5 Simple time-series models

In this lecture we consider what might be called ‘portmanteau’ DLMs: that
is, DLMs that we carry around because they are often found to be useful.
Sometimes we have a detailed understanding of the process that underlies
the data, and we embody this understanding in a careful choice of G; in
the state equation. Complex models of physical processes are often of this
type. But at other times we want a simple flexible model structure that
can accommodate a wide range of different ‘types’ of data, where we have
less of a feel for how the data evolves through time. These models are
time-invariant, i.e. we can write the quantities F', V, G and W without
time subscripts.

The simplest way to classify portmanteau models is by their mean re-
sponse function, g4 = F"0ir. A very useful class of models has the
property that E[us1x | D¢ is a polynomial of given degree in k. The coeffi-
cients of the polynomial are functions of the data D; through the adjusted
mean my := E[f; | D;]. Therefore as we collect more data we are adjusting
our beliefs about the coefficients of the polynomial. This type of model is

termed the Polynomial growth model (PGM).

Polynomial growth models. This section describes the PGM (which
you need to know as it is very useful) and explains why it has the properties
described above (which is less important for you to know, but serves as
a good example of how the simple structure of the DLM can give rise to
interesting predictive models).

A pGM of order n has F = FE,, and G = L,,, where

(En)i = 1iz1 (Ln)ij = Licy

for4,j =1,...,n, where 1, is the indicator function of proposition p. So
E,, picks out the first term in the state vector, and L, is a triangular

matrix of Os below the diagonal and 1s on and above it. To prove that

this specification has a polynomial structure in k, and to find out what it

is, we need the following interesting result (to be proved as an exercise).
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for0<j<m.

Using this result we can investigate
Elpesn | De] = (Bn) Elbrsn | D) = (Ep)"(Ln)" me.

The vector (E,,)"(L,)* is just the first row of (L, )*, so this is the only part
of (L,)* we need to worry about when investigating the mean response
function. From the structure of L,,, we note that if the first row of (L, ) is
(v1,...,vn), then the first row of (L, )**! = (L,)*L,, is (v1,v14+va, ..., v1+

-+-+v,). Now we can prove that
(Bn)"(Ln)" = (CiT1s Cimgs -0 GIEFT2). (1)

This is certainly true for k& = 1, remembering that 0! = 1 by definition,
giving a vector of all 1s as required. Now suppose it is true for arbitrary
k > 1. Then

(En)T(Ln)kJrl = (Cﬁj, Cﬁj + C';i_p LR CZ:% +ot Cﬁt?iz)
= (S¢"1 Sie1s - ST
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using Theorem 5.1. Substituting k41 for k in (1) we get the same answer,

so (1) is proved by induction.



So we have found that, in general,
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where E[0; | D¢] = my = (my1, ..., M4, ). Each coefficient has the structure
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which is a polynomial of degree £ — 1 in k. When we add them altogether
to find E[u¢1 | D] we have a polynomial of degree n — 1 in k. But you
can see that the coefficients on each k(=) term are quite complicated

functions of my.

As examples, consider first the case n = 1, known as the “random walk”.

In this case we have
E[,Ut+k | Dt] =M1

a polynomial of degree 0 in k. The case n = 2 is often known, for obvious

reasons, as the “linear trend” model. For n = 2 we have

Elusr | De) = CiZymun + C_y g

= my1 + kmye.
For n = 3 (“quadratic trend” model) we have

Elptesn | De) = Cp1mun + Cr_y myo + Ci s
(k+ 1)k
2
=my + (M2 + mys/2) k + (my3/2) k2.

=my + kMg + M43

We could go on, but you would have to have fairly strong prior beliefs to

want to predict future data using a quartic, or higher, polynomial in k.

The origin of the polynomial growth model. The motivation for
the polynomial growth model becomes apparent when the state equation

is re-written as

Op1;+0;401+00, j=1,....n—1
9tj _ t—1,5 t,j+1 tj J (2)
etfl,n + (Setn ] =n

(careful with the time subscripts here!) where §6; ~ (0, D) and D is a
diagonal variance matrix, i.e. the components of §6; are uncorrelated. The
polynomial growth model can be recovered in this representation by back-
substitution (e.g. start by writing 6, j41 as 61 j41 + 6¢ 42 + 06; j41).
When we do this we accumulate the errors for each j, and so the error
on the state equation is w; = L, 66;, and the error variance on the state
equation, which we call W, is of the form (L, )D(L,)".

In (2), 6;,j41 is a bit like the first derivative of 6;; with respect to time.
The role of 46, is to perturb these ‘derivatives’ with random disturbances
of given variance. The first component of the state vector, 6;; has n — 1 of
these derivatives, which is why, heuristically, the expectation of the mean

response function is a polynomial of degree n — 1.

Physical applications. In this form we can see why the PGM might
have physical applications. Consider a body moving in a 1-dimensional
Euclidean space, not subject to any forces. This means that in the future
it should move with the same velocity that it has now, and its expected
displacement E[usyr | Di] will be a linear function of k. This suggests
using a linear trend PGM (i.e. n = 2) to model the displacement of this

body relative to a fixed origin. In this case 6;; denotes the location and



0:2 the change in location per time-step, or ‘velocity’:

041 = 0r—1,1 + 0o + 9011
=011+ 0i—12+ (0041 + 5642)
Oro = 0:_1,2+ 062

noting that w; = Ly §6;. In matrix notation,
0 = Loy _1 4+ wy Wi ~ <0, L2D(L2)T>

You can see that d;1 is the deviation of location #;; from its linear trend,
and 04 is the deviation of ‘velocity’ 845 from its previous value. If you
thought that constant velocity was a good model you would set both D17 =
Var [00;1] and Day = Var [§0;2] small. If you thought that the force was
not constant, so that the velocity could change unpredictably from period
to period, you might want to make Dy larger. You initial beliefs 6y ~
(mg, Cp) describe your initial uncertainty about location and ‘velocity’,

before you collect any data.

The same body falling in a constant gravitational field has a fixed ac-
celeration, and for this purpose a quadratic trend PGM (n = 3) would be
appropriate. FExactly the same types of considerations would apply when

choosing the 3 diagonal elements of D.

Bolting DLMs together. Following on from the above application, you
may wonder how it is possible to model a body moving in a 2- or 3-
dimensional space. The answer is simple: the direct sum of two (or more)
DLMSs is also a DLM: we just ‘bolt’ them together. For simplicity consider
the case of a body moving in 2-dimensional space, not subject to any forces.
We would probably want to use a linear trend model for each dimension,
giving us a state vector of length 4 in all (two locations and two velocities).

Let’s write 6 for the state vector of the x-dimension and 1 for the state

vector the y-dimension. Then our combined state equation is

()= (5 o)) )

The mean of the w; term is zero, and the variance is

Wt L2 D@ (LQ)T 0
Var =
wtw 0 LQ qu (LQ)T

where Dy and D,, are the diagonal variance matrices. Dy, for example,
is our uncertainty about progress in the z-direction, and (Dg)az is our
uncertainty about the constancy of the ‘velocity’ in the x-direction.

How do we use this ‘bolted-together’ joint state equation? Usually we
consider collecting information about some function of the location of the
body, which is (6;1,%41), and use this information to update our beliefs
about the body’s location and future trajectory. In the simplest example
imagine ‘pinging’ the body with radar, to identify only its distance from

the given location of the radar station (Z, %),

Ty = \/(9t1 —Z)2+ (Y — 92+

where v; describes the accuracy of the radar measurment. We see that
r¢ is a non-linear function of the state vector. We will see how to handle
non-linear obsevation equations in the next lecture.

An interesting application along these lines can be found in “The ap-
plication of state estimation to target tracking”, C. B. Chang and J.
A. Tabaczynski, IEEE Transactions on Automatic Control, 1984, v. 29,
pp. 98-109.



