

6 Non-linear models

In physical modelling non-linearity is important: friction terms, for example, are inherently non-linear. Non-linearity also occurs when variables are transformed to modify their properties. Suppose that, rather than the linear form we are now familiar with, our model is

$$\begin{aligned} y_t &= f_t(\theta_t) + \nu_t & \nu_t &\sim \langle 0, V_t \rangle \\ \theta_t &= g_t(\theta_{t-1}) + \omega_t & \omega_t &\sim \langle \mathbf{0}, W_t \rangle \end{aligned}$$

where θ_t is a n -vector, and $f_t : \mathbb{R}^n \rightarrow \mathbb{R}$ and $g_t : \mathbb{R}^n \rightarrow \mathbb{R}^n$ are known but not-necessarily-linear functions. We no longer have a simple rule for passing from the mean and variance of $\theta_{t-1} | D_{t-1}$ to the mean and variance of $\theta_t | D_{t-1}$ and from this to the mean and variance of $y_t | D_{t-1}$.

One situation in which non-linear g_t functions occur is when the state vector evolves according to an Ordinary Differential Equation (ODE):

$$\frac{d\theta_i}{dt} = f_i(t, \theta) \quad i = 1, \dots, n$$

for some known functions f_1, \dots, f_n (not the same f as in the observation equation). There are a number of methods by which we can solve these equations from a given $\theta(t)$ to find a good approximation for $\theta(t+1)$ —the Runge-Kutta fourth order method is a very popular approach you may have come across—but they all amount to performing a non-linear operation involving evaluations of the f_i functions. So they can all be summarised in the form $\theta_t = g_t(\theta_{t-1})$, although we may not always have a simple form for g_t . Often we are unsure about θ_0 , or we think that uncertainty will be introduced into the evolution of θ_t , or we want to account explicitly for the truncation errors in our solution method. For these reasons we would like to embed the ODE into a DLM to propagate uncertainty.

There are two approaches to handling non-linearity, depending on the

problem. If f_t and g_t are simple differentiable functions and the non-linearity is not severe, then we can use linearisation. In other cases, where it is not possible to differentiate f_t or g_t or the non-linearity is considered to be substantial, we can use a sampling approach.

6.1 Linearisation

The linearisation approach is fairly standard, and often goes by the name ‘generalised Kalman filter’. Consider the case of a non-linear but differentiable state equation. At time t we may compute the Taylor series expansion of $g_t(\theta_{t-1})$ around the known mean $m_{t-1} = \mathbb{E}[\theta_{t-1} | D_{t-1}]$ to get

$$\theta_t = g_t(m_{t-1}) + \nabla g_t(m_{t-1})(\theta_{t-1} - m_{t-1}) + \dots + \omega_t$$

where $\nabla g_t(m_{t-1})$ is the $n \times n$ gradient matrix of $g_t(\theta)$ evaluated at $\theta = m_{t-1}$. That is, $[\nabla g_t(m_{t-1})]_{ij}$ is the derivative of θ_{ti} w.r.t. $\theta_{t-1,j}$, evaluated at $\theta_{t-1} = m_{t-1}$. Truncating after the linear term and writing $G_t = \nabla g_t(m_{t-1})$, we have the approximately linear model

$$\theta_t \approx h_t + G_t \theta_{t-1} + \omega_t$$

where $h_t = g_t(m_{t-1}) - G_t m_{t-1}$. The truncation will only be appropriate if the non-linear terms in the expansion of g_t die away rapidly. In this case, we have

$$\begin{aligned} a_t &= \mathbb{E}[\theta_t | D_{t-1}] \approx g_t(m_{t-1}) \\ R_t &= \text{Var}[\theta_t | D_{t-1}] \approx G_t C_{t-1} (G_t)^\top + W_t \end{aligned}$$

like before, although we may want to boost W_t in order to account for the truncation error.

Exactly the same approach can be used for the observation equation,

although now we expand $f_t(\theta_t)$ around $a_t = \mathbb{E}[\theta_t | D_{t-1}]$:

$$y_t = f_t(a_t) + \nabla f_t(a_t)(\theta_t - a_t) + \dots + \nu_t$$

($\nabla f_t(a_t)$ is a row-vector) and we set $(F_t)^\top = \nabla f_t(a_t)$, and find that $\mathbb{E}[y_t | D_{t-1}] \approx f_t(a_t)$ and $\text{Var}[y_t | D_{t-1}] \approx (F_t)^\top R_t F_t + V_t$ where, once again, we might want to bump V_t up a bit.

6.2 Sampling

What happens when f_t and/or g_t are hard to differentiate, or the non-linearity is thought to be substantial? This is a developing research area with several strands, but the following approach is promising. As it is particularly applicable to ODES I will describe it for the state equation, but the same steps are followed for the observation equation.

The key idea is that rather than find the mean and variance of $\theta_t | D_{t-1}$ by looking at g_t only at $\theta_{t-1} = m_{t-1}$, we look more widely in the region around m_{t-1} . Naturally this is more work as we have to evaluate g_t more often, but it does not require an explicit calculation of the gradient matrix, and you might think that by looking in more detail at g_t we are better able to understand how it maps the mean and variance of θ_{t-1} .

Before we go on, a bit of matrix revision. Consider the relation $Z = XY^\top$. We know that $Z_{ij} = \sum_k X_{ik} Y_{jk}$. This shows that there is another way to write Z , in terms of the columns of X and Y :

$$Z = \sum_k X_{:k} (Y_{:k})^\top$$

where in general $A_{:k}$ is column k of matrix A . Now let's consider the spectral decomposition of $C_{t-1} = \text{Var}[\theta_{t-1} | D_{t-1}]$, which we write as $C_{t-1} = \Gamma \Lambda \Gamma^\top$. By taking $Q = \Gamma \Lambda^{1/2}$ we find that

$$C_{t-1} = QQ^\top = \sum_k Q_{:k} (Q_{:k})^\top,$$

which is the key to the following approach.

We are going to evaluate g_t in total $2n$ times. We collect the evaluation points as the rows of the matrix X . Denoting row i (as a column vector) as $X_{i:}$, our $2n$ rows are

$$X_{i:} = (-1)^i \times \sqrt{n} \times Q_{:j} \quad i = 1, \dots, 2n, \quad j := 1 + \lfloor (i-1)/2 \rfloor$$

where $\lfloor x \rfloor$ is the largest integer less than x . Note that rows i and $i+1$ for odd i both use column j of Q (rows 1 and 2 use column 1, rows 3 and 4 use column 2, and so on). Obviously the mean value of the rows of X is zero, since each pair of rows cancel out. But perhaps less obviously the variance of the rows is equal to C_{t-1} :

$$\frac{1}{2n} \sum_{i=1}^{2n} X_{i:} (X_{i:})^\top = \frac{n}{2n} \sum_{i=1}^{2n} Q_{:j} (Q_{:j})^\top = \frac{1}{2} (2C_{t-1}) = C_{t-1}.$$

So if we were to add m_{t-1} to each of the rows of X then we would have a design of $2n$ points with mean m_{t-1} and variance C_{t-1} .

To approximate $a_t = \mathbb{E}[\theta_t | D_{t-1}]$ and $R_t = \text{Var}[\theta_t | D_{t-1}]$ we evaluate the function g_t at each of the rows of X . Call the result Y , with

$$Y_{i:} = g_t(m_{t-1} + X_{i:}) \quad i = 1, \dots, 2n.$$

To find the mean a_t we compute the sample mean of the output data

$$a_t = \mathbb{E}[\theta_t | D_{t-1}] \approx \frac{1}{2n} \sum_{i=1}^{2n} Y_{i:}$$

while to find the variance R_t we compute the variance of the output data, and then add on $W_t = \text{Var}[\omega_t]$:

$$R_t = \text{Var}[\theta_t | D_{t-1}] \approx \frac{1}{2n} \sum_{i=1}^{2n} (Y_{i:} - a_t)(Y_{i:} - a_t)^\top + W_t.$$

We can check that this approach will give identical results to the standard approach in the case where g_t is linear. For then $Y_{i:} = G_t X_{i:}$ and it follows immediately that

$$a_t = \frac{1}{2n} \sum_{i=1}^{2n} (G_t X_{i:}) = G_t \left(\frac{1}{2n} \sum_{i=1}^{2n} X_{i:} \right) = G_t m_{t-1},$$

and there is a similar result for the variance. But the great strength of this approach is that we can use it for any g_t , including what is known as a ‘black box’: a function about which we know nothing at all.

More details can be found in S. Julier, J. Uhlmann and H. Durrant-Whyte, “A new method for the nonlinear transformation of means and covariances in filters and estimators”, *IEEE Transactions on Automatic Control*, 2000, **45**, pp. 477-82.

Exercises

1. Consider the case of an object in 2-dimensional Euclidean space falling freely (but not necessarily vertically) under gravity. Denote the location of this object by (x_t, y_t) , and denote the general state vector as θ_t .
 - (a) What is an appropriate state equation for this object? How do you interpret the elements of the state vector?
 - (b) What factors might you consider in determining the error variance for your state equation?
 - (c) Every five seconds I record the angle α_t between the ground and the object from my location $(\bar{x}, 0)$. What is the observation equation?
 - (d) Given $\theta_t | D_{t-1} \sim \langle a_t, R_t \rangle$, how do I compute the mean and variance of $y_t | D_{t-1}$, and the covariance $\text{Cov}[\theta_t, y_t | D_{t-1}]$?