

3 Assimilating new data

Theorem 3.1 (Bayes linear adjustment). Let x, y and z be random quantities over which we have a mean and covariance structure initially adjusted by D . The mean of x and the covariance of x and y , further adjusted by z , are

$$\mathbb{E}[x \mid z, D] = \mathbb{E}[x \mid D] + \text{Cov}[x, z \mid D] \text{Var}[z \mid D]^{-1} (z - \mathbb{E}[z \mid D])$$

$$\text{Cov}[x, y \mid z, D] = \text{Cov}[x, y \mid D] - \text{Cov}[x, z \mid D] \text{Var}[z \mid D]^{-1} \text{Cov}[z, y \mid D]$$

where ‘|’ in this context is to be interpreted as ‘adjusted by’ (rather than ‘conditional upon’).

When assimilating a new datum, our objective is to go from beliefs about $\theta_{t-1} \mid D_{t-1}$ to beliefs about $\theta_t \mid D_t$. Remembering that $D_t = (D_{t-1}, y_t)$, the Bayes linear approach requires the mean and covariance structure of $\theta_t, y_t \mid D_{t-1}$. The adjustment process moves the y_t from the left of the bar to the right.

Suppose we currently have beliefs $\theta_{t-1} \mid D_{t-1} \sim \langle m_{t-1}, C_{t-1} \rangle$. From our model we can infer that $\theta_t \mid D_{t-1} \sim \langle a_t, R_t \rangle$, where

$$a_t := \mathbb{E}[\theta_t \mid D_{t-1}] = G_t m_{t-1}$$

$$R_t := \text{Var}[\theta_t \mid D_{t-1}] = G_t C_{t-1} G_t^\top + W_t.$$

In both cases we have introduced θ_{t-1} and used the property $\theta_t \perp\!\!\!\perp D_{t-1} \mid \theta_{t-1}$ from the graph of the DLM.

We also need to compute our beliefs about $y_t \mid D_{t-1}$. As θ_t separates y_t from D_{t-1} in the graph (i.e. $y_t \perp\!\!\!\perp D_{t-1} \mid \theta_t$), it is easy to compute that

$$\mathbb{E}[y_t \mid D_{t-1}] = F_t^\top a_t \quad \text{and} \quad \text{Var}[y_t \mid D_{t-1}] = F_t^\top R_t F_t + V_t.$$

Finally, we need the covariance $\text{Cov}[\theta_t, y_t \mid D_{t-1}]$. By conditioning on

θ_t and using $y_t \perp\!\!\!\perp D_{t-1} \mid \theta_t$ again we find

$$\begin{aligned} \text{Cov}[\theta_t, y_t \mid D_{t-1}] &= \text{Cov}[\theta_t, \mathbb{E}[y_t \mid \theta_t] \mid D_{t-1}] \\ &= \text{Cov}[\theta_t, F_t^\top \theta_t \mid D_{t-1}] = R_t F_t. \end{aligned}$$

Putting these bits into the Bayes linear expressions,

$$\mathbb{E}[\theta_t \mid D_t] = a_t + (R_t F_t) Q_t^{-1} (y_t - F_t^\top a_t)$$

$$\text{Var}[\theta_t \mid D_t] = R_t - (R_t F_t) Q_t^{-1} (R_t F_t)^\top$$

where, for convenience, I have written $Q_t := \text{Var}[y_t \mid D_{t-1}]$.

What if no datum is recorded? It is often the case that y_t records only the fact that the datum for time t is missing. But as $y_t = \emptyset$, so

$$\theta_t \mid D_t = \theta_t \mid (D_{t-1}, \emptyset) = \theta_t \mid D_{t-1} \sim \langle a_t, R_t \rangle$$

and so we have simply $m_t = a_t$ and $C_t = R_t$. Note that time-points that have missing data have larger variances, as you might expect. This also gives us a way to handle irregular data: we treat it as lots of missing data on a suitably fine scale.

Exercises

1. Consider the ‘random walk with noise’ DLM,

$$y_t = \theta_t + \nu_t \quad \nu_t \sim \langle 0, V \rangle$$

$$\theta_t = \theta_{t-1} + \omega_t \quad \omega_t \sim \langle 0, W \rangle$$

where θ_t is a scalar, and both V and W are time-invariant. Starting from $\theta_{t-1} \sim \langle m_{t-1}, C_{t-1} \rangle$, compute the mean and variance for $\theta_t \mid D_t$.

2. In the generic DLM we can have known *non-zero* ‘intercepts’ h_t and

g_t in the observation and state equations respectively,

$$y_t = h_t + F_t^\top \theta_t + \nu_t \quad \nu_t \sim \langle 0, V_t \rangle$$

$$\theta_t = g_t + G_t \theta_{t-1} + \omega_t \quad \omega_t \sim \langle \mathbf{0}, W_t \rangle$$

How does the presence of these two intercepts affect the updating of our beliefs about θ_t by the datum y_t ?