6 Non-linear models

In physical modelling non-linearity is important: friction terms, for exam-
ple, are inherently non-linear. Non-linearity also occurs when variables
are transformed to modify their properties. Suppose that, rather than

the linear form we are now familiar with, our model is

Yo = fi(0) + 11 vi ~ (0, Vi)
0 = g1 (0r—1) + wy wi ~ (0, Wy)

where 6, is a n-vector, and f; : R™ — R and ¢; : R® — R™ are known
but not-necessarily-linear functions. We no longer have a simple rule for
passing from the mean and variance of 6;_; | D;_1 to the mean and
variance of 8, | D;—1 and from this to the mean and variance of y; | Dy_1.

One situation in which non-linear g; functions occur is when the state

vector evolves according to an Ordinary Differential Equation (ODE):

db; .
dtZ:fi(t’H) i=1,....,n
for some known functions fi, ..., f, (not the same f as in the observation

equation). There are a number of methods by which we can solve these
equations from a given 0(t) to find a good approximation for (¢t + 1)—
the Runge-Kutta fourth order method is a very popular approach you
may have come across—but they all amount to performing a non-linear
operation involving evaluations of the f; functions. So they can all be
summarised in the form 6, = g;(6;—1), although we may not always have
a simple form for g;. Often we are unsure about 6y, or we think that
uncertainty will be introduced into the evolution of 6;, or we want to
account explicitly for the truncation errors in our solution method. For
these reasons we would like to embed the ODE into a DLM to propogate

uncertainty.

There are two approaches to handling non-linearity, depending on the

problem. If f; and g; are simple differentiable functions and the non-
linearity is not severe, then we can use linearisation. In other cases,
where it is not possible to differentiate f; or g; or the non-linearity is

considered to be substantial, we can use a sampling approach.

6.1 Linearisation

The linearisation approach is fairly standard, and often goes by the name
‘generalised Kalman filter’. Consider the case of a non-linear but dif-
ferentiable state equation. At time ¢ we may compute the Taylor series
expansion of g;(6;—1) around the known mean m;_1 = E[0;_1 | D;—1] to
get

O = gi(my—1) + Vge(me—1) (97571 - mt71) + -+ wy

where Vgi;(my—1) is the n x n gradient matrix of g¢;(9) evaluated at

0 = my_;. That is, [Vgt(mt,l)]ij is the derivative of 6y w.r.t. 6,y j,

evaluated at 6;_1 = m;_1. Truncating after the linear term and writing

Gy = Vgi(m¢—1), we have the approximately linear model
Gt ~ ht + Gt ot_l + wy

where hy = g¢(mi—1) — Gy my—1. The truncation will only be appropriate
if the non-linear terms in the expansion of g; die away rapidly. In this

case, we have

a; = E[0; | Di_1] = gi(my_1)

Rt = Var [Qt | Dt—l] ~ Gt Ct—l (Gt)T + Wt
like before, although we may want to boost Wy in order to account for
the truncation error.

Exactly the same approach can be used for the observation equation,



although now we expand f;(0;) around a; = E[0; | Dy_1]:
yr = fe(ar) + Vfi(a) 0y —ap) + -+ 1y

(Vfi(as) is a row-vector) and we set (Fy)" = Vfi(a:), and find that
Ely: | Di—1] ~ fi(a:) and Var[y | Di—1] =~ (F})"R: F; + V; where, once

again, we might want to bump V; up a bit.

6.2 Sampling

What happens when f; and/or g; are hard to differentiate, or the non-
linearity is thought to be substantial? This is a developing research area
with several strands, but the following approach is promising. As it is
particularly applicable to ODEs I will describe it for the state equation,
but the same steps are followed for the observation equation.

The key idea is that rather than find the mean and variance of 8, | D;_1
by looking at g; only at ;1 = m;_1, we look more widely in the region
around m;_;. Naturally this is more work as we have to evaluate g;
more often, but it does not require an explicit calculation of the gradient
matrix, and you might think that by looking in more detail at g; we are
better able to understand how it maps the mean and variance of 6;_.

Before we go on, a bit of matrix revision. Consider the relation Z =
XYT. We know that Z;; = Zk Xir Y. This shows that there is another

way to write Z, in terms of the columns of X and Y:
Z=> Xu(Ya)
k

where in general A.; is column k of matrix A. Now let’s consider the
spectral decomposition of C;_1 = Var[f;_1 | D;—1], which we write as
Cy_1 = TAT". By taking Q = I’'A'/? we find that

Cri1=QQ" =) Qu(Qu),
k

which is the key to the following approach.

We are going to evaluate g; in total 2n times. We collect the evaluation
points as the rows of the matrix X. Denoting row ¢ (as a column vector)

as X;., our 2n rows are
X, =(-1)'xvnxQ,; i=1,....2n, j:=1+[(i—1)/2]

where |z] is the largest integer less than x. Note that rows ¢ and i + 1
for odd i both use column j of @ (rows 1 and 2 use column 1, rows 3 and
4 use column 2, and so on). Obviously the mean value of the rows of X
is zero, since each pair of rows cancel out. But perhaps less obviously the

variance of the rows is equal to Cy_q:

2n 2n
1 n

1
5 D Xi (Xi)T = 5= Q4 (Qy)" = 5(2Ci1) = Cia.
1=1 1=1
So if we were to add m;_1 to each of the rows of X then we would have

a design of 2n points with mean m;_; and variance C;_1.

To approximate a; = E[0; | D;_1] and R; = Var [0; | D;_1] we evaluate
the function g; at each of the rows of X. Call the result Y, with

Yi. = ge(me—1 + Xi) i=1,...,2n.

To find the mean a; we compute the sample mean of the output data

2n
1
ay = E[Gt | thl] ~ % ;}/2

while to find the variance R; we compute the variance of the output data,
and then add on W; = Var [w]:

12n

R, =Var[0; | Di_1] = o Z(Yz‘: —a) (Y. — at)T + Ws.
i=1



We can check that this approach will give identical results to the stan-
dard approach in the case where g; is linear. For then Y;. = G; X;. and it

follows immediately that

2n

2n
a; = % ; (G X)) = Gy <2ln ;Xi:> = Gymy—1,
and there is a similar result for the variance. But the great strength of
this approach is that we can use it for any g;, including what is known as
a ‘black box’: a function about which we know nothing at all.

More details can be found in S. Julier, J. Uhlmann and H. Durrant-
Whyte, “A new method for the nonlinear transformation of means and
covariances in filters and estimators”, IEEE Transactions on Automatic
Control, 2000, 45, pp. 477-82.

Exercises

1. Consider the case of an object in 2-dimensional Euclidean space
falling freely (but not necessarily vertically) under gravity. Denote
the location of this object by (x¢,y:), and denote the general state

vector as 6;.

(a) What is an appropriate state equation for this object? How do

you interpret the elements of the state vector?

(b) What factors might you consider in determining the error vari-

ance for your state equation?

(¢) Every five seconds I record the angle o; between the ground
and the object from my location (Z,0). What is the observation

equation?

(d) Given 6; | D;—1 ~ {as, Ri), how do I compute the mean and

variance of y; | D;_1, and the covariance Cov([6;, y; | Di—1] ?



