
6 Non-linear models

In physical modelling non-linearity is important: friction terms, for exam-
ple, are inherently non-linear. Non-linearity also occurs when variables
are transformed to modify their properties. Suppose that, rather than
the linear form we are now familiar with, our model is

yt = ft(θt) + νt νt ∼ 〈0, Vt〉

θt = gt(θt−1) + ωt ωt ∼ 〈0, Wt〉

where θt is a n-vector, and ft : Rn → R and gt : Rn → Rn are known
but not-necessarily-linear functions. We no longer have a simple rule for
passing from the mean and variance of θt−1 | Dt−1 to the mean and
variance of θt | Dt−1 and from this to the mean and variance of yt | Dt−1.

One situation in which non-linear gt functions occur is when the state
vector evolves according to an Ordinary Differential Equation (ode):

dθi

dt
= fi(t, θ) i = 1, . . . , n

for some known functions f1, . . . , fn (not the same f as in the observation
equation). There are a number of methods by which we can solve these
equations from a given θ(t) to find a good approximation for θ(t + 1)—
the Runge-Kutta fourth order method is a very popular approach you
may have come across—but they all amount to performing a non-linear
operation involving evaluations of the fi functions. So they can all be
summarised in the form θt = gt(θt−1), although we may not always have
a simple form for gt. Often we are unsure about θ0, or we think that
uncertainty will be introduced into the evolution of θt, or we want to
account explicitly for the truncation errors in our solution method. For
these reasons we would like to embed the ode into a dlm to propogate
uncertainty.

There are two approaches to handling non-linearity, depending on the

problem. If ft and gt are simple differentiable functions and the non-
linearity is not severe, then we can use linearisation. In other cases,
where it is not possible to differentiate ft or gt or the non-linearity is
considered to be substantial, we can use a sampling approach.

6.1 Linearisation

The linearisation approach is fairly standard, and often goes by the name
‘generalised Kalman filter’. Consider the case of a non-linear but dif-
ferentiable state equation. At time t we may compute the Taylor series
expansion of gt(θt−1) around the known mean mt−1 = E[θt−1 | Dt−1] to
get

θt = gt(mt−1) +∇gt(mt−1)
(
θt−1 −mt−1

)
+ · · ·+ ωt

where ∇gt(mt−1) is the n × n gradient matrix of gt(θ) evaluated at
θ = mt−1. That is,

[
∇gt(mt−1)

]
ij

is the derivative of θti w.r.t. θt−1,j ,
evaluated at θt−1 = mt−1. Truncating after the linear term and writing
Gt = ∇gt(mt−1), we have the approximately linear model

θt ≈ ht + Gt θt−1 + ωt

where ht = gt(mt−1)−Gt mt−1. The truncation will only be appropriate
if the non-linear terms in the expansion of gt die away rapidly. In this
case, we have

at = E[θt | Dt−1] ≈ gt(mt−1)

Rt = Var [θt | Dt−1] ≈ Gt Ct−1 (Gt)T + Wt

like before, although we may want to boost Wt in order to account for
the truncation error.

Exactly the same approach can be used for the observation equation,



although now we expand ft(θt) around at = E[θt | Dt−1]:

yt = ft(at) +∇ft(at)(θt − at) + · · ·+ νt

(∇ft(at) is a row-vector) and we set (Ft)T = ∇ft(at), and find that
E[yt | Dt−1] ≈ ft(at) and Var [yt | Dt−1] ≈ (Ft)TRt Ft + Vt where, once
again, we might want to bump Vt up a bit.

6.2 Sampling

What happens when ft and/or gt are hard to differentiate, or the non-
linearity is thought to be substantial? This is a developing research area
with several strands, but the following approach is promising. As it is
particularly applicable to odes I will describe it for the state equation,
but the same steps are followed for the observation equation.

The key idea is that rather than find the mean and variance of θt | Dt−1

by looking at gt only at θt−1 = mt−1, we look more widely in the region
around mt−1. Naturally this is more work as we have to evaluate gt

more often, but it does not require an explicit calculation of the gradient
matrix, and you might think that by looking in more detail at gt we are
better able to understand how it maps the mean and variance of θt−1.

Before we go on, a bit of matrix revision. Consider the relation Z =
XY T. We know that Zij =

∑
k Xik Yjk. This shows that there is another

way to write Z, in terms of the columns of X and Y :

Z =
∑

k

X:k(Y:k)T

where in general A:k is column k of matrix A. Now let’s consider the
spectral decomposition of Ct−1 = Var [θt−1 | Dt−1], which we write as
Ct−1 = ΓΛΓT. By taking Q = ΓΛ1/2 we find that

Ct−1 = QQT =
∑

k

Q:k(Q:k)T,

which is the key to the following approach.

We are going to evaluate gt in total 2n times. We collect the evaluation
points as the rows of the matrix X. Denoting row i (as a column vector)
as Xi:, our 2n rows are

Xi: = (−1)i ×
√

n×Q:j i = 1, . . . , 2n, j := 1 + b(i− 1)/2c

where bxc is the largest integer less than x. Note that rows i and i + 1
for odd i both use column j of Q (rows 1 and 2 use column 1, rows 3 and
4 use column 2, and so on). Obviously the mean value of the rows of X

is zero, since each pair of rows cancel out. But perhaps less obviously the
variance of the rows is equal to Ct−1:

1
2n

2n∑
1=1

Xi: (Xi:)T =
n

2n

2n∑
1=1

Q:j (Q:j)T =
1
2
(2 Ct−1) = Ct−1.

So if we were to add mt−1 to each of the rows of X then we would have
a design of 2n points with mean mt−1 and variance Ct−1.

To approximate at = E[θt | Dt−1] and Rt = Var [θt | Dt−1] we evaluate
the function gt at each of the rows of X. Call the result Y , with

Yi: = gt(mt−1 + Xi:) i = 1, . . . , 2n.

To find the mean at we compute the sample mean of the output data

at = E[θt | Dt−1] ≈
1
2n

2n∑
i=1

Yi:

while to find the variance Rt we compute the variance of the output data,
and then add on Wt = Var [ωt]:

Rt = Var [θt | Dt−1] ≈
1
2n

2n∑
i=1

(Yi: − at)(Yi: − at)T + Wt.



We can check that this approach will give identical results to the stan-
dard approach in the case where gt is linear. For then Yi: = Gt Xi: and it
follows immediately that

at =
1
2n

2n∑
i=1

(
Gt Xi:

)
= Gt

(
1
2n

2n∑
i=1

Xi:

)
= Gt mt−1,

and there is a similar result for the variance. But the great strength of
this approach is that we can use it for any gt, including what is known as
a ‘black box’: a function about which we know nothing at all.

More details can be found in S. Julier, J. Uhlmann and H. Durrant-
Whyte, “A new method for the nonlinear transformation of means and
covariances in filters and estimators”, IEEE Transactions on Automatic
Control, 2000, 45, pp. 477-82.

Exercises

1. Consider the case of an object in 2-dimensional Euclidean space
falling freely (but not necessarily vertically) under gravity. Denote
the location of this object by (xt, yt), and denote the general state
vector as θt.

(a) What is an appropriate state equation for this object? How do
you interpret the elements of the state vector?

(b) What factors might you consider in determining the error vari-
ance for your state equation?

(c) Every five seconds I record the angle αt between the ground
and the object from my location (x̄, 0). What is the observation
equation?

(d) Given θt | Dt−1 ∼ 〈at, Rt〉, how do I compute the mean and
variance of yt | Dt−1, and the covariance Cov[θt, yt | Dt−1] ?


