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Abstract

Policy-makers and other stakeholders are increasingly asking for probabilistic

predictions for future climate. In order to provide these we need to understand

how climate predictions are made, and to identify and quantify the key sources of

uncertainty. In practice it is also necessary to address some misconceptions

about probability, and about ‘objectivity’: a concept which is ill-conceived in this

context.

What does this mean:

“The chance of the Gulf Stream, which brings warm waters around the British

Isles, being halted, sending temperatures plummeting by more than 5C, is now

more than 50%, a scientific conference on climate change was told yesterday.”

Paul Brown, Guardian, Wednesday February 2 2005 [source]
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Climate prediction

Climate prediction is an example of Model-Based Inference for Complex Systems

(M-BICS). Statisticians have been studying this subject for about 25 years, but are only

just beginning to tackle the really challenging problems.

‘Challenge’ in M-BICS applications can broadly be classified by (1) size of model;

(2) model inadequacy; and (3) policy impact. Climate prediction scores highly on all

three.

Our initial contribution to Climate Science is to clarify the nature of the inference, and

to highlight some of the undesirable features of current practice.

Sources of uncertainty:

1. Measurement errors in climate observations;

2. The relationship between the climate model and the climate itself;

3. Budget constraints limiting the number of model evaluations.

None of these is easy to quantify, but (1) and (3) are at least well-understood by

statisticians; (2) requires some deep thinking . . .
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So what’s going on?

Basic quantities:

y ,
`

yh, yf

´

Operationally-defined climate quantities; partitioned into ‘his-

torical’ and ‘future’;

z Measurements made on yh;

e , z − yh ‘Measurement error’.

We can write z ≡ yh + e, and a distribution for (y, e) induces a distribution for (y, z).

We make structural choices to define the framework within which we make our

inference, and tractability choices to simplify the resulting elicitation and computation:

e ⊥⊥ y (S1)

e ∼ Gau(0, Σe) Σe specified; (T1)

Σe, the measurement error variance, has an interesting hierarchical structure that

depends on type of instrument, instrument ID, and proximity (e.g., spatio-temporal).

/ · · ·
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So what’s going on? (cont)

To predict yf we condition on the observed value of the climate data, z= z̃:

Pr(y | z= z̃) = c Pr(z= z̃ | y) Pr(y) Bayes’s theorem

= c Pr(e=yh − z̃ | y) Pr(y) by definition

= c Pr(e=yh − z̃) Pr(y) using (S1)

= c ϕ(yh − z̃;0, Σe) Pr(y) using (T1)

where c , Pr(z= z̃)−1, and ϕ(·) is the gaussian density function with given mean and

variance.

In this calculation we need to specify Pr(y) in order to predict yf ; in the optimistic case

where we have lots of climate data we might be able to get away with only needing to

specify Pr
`

yf | yh

´

.

But y has many thousands of components, indexed by space, time and type, with a

complicated interdependency reflecting the climate state vector’s evolution in space

and time according to ‘laws of nature’.
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The inferential role of the climate model

A climate model is a means of inducing a distribution for y by elaboration from a

simpler set of uncertain primitive quantities.

The climate model is a deterministic function

x → g(x)

where the model-inputs x ∈ X are a collection of:

1. Parameters in the underlying mathematical model;

2. Initial value for the climate state vector;

3. Forcing functions (typically boundary conditions).

The image of X is G , {g(x), x ∈ X}.

If we want to link our climate model with the climate itself, we must take account of our

uncertainty about the appropriate setting for the model-inputs. Even where these

model-inputs are operationally defined, it does not follow that the system value is the

right value in the model.
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A hierarchy of linkages

What are we prepared to believe about the relationship between our model g(·) and

the climate it purports to represent, y?

1. Wow! There exists a ‘correct’ value x̂ ∈ X such that y = g(x̂), and x̂ is known.

2. Phew! There exists a ‘correct’ x̂ as above, but its value is uncertain.

These are generally unreasonable; any point in G is a simplification of climate in the

same way that g(·) is a simplification of the processes that are involved in climate. It’s

hard to believe that y ∈ G.

We can believe only that a ‘best’ value x∗ exists (uncertain), and we define the model

discrepancy

ε∗ , y − g(x∗).

We do not believe or assert that ε∗ = 0 a.s..

Now we have y ≡ g(x∗) + ε∗. A distribution for (x∗, ε∗), when combined with the

model g(·), induces a distribution for y.
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Digression: why aren’t climate models better?

The underlying model comprises (1) differential equations that conserve quantities

through space and time; (2) equations of state that constrain how these quantities

appear at any instance of space and time; and (3) coupling equations to join all the

sub-models together.

Our understanding of both (2) and (3) leaves a lot to be desired.

Only modelling a subset of the earth introduces tricky boundary conditions. It is much

better to model the whole of the earth, which we can treat as a closed system subject

to solar forcing. But computing power currently limits the resolution of our finite

difference solvers. The result is a mesh-size that is ∼100 km with current technology.

Features smaller than this would be missed, and unfortunately they are important

(e.g., turbulence, which is involved in vertical mixing). They get put back in ‘by hand’.
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The ‘best input’ treatment of model inadequacy

Time for some more structural and tractability choices:

x∗ ⊥⊥ ε∗ ⊥⊥ e (S1′)

ε∗ ∼ Gau(0, Σε) Σε specified (T2)

nb: (S1′) ⇒ (S1), because given g(·), y is a deterministic function of x∗ and ε∗.

The diagonal components of Σε represent model-inadequacy. The off-diagonal

components represent systematic patterns in the model-error, and would typically have

a spatio-temporal structure within component-type.

There are situations where we would like to relate uncertainty about ε∗ to x∗. A

generalisation of the link between g(·) and y of the form

y = g(x∗) + Q(x∗)T ε∗ Q(·) specified,

which preserves (S1′), can be useful in this case.
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Model validation

Model validation: Is the model about as good as we think it is?

Our primitives are g(·), Pr(x∗), Σε and Σe.

The natural diagnostic would be to compare the data z= z̃ with its predictive

distribution:

Pr(z) =

Z

Pr(z | x∗) Pr(x∗) dx∗ ‘law of total probability’

=

Z

Pr
`

ε∗h + e=z − gh(x∗) | x∗
´

Pr(x∗) dx∗ by definition

=

Z

Pr
`

ε∗h + e=z − gh(x∗)
´

Pr(x∗) dx∗ using (S1′)

=

Z

ϕ
`

z − gh(x∗);0, Σε
hh + Σe

´

Pr(x∗) dx∗ using (S1′), (T1) and (T2).

Diagnostics would be based on Pr(z ≤ z̃). Physically-meaningful subsets of z could

also be used to ‘drill down’ to identify systematic problems.

Uncertainty and Climate: A Statistician’s View – p. 10/16



Model Calibration

Model calibration is learning about x∗ using z= z̃:

Pr(x∗ | z= z̃) = c Pr(z= z̃ | x∗) Pr(x∗) Bayes’s theorem

= c Pr(ε∗h + e= z̃ − gh(x∗) | x∗) Pr(x∗) by definition

= c ϕ
`

z̃ − gh(x∗);0, Σε
hh + Σe

´

Pr(x∗) using (S1′), (T1) and (T2)

where c , Pr(z= z̃)−1 as before.

Model calibration should not be confused with tuning: trying to find an x ∈ X that

minimises some metric defined on z̃ − gh(x). All big computer models are tuned in this

way. But:

We have to decide (1) what metric to use; and (2) what to do in the case of

multiple ‘good’ choices, or no ‘good’ choices.

The probabilistic approach answers: (1) the metric may be inferred from our

judgements, e.g., about ε∗
h

and e (see above); and (2) we average over candidate

values for x∗ giving more weight to those that fit better (see below).

Uncertainty and Climate: A Statistician’s View – p. 11/16



Model Calibration

Model calibration is learning about x∗ using z= z̃:

Pr(x∗ | z= z̃) = c Pr(z= z̃ | x∗) Pr(x∗) Bayes’s theorem

= c Pr(ε∗h + e= z̃ − gh(x∗) | x∗) Pr(x∗) by definition

= c ϕ
`

z̃ − gh(x∗);0, Σε
hh + Σe

´

Pr(x∗) using (S1′), (T1) and (T2)

where c , Pr(z= z̃)−1 as before.

Model calibration should not be confused with tuning: trying to find an x ∈ X that

minimises some metric defined on z̃ − gh(x). All big computer models are tuned in this

way. But:

We have to decide (1) what metric to use; and (2) what to do in the case of

multiple ‘good’ choices, or no ‘good’ choices.

The probabilistic approach answers: (1) the metric may be inferred from our

judgements, e.g., about ε∗
h

and e (see above); and (2) we average over candidate

values for x∗ giving more weight to those that fit better (see below).

Uncertainty and Climate: A Statistician’s View – p. 11/16



Calibrated Prediction

Calibrated prediction is learning about yf using z= z̃:

Pr
`

yf | z= z̃
´

=

Z

Pr
`

yf | x∗, z= z̃
´

Pr(x∗ | z= z̃) dx∗ ‘law of total probability’

=

Z

ϕ(yf ; µf |z(x∗), Σf |z) Pr(x∗ | z= z̃) dx∗ see below

where Pr(x∗ | z= z̃) comes from the calibration distribution and

µf |z(x) , gf (x) + Σε
fh

`

Σε
hh + Σe

´−1`

z̃ − gh(x)
´

,

Σf |z , Σε
ff − Σε

fh

`

Σε
hh + Σe

´−1
Σε

hf ,

based on (y, z) | x∗ being jointly gaussian, according to (S1′), (T1) and (T2).

Relative to Pr(y), most of the reduction in uncertainty comes from concentrating the

distribution for x∗; some also comes from learning about ε∗
f

, provided that Σε
fh

6= 0,

which offers a type of ‘bias correction’ for systematic model discrepancies.
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Computation

Computing the probability of a climate event typically involves a double integral.

For example, let Q be the subset of yf values for which a doubling of atmospheric CO2

causes global mean temperature to increase by at least 2◦C:

Pr
`

yf ∈ Q | z= z̃
´

=

Z

1Q(yf ) Pr
`

yf | z= z̃
´

dyf

=

Z

1Q(yf )

Z

ϕ(yf ; x∗) Pr(x∗ | z= z̃) dx∗ dyf

=

Z Z

1Q(yf ) ϕ(yf ; x∗) dyf

ff

Pr(x∗ | z= z̃) dx∗

≡

Z

f(x∗) Pr(x∗ | z= z̃) dx∗

where ϕ(yf ; x) , ϕ(yf ; µf |z(x), Σf |z), and f(x) ,
R

1Q(yf ) ϕ(yf ; x) dyf .

With our choices (S1′), (T1), and (T2), computing f(x) can be straightforward, and the

challenge is integrating over x∗ with the weighting function Pr(x∗ | z= z̃).

/ · · ·
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Computation (cont)

One simple method is Monte Carlo integration. If

I(n) , n−1
n

X

i=1

f(Xi) Xi
iid
∼ Pr(x∗ | z= z̃)

then limn→∞ I(n) = Pr
`

yf ∈ Q | z= z̃
´

, by the Strong Law of Large Numbers.

But we cannot sample easily from Pr(x∗ | z= z̃) so instead we sample from Pr(x∗)

and then re-weight:

I(n) ,

n
X

i=1

wi f(Xi) Xi
iid
∼ Pr(x∗)

where
wi ∝ Pr(z= z̃ | x∗=Xi)

= ϕ
`

z̃ − gh(Xi);0, Σε
hh + Σe

´
and

n
X

i=1

wi = 1.

Better methods might include importance sampling with variance reduction techniques

like antithetic variables.
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Summary

Here are some questions for climate stakeholders to ask climate scientists, and for climate

scientists to ask each other.

0. Probability. What do your probability statements about future climate represent? Why

should we believe that your probability is a better guide to the future than someone

else’s?

1. Measurements. Do you have exact observations on historical and current climate

data? If not, how have you quantified the measurement errors? (Σe in our treatment.)

2. Model inadequacy. Do you believe your model is so good that that there exists a

model-input x̂ such that y = g(x̂)? If not, how have you quantified the model’s

imperfections? (Σε in our treatment.)

3. The ‘best’ input. How did you elicit ranges for the best model-input? Are the

components probabilistically independent of each other? Are extreme values as likely

as central values? (Pr(x∗) in our treatment.)

/ · · ·
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Summary (cont)

4. Computation. How did you compute your probability? What uncertainty do you have

about your estimate? [Possible follow-up: Isn’t it rather reckless to use a random

design if the model evaluations are very expensive?]

P.S. Craig, M. Goldstein, J.C. Rougier and A.H. Seheult (2001), Bayesian Forecasting for
Complex Systems Using Computer Simulators, Journal of the American Statistical
Association, 96, 717-729.

M. Goldstein and J.C. Rougier (2005), Probabilistic Formulations for Transferring Inferences
from Mathematical Models to Physical Systems, SIAM Journal on Scientific Computing, 26,
467-487.

M. Goldstein and J.C. Rougier (2005), Reified Bayesian Modelling and Inference for Physical
Systems, Journal of Statistical Planning and Inference, forthcoming as discussion paper.

M. Goldstein and J.C. Rougier (2005), Bayes Linear Calibrated Prediction for Complex
Systems, Journal of the American Statistical Association, forthcoming.

J.C. Rougier (2005), Probabilistic Inference for Future Climate Using an Ensemble of Climate
Model Evaluations, Climatic Change, forthcoming.
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