

i=1

xi〈ai,v〉 =

〈
m∑

i=1

xiai,v

〉
= 〈π∗

L(x),v〉.

Under our identification of (Rn)∗ with Rn, this linear function is identified with the
point π∗

L(x).
Now let C ⊆ Rn be a convex cone and consider its image, πL(C) in Rm. We

would like to relate the dual cone of πL(C) to that of C. A linear function 〈x,y〉 is
nonnegative for all y ∈ πL(C) if and only if its pullback v *→ 〈x,πL(v)〉 = 〈π∗

L(x),v〉
is nonnegative for all v ∈ C. This happens if and only if π∗

L(x) belongs to the dual
cone of C. See Figure 8. All together this gives that

(3.2) (πL(C))∗ = {x ∈ Rm : π∗
L(x) ∈ C∗} ∼= C∗ ∩ L.

The last equality here uses that π∗
L is a linear isomorphism between Rm and L.

This shows that intersection with a linear space is the dual operation to linear
projection.
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Figure 8. Nonnegative linear functions on a projection πL(C)
come from nonnegative linear functions C that are constant along
preimages. These constitute a linear slice of the dual cone C∗.

Recall that dualizing any convex cone K twice results in its closure, (K∗)∗ = K.
Applying the dual to both sides of the equation above gives that

πL(C) = ({x ∈ Rm : π∗
L(x) ∈ C∗})∗ ∼= (C∗ ∩ L)∗.

One way to interpret this statement is that the dual cone of a linear slice C∗ ∩ L
is isomorphic to the dual cone C = (C∗)∗ under projection. All together this gives
the following:

Proposition 3.3. The dual cone of the image of C under linear map is linearly
isomorphic to a linear section of C∗, namely

(πL(C))∗ ∼= C∗ ∩ L.

The dual cone of a linear section of C is the image of C∗ under a linear map:

(C ∩ L)∗ ∼= πL(C∗).

Here (C ∩ L)∗ is the convex dual of (C ∩ L)∗ in the ambient space L. In short,
projection and slicing are dual operations.

For the study of spectrahedra, an important special case is the cone of positive
semidefinite matrices C = C∗ = SN

+ . If L is a linear space spanned by matrices
A1, . . . , Am ∈ SN , then we can consider the linear map

πL : SN → Rm given by X *→ (〈A1, X〉, . . . , 〈Am, X〉).

A function !(y) = 〈x,y〉 represented by x ∈ Rm is nonnegative on πL(SN
+ ) if

and only if the function on SN given by X *→ 〈π∗
L(x), X〉 = 〈

∑m
i=1 xiAi, X〉 is

nonnegative on SN
+ . This happens exactly when the matrix

∑m
i=1 xiAi is positive

semidefinite. Therefore the dual cone of the projection is given by

(3.3) πL(SN
+ )∗ =

{
x ∈ Rm :

m∑

i=1

xiAi " 0

}
∼= SN

+ ∩ L.

The image of SN
+ under the projection πL may not be closed. For example,

consider the image of S2
+ under the map X *→ (X11, X12). This contains points of

the form (X11, X12) = (ε, 1) for every ε > 0, coming from matrices with X22 > 1/ε.
However the point (0, 1) does not belong to this image, as there is no positive
semidefinite matrix X with X11 = 0 and X12 > 0.
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Figure 9. A spectrahedron and its dual convex body

However for any convex (not necessarily closed) cone K ⊂ Rn, the dual of its
dual equals its closure, i.e. (K∗)∗ = K. Taking the dual of the cones in (3.3), we
find that the dual of a spectrahedral cone is the image of SN

+ under a linear map:

(3.4) πL(SN
+ ) =

({
x ∈ Rm :

m∑

i=1

xiAi " 0

})∗

∼= (SN
+ ∩ L)∗.

It is also instructive to apply Proposition 3.3 to spectrahedral cones C and
their images under linear maps. In particular, unlike spectrahedra, the class of
spectrahedral shadows is closed under duality.

Proposition 3.4. The dual of a spectrahedral shadow is (the closure of) a
spectrahedral shadow.

Proof. By Proposition 3.1, it suffices to work with a spectrahedral cone, i.e.
the intersection of SN

+ with a linear space (rather than an affine linear space).
Consider the affine space L spanned by matrices A1, . . . , An and the spectrahe-

dral cone C = {x ∈ Rn s.t.
∑n

i=1 Ai " 0} ∼= SN
+ ∩ L. For m < n, we can examine

the image of C under the projection πm : Rn → Rm given by πm(x) = (x1, . . . , xm).
The pullback π∗

m : Rm → Rn is given by π∗
m(y) = (y,0). Then by (3.2),

(πm(C))∗ = {y ∈ Rm : (y,0) ∈ C∗}.

The dual cone C∗ is the projection of the cone of positive semidefinite matrices:
C∗ = πL(SN

+ ) = {(〈X, Ai〉)i=1,...n : X ∈ SN
+ }. Putting this together, we find that

(πm(C))∗ =
{
(〈X, Ai〉)i=1,...m : X ∈ SN

+ , 〈X, Aj〉 = 0 for j = m + 1, . . . , n
}
.

This is the image of the spectrahedron
{
X ∈ SN

+ : 〈X, Aj〉 = 0 for j = m + 1, . . . , n
}

under the linear map X *→ (〈X, Ai〉)i=1,...m up to closure. !

Example 1.3 cont’d. Let A0, A1, A2, A3 ∈ S4 be matrices with (Ak)ij = 1 if
|i− j| = k and 0 otherwise for every k = 0, 1, 2, 3. The cone over the spectrahedron
C = cone(S) from Example 1.3 can be written as the intersection of the positive
semidefinite cone with the linear space spanned by these matrices

C =
{
(w, x, y, z) ∈ R4 : wA0 + xA1 + yA2 + zA3 " 0

} ∼= S4
+ ∩ L

where L = spanR{A0, A1, A2, A3}. Since the cone S4
+ is self-dual, the dual cone of

C is given by the projection of S4
+ onto this linear space:

C∗ =
{
(〈A0, X〉, 〈A1, X〉, 〈A2, X〉, 〈A3, X〉) ∈ R4 : X ∈ S4

+

} ∼= πL(S4
+).
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Figure 10. A projection of the spectrahedron from Example 1.3
and corresponding slice of its dual convex body.

To recover the original set S and its convex dual set S∗, we can restrict both sets
to have first coordinate one, giving the convex sets

S =
{
(x, y, z) ∈ R3 : A0 + xA1 + yA2 + zA3 " 0

}
and

S∗ =
{
(〈A1, X〉, 〈A2, X〉, 〈A3, X〉) ∈ R3 : X ∈ S4

+, 〈A0, X〉 = 1
}

,

seen in Figure 9. Taking things one step further, we can consider the projection of
S on to the coordinates (x, z),

π(S) =
{
(x, z) ∈ R2 : ∃ y ∈ R with A0 + xA1 + yA2 + zA3 " 0

}

as shown in Figure 10.
To understand the dual convex body, we consider affine linear functions on

R3 that come from affine linear functions on R2. These are exactly the functions
(x, y, z) *→ 1 + ax + by + cz where (a, b, c) ∈ R3 and b = 0. This lets us write the
dual convex body as the intersection of S∗ with the plane b = 0, giving

(π(S))∗ =
{
(〈A1, X〉, 〈A3, X〉) ∈ R3 : X ∈ S4

+, 〈A0, X〉 = 1, 〈A2, X〉 = 0
}

.

This is also the image of a spectrahedron under a linear map, namely the image
of the spectrahedron {X ∈ S4

+ : 〈A0, X〉 = 1, 〈A2, X〉 = 0} under the linear map
X *→ (〈A1, X〉, 〈A3, X〉). Indeed, the self-duality of the cone of positive semidefinite
matrices means that the class of projected spectrahedra is closed under duality. .

One consequence of this section is that any linear function on the projection
of a spectrahedron can be lifted to a linear function on the original spectrahedron.
Therefore optimizing a linear function over a spectrahedral shadow can also be
phrased as a semidefinite program, which we discuss in Section 3.2.

3.2. Convex optimization and semidefinite programming. A conic op-
timization problem has the form

min
x∈K

〈c,x〉 such that 〈ai,x〉 = bi for i = 1, . . . , m,

where K is a convex cone in Rn, c, a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R. We call a
point x feasible if it satisfies the constraints x ∈ K and 〈ai,x〉 = bi for all i. Many
optimization problems can be reformulated as conic optimization problems. One
benefit of this approach is that most of the complexity of the problem is packaged
into the convex cone, rather than both the feasible region and objective function.

When the cone K is the nonnegative orthant, the feasible region {x ∈ Rn
≥0 :

〈ai,x〉 = bi for i = 1, . . . , m}, is a polyhedron and corresponding conic optimization
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problem is called a linear program. When K is the cone of positive semidefinite
matrices, the feasible region is a spectrahedron and the convex program is called a
semidefinite program.

Definition 3.5. A semidefinite program is the problem of minimizing a linear
function over a spectrahedron, that is, a problem of the form

min
X∈SN

+

〈C, X〉 subject to 〈Ai, X〉 = bi for i = 1, . . . , m,

where C, A1, . . . , Am ∈ SN and b1, . . . , bm ∈ R.

The feasible region, {X ∈ SN
+ : 〈Ai, X〉 = bi for i = 1, . . . , m}, of a semidefinite

program is a spectrahedron, as it is the intersection of the positive semidefinite
cone with the affine linear space of matrices satisfying the constraints.

Semidefinite programs are useful because of their ability to model a large range
of problems and because they can be solved efficiently using interior point methods.
See [18] for more details on algorithms and applications.

Example 1.3 cont’d. Let Eij denote the 4 × 4 real symmetric matrix with
(i, j)th and (j, i)th entry 1 and all other entries 0. The spectrahedron S given by
the set of matrices X ∈ S4

+ satisfying

〈Eii, X〉 = 1 for all i and 〈E12 − E23, X〉 = 〈E23 − E34, X〉 = 〈E13 − E24, X〉 = 0

is exactly the spectrahedron given in parametrized form in Example 1.3. Consider
the matrix C = 3E12 − E13. Minimizing the linear function 〈C, X〉 over S is
equivalent to minimizing the linear function 6x − 2z over





(x, y, z) ∈ R3 :





1 x y z
x 1 x y
y x 1 x
z y x 1



 " 0





.

The minimum equals −4
√

2, which is achieved by the point (x, y, z) = (− 1√
2
, 0, 1√

2
),

at which point the matrix above is positive semidefinite and has rank two. .

More generally, the optimal values of semidefinite programs are semialgebraic
functions of the inputs, whose degrees are studied in [11,14].

Another fundamental benefit of conic programming is the ability to easily for-
mulate a “dual problem” that provides lower bounds on the optimal value of the
original problem (often called the primal problem):

min
x∈K

〈c,x〉 s.t. 〈ai,x〉 = bi for i = 1, . . . , m(Primal)

max
y∈Rm

m∑

i=1

biyi s.t. c−
m∑

i=1

aiyi ∈ K∗(Dual)

Here K∗ denotes the dual cone of K.
Note that {c−

∑m
i=1 aiyi : y ∈ Rm} parametrizes an affine linear space. So the

dual problem still has form of optimizing a linear function over the intersection of
a convex cone and an affine space.
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Theorem (Weak duality and complementary slackness). For any primal fea-
sible x and dual feasible y,

〈c,x〉 ≥
m∑

i=1

biyi.

Moreover, if 〈c, x̂〉 =
∑m

i=1 biŷi for feasible points x̂ and ŷ then both are optimal.

Proof. Suppose x,y are feasible. Then

〈c,x〉 −
m∑

i=1

biyi = 〈c,x〉 −
m∑

i=1

〈ai,x〉yi

= 〈c−
m∑

i=1

yiai,x〉 ≥ 0.

Here the last inequality follows from the fact that c−
∑m

i=1 yiai ∈ K∗ and x ∈ K.
If 〈c, x̂〉 =

∑m
i=1 biŷi, then 〈c, x̂〉 is an upper bound for

∑
i biyi over all feasible

y. Since ŷ achieves this upper bound, it must be optimal. Similarly,
∑

i biŷi is a
lower bound for 〈c,x〉, which is achieved by x̂. !

4. Facial structure, extreme points and ranks

In this section, we discuss in detail the facial structure and extreme points of
spectrahedra. We also explore this theory in more detail for the Gram spectrahe-
dron associated to a nonnegative univariate polynomial. To do this, we first need
to understand the facial structure of SN

+ .

4.1. Faces of the PSD cone. The facial structure of SN
+ is governed by linear

subspaces parametrizing their kernels. This is discussed at length in [1, §II.12] and
we go over some of the relevant proofs. In particular, we show the following bijection
between linear subspaces of RN and faces of the convex cone SN

+ .

Theorem 4.1. For every linear subspace L ⊆ RN ,

FL =
{
A ∈ SN

+ : L ⊆ ker(A)
}

is a face of the cone SN
+ . Moreover every face SN

+ has this form.

To prove this theorem, we need the following fundamental facts about positive
semidefinite matrices.

Lemma 4.2. For A, B ∈ SN
+ and v ∈ RN ,

(i) vT Av = 0 if and only if Av = 0,
(ii) 〈A, B〉 = 0 if and only if rowspan(B) ⊆ ker(A), and
(iii) ker(A + B) = ker(A) ∩ ker(B).

Proof. For (i), note that we can write the matrix A as a sum of rank-one

matrices, A =
∑d

i=1 uiu
T
i . Then

vT Av =
d∑

j=1

vT uiu
T
i v =

d∑

i=1

(〈ui,v〉)2.

As a sum of nonnegative terms, this equals zero if and only if each term (〈ui,v〉)2 is
zero. In particular, if vT Av is zero, then 〈ui,v〉 = uT

i v is zero for each i, implying
that Av =

∑
i uiu

T
i v is zero. The other direction is clear.



26 CYNTHIA VINZANT

(ii) Similarly if B is positive semidefinite, we can write B =
∑e

j=1 vjv
T
j . Then

〈A, B〉 =
e∑

i=1

〈A,vjv
T
j 〉 =

e∑

j=1

vT
j Avj .

Since A is positive semidefinite, each term vT
j Avj is nonnegative. The sum is zero

if and only if each summand is. By part (i), this occurs if and only if vj ∈ ker(A)
for all j. This shows that the rowspan of B is contained in the kernel of A.

Finally, for (iii), note that any vector in the kernel of both A and B is auto-
matically contained in the kernel of their sum. For the reverse inclusion, suppose
that v belongs to ker(A + B). In particular,

vT (A + B)v = vT Av + vT Bv = 0.

Since A, B ∈ SN
+ , both summands are nonnegative, implying that they are both

zero. Then by (i), v belongs to the kernel of both A and B. !

Now we are ready to prove the theorem characterizing faces of SN
+ .

Proof of Theorem 4.1. For the first statement, suppose that A, B ∈ SN
+

and λA + µB ∈ FL for some λ, µ > 0. Then

L ⊆ ker(λA + µB) = ker(λA) ∩ ker(µB) = ker(A) ∩ ker(B).

The subspace L belongs to the kernels of both A and B, meaning that A, B ∈ FL.
This shows that FL is a face of SN

+ .
Now suppose that F is any face of SN

+ . Let X ∈ F be a matrix of maximal
rank in F and let L = ker(X). First we claim that F ⊆ FL. To see this, let A be
any element of F . Since F is a convex cone, A + X also belongs to F and so, by
assumption, the rank of A + X cannot be larger than that of X. In particular, the
dimension of the kernel of A + X cannot be smaller than the dimension of ker(X).
Lemma 4.2 then implies that ker(A) ∩ ker(X) = ker(X), meaning that the kernel
of A contains L = ker(X).

To show the reverse inclusion FL ⊆ F , let B ∈ FL. We claim that for suffi-
ciently large λ ∈ R+, the matrix A = λX − B is positive semidefinite. To see this,
consider the linear space L⊥ consisting of vectors v with 〈u,v〉 = 0 for all u ∈ L
and the compact set

S =
{
v ∈ L⊥ : ||v||2 = 1

}
.

Since X is positive semidefinite, the function v *→ vT Xv is nonnegative on S.
Moreover, its minimum over X must be strictly positive, since no vector in S can
belong to L = ker(X). Let m be this minimum. Similarly, the function v *→ vT Bv
is nonnegative and attains some maximum M on S. For λ > M/m, the function
v *→ vT (λX − B)v is positive on S. Indeed we check that

vT (λX − B)v = λ(vT Xv) − (vT Bv) ≥ λm − M > 0.

By scaling, we see that this function is nonnegative for all v ∈ L⊥. Note that any
vector x ∈ RN can be written as u + v where u ∈ L and v ∈ L⊥. If A = λX − B,
then, by assumption, u belongs to the kernel of A. This gives that

xT Ax = uT Au + 2vT Au + vT Av = vT Av ≥ 0.

Now we have A, B ∈ SN
+ with A + B = λX ∈ F . Since F is a face of SN

+ , it follows
that both A and B belong to F . This shows FL ⊆ F , as desired. !
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Corollary 4.3. Every face of SN
+ is exposed.

Proof. By the above theorem, it suffices to show that for any subspace L ⊂
RN , the face FL is exposed. Let B be a positive semidefinite matrix whose
rowspan equals L. To construct such a matrix, we can, for example, take a set
of vectors v1, . . . ,vd spanning L and consider the positive semidefinite matrix
B =

∑d
i=1 viv

T
i . By Lemma 4.2, a matrix A ∈ SN

+ satisfies 〈A, B〉 = 0 if and
only if rowspan(B) = L ⊆ ker(A). This shows that the face FL is exposed by the
linear function 〈·, B〉. !

This theorem shows that every face of SN
+ is linearly isomorphic to Sk

+ for some
k ≤ N . Given a linear space L ⊆ RN of dimension d, consider an invertible N ×N
matrix U whose last d columns span L. That is, for any vector x of the form (0,v)
with v ∈ Rd, Uv ∈ L. Then X *→ UT XU is an invertible linear transformation on
SN with the property that

A ∈ FL ⇔ UT AU =

(
Ã 0
0 0

)
for some Ã ∈ SN−d

+ .

This shows that FL is linearly isomorphic to the cone SN−d
+ .

4.2. Faces of spectrahedra. Many nice properties of SN
+ are inherited by

spectrahedra. The first of which is that faces are characterized by kernels.

Theorem 4.4. Every face of a spectrahedron S ⊂ SN
+ has the form

F = {A ∈ S : L ⊆ ker(A)}
for some linear space L ⊆ RN . That is, F = S ∩ FL, as in Theorem 4.1.

Here we need to refer to the relative interior of a convex set. Given a convex
set S ⊂ Rn, the relative interior of S, denoted ri(S), is the interior of S within
its affine span. By [4, Theorem I.5.6], given a closed convex set S and a face F
containing a point x, F is the smallest face of S containing x if and only if x belongs
to the relative interior of F .

Lemma 4.5. Given a closed convex set S and an affine linear space L in Rn,
every face F of S ∩ L has the form F̃ ∩ L for some face F̃ of S. Moreover if F̃ is
an exposed face of S then F̃ ∩ L is an exposed face of S ∩ L.

Proof. One can check that for every face F̃ of S, the intersection F̃ ∩ L is a
face of S ∩ L and we leave this to the reader.

Let x be a point in the relative interior of F and let F̃ be the smallest face of
S containing x. Then by [4, Theorem I.5.6], x belongs to the relative interior of F .
We claim that x then belongs to the relative interior of F̃ ∩L. Let v be a vector so
that x+λv belongs to the affine span of F̃ ∩L for all λ ∈ R. It suffices to show that
for sufficiently small ε > 0, x + εv belongs to F̃ ∩ L. By assumption, it belongs to
L. Moreover, the affine span of F̃ ∩ L is contained in that of F̃ , so x + λv belongs
to the affine span of F̃ for all λ ∈ R. Since x belongs to the relative interior of F̃ ,
there is some ε > 0 so that x + εv ∈ F̃ , which proves the claim.

Since x belongs to both the relative interiors of the faces F and F̃ ∩L of S ∩L,
they are both the smallest face of S containing x and therefore must be equal.
Finally, if ! : Rn → R is a linear function exposing the face F̃ of S, then the same
linear function exposes the face F of S ∩ L. !
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Figure 11. A non-exposed face of {(a, b) ∈ R2 : t4 + at2 + b ∈ P1,≤4}.

Proof of Theorem 4.4. A spectrahedron has the form S = L∩SN
+ for some

affine linear space L ⊂ SN . By Lemma 4.5, any face of S is the intersection of a face
of SN

+ with L. The characterization in Theorem 4.1 then completes the proof. !
An immediate corollary of this is the theorem of Ramana and Goldman [13]

that spectrahedra are facially exposed:

Corollary 4.6. Every face of a spectrahedron is exposed.

One interesting application is that the cone of nonnegative univariate polyno-
mials of degree ≤ 4 is not a spectrahedron.

Example 4.7. See also [2, Example 3.13]. Consider the convex cone P1,≤4

of polynomials f ∈ R[t] of degree ≤ 4 that are globally nonnegative. We can
show that P1,≤4 is not a spectrahedron by exhibiting an affine linear section of it
with a non-exposed face. Indeed, consider the affine linear space L of polynomials
of R[t]≤4

∼= R5 that are monic of degree 4, with no odd degree terms. That is
L = {t4 + at2 + b : a, b ∈ R}. Note that f(t) = t4 + at2 + b is nonnnegative for
all t ∈ R if and only if the quadratic polynomial p(t) = t2 + at + b is nonnegative
on R≥0. This happens if and only if a, b ≥ 0 or a2 ≤ 4b. The point (a, b) = (0, 0)
is a non-exposed face of the set {(a, b) : a, b ≥ 0 or a2 ≤ 4b} ∼= L ∩ P1,≤4, seen
in Figure 11. By Lemma 4.5, the polynomial f = t4 corresponding to this point
belongs to a non-exposed face of the convex cone P1,≤4. Therefore P1,≤4 cannot be
written as a spectrahedron.

4.3. The Pataki range. The minimum of a linear function over a compact,
convex set is always achieved at an extreme point. When this set is a spectrahedron,
then the extreme point will be associated to a matrix of some rank. Such a point
belongs to the boundary, and so this matrix necessarily drops rank. In fact it must
satisfy much stronger inequalities. For spectrahedra obtained from generic affine
linear spaces, the ranks must belong to what is often called the Pataki range, due
to its introduction by Gabor Pataki in [12].

Theorem 4.8 (Pataki range). Let A0, . . . , Am ∈ SN be linearly independent
over R and consider the spectrahedron S = {x ∈ Rm : A(x) " 0} where A(x) =
A0 +

∑m
i=1 xiAi. If x̂ is an extreme point of S and r is the rank of A(x̂), then

(
r + 1

2

)
+ m ≤

(
N + 1

2

)
.

Furthermore, for generic A0, . . . , Am, additionally m ≥
(N−r+1

2

)
.

Proof. Suppose that x̂ is an extreme point of S and r is the rank of A(x̂).
Let L denote the kernel of A(x̂), which has dimension N − r. Then the matrix
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A(x̂) belongs to the relative interior of the face FL of SN
+ . The intersection of FL

with the affine space parametrized by A(x) is a face of S containing A(x̂), meaning
that it must be just one point. Since FL is linearly isomorphic to Sr

+, a dimension
count then shows that

m = dim({A(x) : x ∈ Rm}) ≤ codim(FL)

= dim(SN ) − dim(FL) =

(
N + 1

2

)
−
(

r + 1

2

)
.

For the second statement, note that the set Vr of matrices of rank ≤ r is a
real variety of codimension

(N−r+1
2

)
in SN . In particular, a generic affine space of

dimension m <
(N−r+1

2

)
does not intersect Vr. Therefore for generic A0, . . . , Am

where m <
(N−r+1

2

)
, there is no x ∈ Rm for which A(x) has rank ≤ r. !

For N = 4 and m = 3, this states that the rank r of any extreme point satisfies(r+1
2

)
≤

(4+1
2

)
− 3 = 7. This holds for r = 1, 2, 3, which tells us only that the 4× 4

matrix is not full rank. For generic matrices, we find additionally that 3 ≥
(5−r

2

)
,

which implies that r ≥ 2. In this case the Pataki range is {2, 3}.
For higher m, the upper bound on r becomes more restrictive. If N = 4 and

m = 5, then
(r+1

2

)
≤

(4+1
2

)
− 5 = 5, giving r = 1, 2. In this case, there are never

extreme points of corank one. Indeed, an asymptotic view shows that this is often
the case. The dimension of SN as a real vector space is

(N+1
2

)
, which is the natural

upper bound on m. If we consider m ≈ 1
2

(N+1
2

)
, then the given upper bound on(r+1

2

)
is ≈ 1

2

(N+1
2

)
, which translates to an upper bound on r of ≈ N/

√
2. Therefore

the top rank of an extreme point can be much less than N − 1.

Example 1.3 cont’d. For our running example, we have N = 4 and m = 3.
There is a curve segment worth of extreme points, x = (cos(θ), cos(2θ), cos(3θ)) for
θ ∈ [0,π]. In the interior of this curve, for θ ∈ (0,π), the corresponding matrix has
rank two and at the two endpoints, θ ∈ {0,π}, the matrix has rank one.

These ranks satisfy Pataki’s inequalities, but we see that their behavior is non-
generic. In particular, there are extreme points of rank one and no extreme points
of rank three. Taking a wider view though, this example can provide a good mental
image of spectrahedra in higher dimensions – most of the points on the boundary are
not extreme points and the spectrahedron is the convex hull of a low-dimensional
part of its boundary. However, it still exhibits infinite families of faces. .

It is not difficult to show that each rank in the Pataki range appears as the
rank of extreme points for some full-dimensional set of matrices A0, . . . , Am ∈ SN .
However examples achieving all of the ranks simultaneously were only discovered
recently by Claus Scheiderer [17]. These examples come from Gram spectrahedra
of sums of squares, which provide a fruitful class of examples on which to explore
Pataki’s inequalities.

4.4. Gram spectrahedra of univariate polynomials. Let f ∈ R[t]≤2d be
a positive polynomial of degree at most 2d, and consider the spectrahedron

Gram+(f) =
{

G ∈ Sd+1
+ : f =

(
1 t t2 . . . td

)
G
(
1 t t2 . . . td

)T
}

.

As first noted by Choi, Lam, and Reznick [5], this spectrahedron provides a concise
way of encapsulating the representations of the polynomial f as a sum of squares.
This will be explored in greater detail in Section 5.
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Figure 12. The Gram spectrahedron of 1 + t6 from Example 4.10.

As shown in [6], the ranks of the extreme points of Gram+(f) are exactly the
ranks belonging to the corresponding Pataki range. Each of the 2d + 1 coefficients
of f impose linearly independent conditions on the matrix G. If the spectrahedron
Gram+(f) contains a positive definite matrix, then it has codimension 2d + 1 in
Sd+1

+ and dimension m =
(d+2

2

)
− (2d + 1) =

(d
2

)
. For a generic positive polynomial

f ∈ R[t]≤2d, the ranks r of the extreme points of Gram+(f) satisfy
(

r + 1

2

)
≤ 2d + 1 and

(
d

2

)
≥

(
d + 2 − r

2

)
.

This gives that the Pataki interval is 2 ≤ r ≤ 9(−1 +
√

16d + 9)/2:. The beautiful
classical fact that every nonnegative polynomial in R[t] is a sum of two squares
shows that the lowest rank two is always achieved. Indeed, if f = g2 + h2 where
g, h ∈ R[t]≤d, then we can write g = mT

d &g and h = mT
d
&h, where &g, &h ∈ Rd+1 are

the coefficient vectors of g and h, respectively, and mT
d =

(
1 t t2 . . . td

)
. The

positive semidefinite rank-two matrix &g&gT + &h&hT belongs to Gram+(f) and is an
extreme point so long as f is not a single square.

In [17], Scheiderer shows that in fact every rank in the Pataki range is achieved
by an extreme point of such a Gram spectrahedron.

Theorem 4.9. [17] Let f ∈ R[t]≤2d be a generic, positive polynomial of de-
gree 2d. Then the ranks of the extreme points of Gram+(f) are exactly the ranks
belonging to the Pataki range.

Example 4.10 (d = 3). Consider the univariate polynomial f = t6 + 1. The
set of matrices G ∈ S4 for which mT

3 Gm3 = f is an affine space of dimension
3 =

(5
2

)
− 7. Parametrizing this affine linear space by (a, b, c) ∈ R3 gives

Gram+(f) =










1 0 −a −b
0 2a b −c
−a b 2c 0
−b −c 0 1



 ∈ S4
+ : (a, b, c) ∈ R3





.

It contains four points of rank two given by (a, b, c) = (0, 0, 0), 1
2 (1, ±

√
3, 1), (2, 0, 2).

The first corresponds to the expected decomposition as a sum of two squares f =
(1)2 + (t3)2. The last gives the representation f = (1 − 2t2)2 + (2t − t3)2.

The spectrahedron Gram+(f) is shown in Figure 12. As this spectrahedron
is not the convex hull of its four extreme points of rank-two, there must also be
extreme points of higher rank. Indeed, the remainder of the boundary consists of
extreme points of rank three. Therefore the spectrahedron Gram+(f) achieves all
ranks (r = 2, 3) of the Pataki range. .
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5. Moment problems and sums of squares

One important application of the theory of semidefinite programming is to
polynomial optimization, which is the problem of optimizing a polynomial func-
tion over a semialgebraic set. In many cases, this can be reformulated as a convex
optimization over the convex cone of nonnegative polynomials. For example, to
maximize the value of a polynomial f(x) over x ∈ Rn, one could instead minimize
the value of λ for which the polynomial λ−f(x) belongs to the cone of nonnegative
polynomials. This cone often proves intractable to work with, and so we consider a
cone of “certifiably nonnegative” polynomials, namely sums of squares, in its place.
The benefit (and a justification for a chapter on spectrahedra within these lecture
notes) is that the cone of sums of squares is the image of the cone of positive semi-
definite matrices under a linear map. Therefore one can approximate the solution
to a polynomial optimization problem by solving a semidefinite program.

When these approximations are exact (i.e. when they give the correct solu-
tion for every objective function), the convex hull of the semialgebraic set being
optimized over can be written as a spectrahedral shadow. This is true for many
semialgebraic sets and was conjectured to hold for general semialgebraic sets in [9].
There are now several counterexamples to this conjecture, known as the Helton-
Nie conjecture, discussed further below. These counterexamples come from various
convex cones of nonnegative polynomials.

In the real vector space R[x1, . . . , xn]≤2d of real polynomials of degree ≤ 2d,
consider the two convex cones

Σn,≤2d =

{
k∑

i=1

h2
i : k ∈ N, hi ∈ R[x1, . . . , xn]≤d

}
, and

Pn,≤2d = {f ∈ R[x1, . . . , xn]≤2d : f(p) ≥ 0 for all p ∈ Rn} .

The cone Σn,≤2d of sums of squares is used as a tractable inner approximation
of Pn,≤2d. Moreover, one can realize this as a projection of SN

+ .

Proposition 5.1. The convex cone Σn,≤2d is the image of SN
+ under the map

X *→ mT
d Xmd,

where the entries of md form a basis for R[x1, . . . , xn]≤d over R and N =
(n+d

d

)
.

Proof. Suppose that f ∈ R[x1, . . . , xn]≤2d is a sum of squares f =
∑k

i=1 g2
i

where gi ∈ R[x1, . . . , xn]≤d. We can write each polynomial as gi = &gT
i md for some

real vector &gi ∈ RN . Consider the positive semidefinite matrix G =
∑k

i=1 &gi&gT
i in

SN . Then

mT
d Gmd =

k∑

i=1

mT
d &gi&g

T
i md =

k∑

i=1

(&gT
i md)

2 =
k∑

i=1

g2
i ,

showing that f =
∑k

i=1 g2
i belongs to the image of SN

+ .
Conversely, suppose f = mT

d Gmd for some positive semidefinite matrix G in

SN
+ . We can write G =

∑k
i=1 &gi&gT

i for some vectors &gi ∈ RN . Then the above
equation shows that f is a sum of squares

∑
i g2

i where gi = &gT
i md. !

By definition Pn,≤2d is the cone of polynomials on which all linear functions
{evp : p ∈ Rn} are nonnegative, where for f ∈ R[x1, . . . , xn]≤2d, evp(f) = f(p).
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Therefore the cone Pn,≤2d is dual to the conical hull of the set of these point
evaluations. Taking duals again, we find that

P ∗
n,≤2d = conicHull

{
evp ∈ R[x1, . . . , xn]∗≤2d : p ∈ Rn

}
.

By a classical theorem of Haviland [8], this can also be seen as the set of linear
functions f *→

∫
f dµ obtained by integration with respect to a nonnegative Borel

measure on Rn. In order to specify this linear function, it suffices to give its values
on the monomial basis {xα1

1 · · · xαn
n : α ∈ Nn, |α| ≤ 2d} of R[x1, . . . , xn]≤2d. Here |α|

denotes α1 + . . . +αn. Therefore we can identify P ∗
n,≤2d with the cone of moments

P ∗
n,≤2d

∼=

{(∫
xα1

1 · · · xαn
n dµ

)

|α|≤2d

: µ a nonnegative Borel measure on Rn

}

= conicHull
{

(pα1
1 · · · pαn

n )|α|≤2d : p ∈ Rn
}
.

Since duality reverses inclusion, the dual cone to the sums of squares cone is an
outer approximation of this cone

P ∗
n,≤2d ⊆ Σ∗

n,≤2d.

Since the sums of squares cone is the image of the cone of positive semidefinite ma-
trices under a linear map, it follows from Proposition 3.3 that Σ∗

n,≤2d is a spectra-
hedron. If the nonnegative measure µ is a probability measure, that is

∫
1 dµ = 1,

then the linear function ! ∈ P ∗
n,≤2d given by !(f) =

∫
fdµ is the expectation of

f . Elements of the cone Σ∗
n,≤2d that take value one on the constant polynomial

1 ∈ R[x1, . . . , xn]≤2d are sometimes called pseudo-expectations.
Every nonnegative polynomial in one variable is a sum of squares, which means

that the dual cones Σ∗
1,≤2d and P ∗

1,≤2d are equal.

Example 5.2. (n = 1, d = 2) Choosing the basis {1, t, t2, t3, t4} for R[t]≤4

identifies the point evaluation evp for p ∈ R with the point (1, p, p2, p3, p4) ∈ R5

and identifies the cone P ∗
1,≤2d with the conic hull of these points. On the other

hand, the cone Σ1,≤4 is the image of the cone S3
+ under the linear map

X *→
(
1 t t2

)
X

(
1 t t2

)T
=

4∑

k=0

〈Ak, X〉tk

where Ak is the real symmetric matrix with entries (Ak)ij = 1 for i+ j −2 = k and
(Ak)ij = 0 otherwise. The dual cone Σ∗

1,≤4 is then linearly isomorphic to the inter-
section of the linear space spanR{A0, . . . , A4} and the positive semidefinite cone S3

+.
All together this represents the conic hull of point evaluations as a spectrahedron:

conicHull{(1, p, p2, p3, p4) : p ∈ R} =




(y0, . . . , y4) ∈ R5 :




y0 y1 y2

y1 y2 y3

y2 y3 y4



 " 0




 .

.

From the equality of Σ∗
1,≤2d and P ∗

1,≤2d, we immediately get that the convex
hull of any curve parametrized by univariate polynomials is a spectrahedral shadow.
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conv{γ(t) : t ∈ R}

Figure 13. The convex hull of the curve in Example 5.3.

Example 5.3. Consider the curve in R2 parametrized by γ(t) = (t, t4−2t2+1).
The convex hull of this curve is shown in Figure 13. This set is not a spectrahedron,
as it has a non-exposed face, but it is a spectrahedral shadow:

conv{γ(t) : t ∈ R} =




(a, b) ∈ R2 : ∃y2, y3 ∈ R s.t.




1 a y2

a y2 y3

y2 y3 b + 2y2 − 1



 " 0




 .

To see this, note that the convex hull conv{γ(t) : t ∈ R} equals is image of the
convex hull conv{(1, t, t2, t3, t4) : t ∈ R} = Σ∗

1,≤4 ∩ {y0 = 1} under the affine linear
map (1, y1, y2, y3, y4) *→ (y1, y4 − 2y2 + 1). Solving y1 = a and b = y4 − 2y2 + 1 for
y1 and y4 gives the representation above. .

In fact, sums of squares give a good approximation for nonnegative polynomials
on any curve. Considering linear polynomials that are nonnegative on a variety as
sums of squares gives the following:

Theorem 5.4 ([15]). The convex hull of any real algebraic curve is a spectra-
hedral shadow.

This was originally evidence for the Helton-Nie conjecture that every convex
semialgebraic set could be written as the projection of a spectrahedron. This con-
jecture was disproved by Scheiderer in 2016.

Theorem 5.5 ([16]). Not every convex, semialgebraic set is a spectrahedral
shadow. In particular, the set of nonnegative polynomials of degree ≤ 6 in three
variables, P3,≤6 is not a spectrahedral shadow.

Building off of these techniques, Hamza Fawzi showed that P2,≤6 and P3,≤4 are
also not spectrahedral shadows [7]. From this, one can show that the cone Pn,≤2d is
not a spectrahedral shadow for all (n, 2d) with n ≥ 2 and 2d ≥ 6 or with n ≥ 3 and
2d ≥ 4. Moreover, these are the minimal cases of (n, 2d) in which this is possible.

For d = 2, n = 1, and (n, 2d) = (2, 4), a classical theorem of Hilbert states
that every nonnegative polynomial in R[x1, . . . , xn]≤2d can be written as a sum
of squares, i.e. Σn,≤2d = Pn,≤2d. By Proposition 5.1, Σn,≤2d is the image of
SN

+ under a linear map. Therefore in the Hilbert cases, it follows that the cone
Σn,≤2d = Pn,≤2d is the image of SN

+ under a linear map. Using Proposition 3.3,
it follows that Σ∗

n,≤2d = P ∗
n,≤2d is a spectrahedron. All together, this provides a

complete characterization of the pairs (n, 2d) for which the cone of nonnegative
polynomials Pn,≤2d is a spectrahedron or spectrahedral shadow.

Proposition 5.6. For n, d ∈ Z+, consider the cones Pn,≤2d of nonnegative
polynomials in R[x1, . . . , xn]≤2d and its dual cone P ∗

n,≤2d. Then
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• both Pn,≤2 and P ∗
n,≤2 are spectrahedra,

• for n = 1 and (n, 2d) = (2, 4), P ∗
n,≤2d is a spectrahedron and Pn,≤2d is a

spectrahedral shadow but not a spectrahedron, and
• in all other cases, neither Pn,≤2d nor P ∗

n,≤2d is a spectrahedral shadow.

Proof. For the first, notice that any quadratic polynomials q ∈ R[x1, . . . , xn]≤2

can be uniquely represented as (1,x)Q(1,x)T for a real symmetric matrix Q ∈ Sn+1.
Moreover q is nonnegative if and only if Q is positive semidefinite. Therefore Pn,≤2

is linearly isomorphic to the cone Sn+1
+ , and by the self-duality of Sn+1

+ , so is P ∗
n,≤2.

For n = 1 and (n, 2d) = (2, 4), the cones Σn,≤2d and Pn,≤2d are equal. As
explained in detail above for (n, d) = (1, 2), the cone Σn,≤2d is the image of the
positive semidefinite cone under a linear map, meaning that the dual cone Σ∗

n,≤2d =
P ∗

n,≤2d is spectrahedral. For n ≥ 1 and d ≥ 2, the cone P1,≤4 is linearly isomorphic
to a face of Pn,≤2d, so Example 4.7 shows that Pn,≤2d has a non-exposed face and
therefore cannot be written as a spectrahedron.

Finally the results of Scheiderer [16] and Fawzi [7] show that in all other cases,
Pn,≤2d is not a spectrahedral shadow. Because the class of spectrahedral shadows is
closed under duality, as seen in Proposition 3.4, neither is the dual cone P ∗

n,≤2d. !
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