4 Filtering

Filtering, which might be termed ‘backcasting’ is adjusting our beliefs
about the state vector at t — k using all of the available data, i.e. D;. We
would expect D; to convey more information about 6;_j, than just D;_p,
as D;_p C D;. Each time we add a new datum, therefore, we can (if we

so choose) revise our beliefs about previous values of the state vector.

A useful side-calculation. For reasons that will become apparent, we
start by considering the mean and variance of 6;_, | 6;_+1, Dy for some
0 < k <'t. We can use the Bayes linear approach to compute this, once we
have computed the mean and covariance structure of 6; j,6; g1 | Dy .
(Remember that the Bayes linear adjustment ‘jumps’ the 6; ., from the
left to the right of the bar.)

We already know that 6; y, | Dy_j ~ (my_g, Cy_), where we computed
my—y and Cy_j ‘on the way up’ (i.e. in the process of adjusting 6; by the
data D;). Similarly, we have also computed the quantities

E0i—k+1 | Di—k] =t as—p41 and Var[0;_py1 | D] =t Ri—pq1
‘on the way up’. The only not-yet-computed term is
Cov[0;—k, Or—ky1 | De—r] = Cov[by g, E[0ipt1 | Ot—1] | Di—i] = Cop Gi_py1-
Using the Bayes linear adjustment formulae we find that

E0:—& | Ot—k+1,Der] =my—t + Ber (61— k1 — Qt—k41)
Var [0;—i | Ot—k41, Di—i] = Ci— — Bi—p Ri_p41 B{_,

where By = Cy 1 Gi_; 4 R[_I,H_l. Note how we have re-written the
adjusted variance in a form that will be convenient below. These two

quantities are crucial in what follows.

Computing the filtered mean and variance. Now we consider the
mean and variance of 8;_y | D;. We will write, in general, 6;_j | Dy ~
(as(—k), Ry(—k)), which is consistent with our forecasting notation. As
initial conditions we must have a;(0) = m; and R;(0) = C;.

Suppose (adopting the inductive approach) we have computed the two
quantities a;(—k + 1) and R;(—k + 1). If we look at the graph of the DLM
we see that 0;_j,, separates 6;_j from y;_g41,...,y:. In other words we
can proceed by introducing ;41 and then dropping the later data:

E[0i_x | Dy] = E[E[6s— | Os—k+1,D:] | Di]
E[E[6: & | 6+ k+1,Ds ] | Dy]

E[me_r + Bi—r {6¢t—k+1 — as—x4+1} | D] from above

introducing 641

there g0 ¥¢—k+1,---,Yt

=my_r + By {E[Gt_kH | Dt] - at_k+1} 0¢—_k+1 only unknown

=my—+ By {ar(=k+1) —ay_p41} .
For the variance, we follow the same steps:

Var [0,_s | Di] = Var [E[fi—r | 0—rs1, De—s] | Di] +
E[Var [0k | Ot—k+1,Dt—i] | Dt
= Var[my_r + Bi—p (0t—r+1 — at—k+1) | De] +
E[Ci—k — Bi—k Ri—k+1 B{_;, | D¢
=By Var [0y g1 | Di] Bi_p + Cpk — Beg Re—p1 B{_y,
=Cik+ By {R(—k+1) =Ry 1} Bf 4

We summarise these two expressions for convenience. We have shown
that 6,y | Dy ~ (at(—k), R¢(—k)) for 0 < k < t, where

ai(—k) =my—p + Bi—g {at(—k +1) - at_k+1}
Ri(—k) =Cir + By {Ri(—k+1) = Ry_y41} Bi_,

and By = Cp_r G{_; 4 R;lkﬂ. You can see that the expressions for



at(—k) and R¢(—k) have a similar and rather pleasing structure: we start
with our beliefs given D;_, and we modify these by some linear combina-
tion of what we thought about 6; ;1 both before and after introducing
the extra data y¢—gy1,...,Y¢-

Computing the filtered covariance. We have not finished yet.
There are still the covariances to be calculated: Ci(—k,—j) :=
Cov[b;—, 6:—; | Dy, for 0 < j < k <t. We will show that

Ci(=k,—j) = B Ce(=k + 1,—))

with initial condition C;(—j, —j) = R¢(—j). Remembering that ¢t — k <

t — j, we introduce 6;_; into the covariance to get
Cov[0; k, 0y j | D] = Cov[E[0; | 0;—j, D¢ j1], 05| Dg]. (1)

Now we must compute E[¢;_ | 6;—;,D;—;_1]. By introducing 6; 41 we
find
E6:—x | 6:—j, D j—1] = E[E[0s— | Ot—kt1,Ds—k) | 6:—j, Di—j—1]
= E[my—p + Bi—k (Ot—k41 — at—p41) | 64—j, De—j_1]
=my_p + By (E[0s—p41 | 0i—j, Di—j_1] — G4—p41)-

This has taken us one step toward ¢t — j. Applying the recursion repeatedly

we will end up with an expression that looks like
El0i—r | 01—j s Di—j_1]l =+ Bi_p By—py1 -+ Bi—j_1 64— + -

where only the bit in 6;_; is relevant, because we are about to take the
covariance and all the other bits are constant. Putting this back into (1),

the result follows immediately.



