7 Discounting
7.1 Stochastic shifting

Consider the generic DLM

yr = F{0; 4+ vy ve ~ (0, Vi)
0,5 = Gt ot_l +wt Wt ~ <0, Wt>

in the case where n, the length of the state vector, is greater than 1. This
is not as unambiguous as it looks. The interpretation of the state vector
f; and the state equation error variance W; are intimately linked.

Suppose we have a random vector quantity
et ~ (0, Uy)

where ¢€; is uncorrelated with all other disturbances (i.e. all the v and w
terms) and Uy is chosen to have the property that Var [F; Te;] = FJU; Fy =
0. By construction we must have F;e; = 0 with probability one.

Now take our DLM and add a bit of extra variance to the state equation

in the form of Gy e;_1, to give

Yy = F[0y + v,
0 =G 01+ (we +Gre—q)

or, if we define a new state vector ¥; := 0; + €,

ye = Fl + 1y
Yy = Gehy—1 + wy

where w; = wi + €; ~ (0, W; + U;). Note that we have added FJe; to
the observation equation as well, but this doesn’t change anything by
construction. From this you an see that a model described by the set

{F;, Vi, Gt, W/} can be represented an uncountable number of different

ways with different state vectors by making different choices for W; and
Uy, where W] = W, + Uy.

So perhaps we can ignore this ambiguity in practice, if the chances of
finding a U, satistying Var [F]¢;] = 0 are small. Unfortunately we can
always find a U; that fits the bill, providing n > 2. Here’s one way, where
we drop the t subscripts for convenience. Partition € as € = [¢/ | €,], where
€ :=(e1,...,en—1) ~ (0, Uy) for arbitrary (n—1) x (n—1) variance matrix
U:. Define

€'rL:_(.]6161"‘V_"'""f'nfl67171)/fn = ire,

where F' = (f1,..., fn)". This ensures that Var[FT¢] = 0, as required.
We see that E[e] = 0 and

U := Var [¢] Ui Ui iy
= €l = .
FU, FIU, F

For example, if F' = (1,1)" then F; = —1. Setting U; = u > 0, we must

have
1 -1
U=u .

As wu is an arbitrary positive scalar there are any number of U matrices
that fit the bill, and likewise any number of state vectors that give rise to

the same DLM.

7.2 Discounting

The moral of the previous subsection is that W; is tricky. It is also the
most difficult quantity to elicit in practice. For these and other reasons
(see West and Harrison, 1997, pp. 194-5), a practical strategy for avoiding
the complications of specifying W; has been developed. This is known

‘discounting’.



At time ¢t —1 we have 6;_1 | Dy—1 ~ (my_1, Ct_1). The value W; enters
into the determination of R; = Var [0, | Dy—1]:

Rt = Gt Ct—l (Gt)T + Wt = Pt + Wt where Pt = Gt Ct—l (Gt)T.

Clearly R, > P,.! The bigger that W, is, the more that R; exceeds P;.
This has lead to the ‘short-cut’ in which W; is dropped and the relation
between R; and P, is specified directly through a discount factor § € (0, 1]:

1
Rt - gPt (1)

Small values of § indicate that there is a lot of uncertainty about the

evolution of the state vector. We can solve for the implicit value of W; as

Typically we choose values for ¢ in the range [0.9,0.99], although we

should pay close attention to diagnostics to alert us to a poor choice.

From a given starting point Cy we can compute Wi, Ws, ... directly,
without reference to the data y1, s, ..., because the updating equations
for C; do not depend upon the data. Therefore with this modification
we do not violate the structure of our graph of the DLM, on which all
our analysis is based. For adjusting by new data we simply use (1) to
compute R; for a given choice of ¢ (which we might choose to allow to
vary in time as well). For filtering we use the implicit value for W; given
in (2).

For forecasting we have to be a little more subtle. Suppose, for sim-

plicity, that the DLM is time-invariant. In this case we can easily show

If A and B are both non-negative definite symmetric (NNDS) matrices then we say
that A > B if A= B + C for some C where C is also NNDS.

that
Ry(k) :=Var [0, | Dy] = ZGZ )T+ GECL(GRY. (3)

1=0

What happens instead if we use discounting? Setting
Py = GR:(k—1)G",
as seems natural, we find that
Ru(K) = GR(k = 1)G7 + Wiy = Pry + Werk = <Pryi
By successive back-substitution we can get down to

1
Ry(k) = g(GRt( -1)G") =+ ykaCt (GM)". (4)
This shows that the information in C; decays exponentially as we go
forwards in the forecast. Clearly (4) is not consistent with the usual
behaviour of the DLM forecast variance, as given in (3). Therefore we
usually define ‘future’ values for W to be the same as the one-step-ahead

value at time ¢:

1-6

Var [wt_;,_k | Dt] = Wt+1 = Pt+l for all k Z 1.



