
7 Discounting

7.1 Stochastic shifting

Consider the generic dlm

yt = F T

t θt + νt νt ∼ 〈0, Vt〉

θt = Gt θt−1 + ωt ωt ∼ 〈0, Wt〉

in the case where n, the length of the state vector, is greater than 1. This
is not as unambiguous as it looks. The interpretation of the state vector
θt and the state equation error variance Wt are intimately linked.

Suppose we have a random vector quantity

εt ∼ 〈0, Ut〉

where εt is uncorrelated with all other disturbances (i.e. all the ν and ω

terms) and Ut is chosen to have the property that Var [Ft
Tεt] = F T

t Ut Ft =
0. By construction we must have F T

t εt = 0 with probability one.

Now take our dlm and add a bit of extra variance to the state equation
in the form of Gt εt−1, to give

yt = F T

t θt + νt

θt = Gt θt−1 + (ωt +Gt εt−1)

or, if we define a new state vector ψt := θt + εt,

yt = F T

t ψt + νt

ψt = Gt ψt−1 + ω′t

where ω′t = ωt + εt ∼ 〈0, Wt + Ut〉. Note that we have added F T
t εt to

the observation equation as well, but this doesn’t change anything by
construction. From this you an see that a model described by the set
{Ft, Vt, Gt,W

′
t} can be represented an uncountable number of different

ways with different state vectors by making different choices for Wt and
Ut, where W ′

t = Wt + Ut.

So perhaps we can ignore this ambiguity in practice, if the chances of
finding a Ut satisfying Var [F T

t εt] = 0 are small. Unfortunately we can
always find a Ut that fits the bill, providing n ≥ 2. Here’s one way, where
we drop the t subscripts for convenience. Partition ε as ε = [ε′ | εn], where
ε′ := (ε1, . . . , εn−1) ∼ 〈0, U1〉 for arbitrary (n−1)×(n−1) variance matrix
U1. Define

εn = −(f1 ε1 + · · ·+ fn−1 εn−1)/fn =: F T

1 ε
′

where F = (f1, . . . , fn)T. This ensures that Var [F Tε] = 0, as required.
We see that E[ε] = 0 and

U := Var [ε] =

(
U1 U1 F1

F T
1U1 F T

1U1 F1

)
.

For example, if F = (1, 1)T then F1 = −1. Setting U1 = u > 0, we must
have

U = u

(
1 −1

−1 1

)
.

As u is an arbitrary positive scalar there are any number of U matrices
that fit the bill, and likewise any number of state vectors that give rise to
the same dlm.

7.2 Discounting

The moral of the previous subsection is that Wt is tricky. It is also the
most difficult quantity to elicit in practice. For these and other reasons
(see West and Harrison, 1997, pp. 194-5), a practical strategy for avoiding
the complications of specifying Wt has been developed. This is known
‘discounting’.



At time t−1 we have θt−1 | Dt−1 ∼ 〈mt−1, Ct−1〉. The value Wt enters
into the determination of Rt = Var [θt | Dt−1]:

Rt = Gt Ct−1 (Gt)T +Wt = Pt +Wt where Pt := Gt Ct−1 (Gt)T.

Clearly Rt ≥ Pt.1 The bigger that Wt is, the more that Rt exceeds Pt.
This has lead to the ‘short-cut’ in which Wt is dropped and the relation
between Rt and Pt is specified directly through a discount factor δ ∈ (0, 1]:

Rt =
1
δ
Pt. (1)

Small values of δ indicate that there is a lot of uncertainty about the
evolution of the state vector. We can solve for the implicit value of Wt as

Wt =
1 − δ

δ
Pt. (2)

Typically we choose values for δ in the range [0.9, 0.99], although we
should pay close attention to diagnostics to alert us to a poor choice.

From a given starting point C0 we can compute W1,W2, . . . directly,
without reference to the data y1, y2, . . . , because the updating equations
for Ct do not depend upon the data. Therefore with this modification
we do not violate the structure of our graph of the dlm, on which all
our analysis is based. For adjusting by new data we simply use (1) to
compute Rt for a given choice of δ (which we might choose to allow to
vary in time as well). For filtering we use the implicit value for Wt given
in (2).

For forecasting we have to be a little more subtle. Suppose, for sim-
plicity, that the dlm is time-invariant. In this case we can easily show

1If A and B are both non-negative definite symmetric (nnds) matrices then we say
that A ≥ B if A = B + C for some C where C is also nnds.

that

Rt(k) := Var [θt+k | Dt] =
k−1∑
i=0

GiW (Gi)T +GkCt(Gk)T. (3)

What happens instead if we use discounting? Setting

Pt+k = GRt(k − 1)GT,

as seems natural, we find that

Rt(k) = GRt(k − 1)GT +Wt+k = Pt+k +Wt+k =
1
δ
Pt+k.

By successive back-substitution we can get down to

Rt(k) =
1
δ

(
GRt(k − 1)GT

)
= · · · =

1
δk
GkCt (Gk)T. (4)

This shows that the information in Ct decays exponentially as we go
forwards in the forecast. Clearly (4) is not consistent with the usual
behaviour of the dlm forecast variance, as given in (3). Therefore we
usually define ‘future’ values for W to be the same as the one-step-ahead
value at time t:

Var [ωt+k | Dt] = Wt+1 =
1− δ

δ
Pt+1 for all k ≥ 1.


