
5 Simple time-series models

In this lecture we consider what might be called ‘portmanteau’ dlms: that
is, dlms that we carry around because they are often found to be useful.
Sometimes we have a detailed understanding of the process that underlies
the data, and we embody this understanding in a careful choice of Gt in
the state equation. Complex models of physical processes are often of this
type. But at other times we want a simple flexible model structure that
can accommodate a wide range of different ‘types’ of data, where we have
less of a feel for how the data evolves through time. These models are
time-invariant, i.e. we can write the quantities F , V , G and W without
time subscripts.

The simplest way to classify portmanteau models is by their mean re-
sponse function, µt+k := F Tθt+k. A very useful class of models has the
property that E[µt+k | Dt] is a polynomial of given degree in k. The coeffi-
cients of the polynomial are functions of the data Dt through the adjusted
mean mt := E[θt | Dt]. Therefore as we collect more data we are adjusting
our beliefs about the coefficients of the polynomial. This type of model is
termed the Polynomial growth model (pgm).

Polynomial growth models. This section describes the pgm (which
you need to know as it is very useful) and explains why it has the properties
described above (which is less important for you to know, but serves as
a good example of how the simple structure of the dlm can give rise to
interesting predictive models).

A pgm of order n has F = En and G = Ln, where

(En)i = 1i=1 (Ln)ij = 1i≤j

for i, j = 1, . . . , n, where 1p is the indicator function of proposition p. So
En picks out the first term in the state vector, and Ln is a triangular
matrix of 0s below the diagonal and 1s on and above it. To prove that

this specification has a polynomial structure in k, and to find out what it
is, we need the following interesting result (to be proved as an exercise).

Theorem 5.1. Define Cij :=
i!

j!(i− j)!
(i.e. “i choose j”), then

Smj :=
m∑
i=j

Cij =⇒ Smj = Cm+1
j+1

for 0 ≤ j ≤ m.

Using this result we can investigate

E[µt+k | Dt] = (En)TE[θt+k | Dt] = (En)T(Ln)kmt.

The vector (En)T(Ln)k is just the first row of (Ln)k, so this is the only part
of (Ln)k we need to worry about when investigating the mean response
function. From the structure of Ln, we note that if the first row of (Ln)k is
(v1, . . . , vn), then the first row of (Ln)k+1 = (Ln)kLn is (v1, v1+v2, . . . , v1+
· · ·+ vn). Now we can prove that

(En)T(Ln)k =
(
Ck−1
k−1, Ckk−1, . . . , Ck+n−2

k−1

)
. (1)

This is certainly true for k = 1, remembering that 0! = 1 by definition,
giving a vector of all 1s as required. Now suppose it is true for arbitrary
k ≥ 1. Then

(En)T(Ln)k+1 =
(
Ck−1
k−1, Ck−1

k−1 + Ckk−1, . . . , Ck−1
k−1 + · · ·+ Ck+n−2

k−1

)
=
(
Sk−1
k−1 , S

k
k−1, . . . , S

k+n−2
k−1

)
=
(
Ckk, Ck+1

k , . . . , Ck+n−1
k

)
using Theorem 5.1. Substituting k+1 for k in (1) we get the same answer,
so (1) is proved by induction.



So we have found that, in general,

E[µt+k | Dt] =
n∑
`=1

Ck+`−2
k−1 mt`

where E[θt | Dt] = mt = (mt1, . . . ,mtn). Each coefficient has the structure

Ck+`−2
k−1 =

(k + `− 2)!
(k − 1)!(`− 1)!

=


1 ` = 1
k(k + 1) · · · (k + `− 2)

(`− 1)!
` = 2, . . . , n

which is a polynomial of degree `− 1 in k. When we add them altogether
to find E[µt+k | Dt] we have a polynomial of degree n − 1 in k. But you
can see that the coefficients on each k(`−1) term are quite complicated
functions of mt.

As examples, consider first the case n = 1, known as the “random walk”.
In this case we have

E[µt+k | Dt] = mt1

a polynomial of degree 0 in k. The case n = 2 is often known, for obvious
reasons, as the “linear trend” model. For n = 2 we have

E[µt+k | Dt] = Ck−1
k−1mt1 + Ckk−1mt2

= mt1 + kmt2.

For n = 3 (“quadratic trend” model) we have

E[µt+k | Dt] = Ck−1
k−1mt1 + Ckk−1mt2 + Ck+1

k−1mt3

= mt1 + kmt2 +
(k + 1)k

2
mt3

= mt1 + (mt2 +mt3/2) k + (mt3/2) k2.

We could go on, but you would have to have fairly strong prior beliefs to
want to predict future data using a quartic, or higher, polynomial in k.

The origin of the polynomial growth model. The motivation for
the polynomial growth model becomes apparent when the state equation
is re-written as

θtj =

θt−1,j + θt,j+1 + δθtj j = 1, . . . , n− 1

θt−1,n + δθtn j = n
(2)

(careful with the time subscripts here!) where δθt ∼ 〈0, D〉 and D is a
diagonal variance matrix, i.e. the components of δθt are uncorrelated. The
polynomial growth model can be recovered in this representation by back-
substitution (e.g. start by writing θt,j+1 as θt−1,j+1 + θt,j+2 + δθt,j+1).
When we do this we accumulate the errors for each j, and so the error
on the state equation is ωt = Ln δθt, and the error variance on the state
equation, which we call W , is of the form (Ln)D(Ln)T.

In (2), θt,j+1 is a bit like the first derivative of θtj with respect to time.
The role of δθt is to perturb these ‘derivatives’ with random disturbances
of given variance. The first component of the state vector, θt1 has n− 1 of
these derivatives, which is why, heuristically, the expectation of the mean
response function is a polynomial of degree n− 1.

Physical applications. In this form we can see why the pgm might
have physical applications. Consider a body moving in a 1-dimensional
Euclidean space, not subject to any forces. This means that in the future
it should move with the same velocity that it has now, and its expected
displacement E[µt+k | Dt] will be a linear function of k. This suggests
using a linear trend pgm (i.e. n = 2) to model the displacement of this
body relative to a fixed origin. In this case θt1 denotes the location and



θt2 the change in location per time-step, or ‘velocity’:

θt1 = θt−1,1 + θt2 + δθt1

= θt−1,1 + θt−1,2 + (δθt1 + δθt2)

θt2 = θt−1,2 + δθt2

noting that ωt = L2 δθt. In matrix notation,

θt = L2 θt−1 + ωt ωt ∼ 〈0, L2D(L2)T〉

You can see that δt1 is the deviation of location θt1 from its linear trend,
and δt2 is the deviation of ‘velocity’ θt2 from its previous value. If you
thought that constant velocity was a good model you would set bothD11 =
Var [δθt1] and D22 = Var [δθt2] small. If you thought that the force was
not constant, so that the velocity could change unpredictably from period
to period, you might want to make D22 larger. You initial beliefs θ0 ∼
〈m0, C0〉 describe your initial uncertainty about location and ‘velocity’,
before you collect any data.

The same body falling in a constant gravitational field has a fixed ac-
celeration, and for this purpose a quadratic trend pgm (n = 3) would be
appropriate. Exactly the same types of considerations would apply when
choosing the 3 diagonal elements of D.

Bolting dlms together. Following on from the above application, you
may wonder how it is possible to model a body moving in a 2- or 3-
dimensional space. The answer is simple: the direct sum of two (or more)
dlms is also a dlm: we just ‘bolt’ them together. For simplicity consider
the case of a body moving in 2-dimensional space, not subject to any forces.
We would probably want to use a linear trend model for each dimension,
giving us a state vector of length 4 in all (two locations and two velocities).
Let’s write θ for the state vector of the x-dimension and ψ for the state

vector the y-dimension. Then our combined state equation is(
θt

ψt

)
=

(
L2 0

0 L2

)(
θt−1

ψt−1

)
+

(
ωtθ

ωtψ

)
.

The mean of the ωt term is zero, and the variance is

Var

[
ωtθ

ωtψ

]
=

(
L2Dθ(L2)T 0

0 L2Dψ(L2)T

)

where Dθ and Dψ are the diagonal variance matrices. Dθ, for example,
is our uncertainty about progress in the x-direction, and (Dθ)22 is our
uncertainty about the constancy of the ‘velocity’ in the x-direction.

How do we use this ‘bolted-together’ joint state equation? Usually we
consider collecting information about some function of the location of the
body, which is (θt1, ψt1), and use this information to update our beliefs
about the body’s location and future trajectory. In the simplest example
imagine ‘pinging’ the body with radar, to identify only its distance from
the given location of the radar station (x̄, ȳ),

rt =
√

(θt1 − x̄)2 + (ψt1 − ȳ)2 + νt

where νt describes the accuracy of the radar measurment. We see that
rt is a non-linear function of the state vector. We will see how to handle
non-linear obsevation equations in the next lecture.

An interesting application along these lines can be found in “The ap-
plication of state estimation to target tracking”, C. B. Chang and J.
A. Tabaczynski, IEEE Transactions on Automatic Control, 1984, v. 29,
pp. 98–109.


