2 Basic features, and forecasting

The basic structure. In the last lecture we set up a model with the following
generic structure:
Y | On ~ (F 0, Vi)

(1)
9t | etfl ~ <Gt atfly Wt>

where y; is a scalar (the datum) and 6, is a n-vector (the ‘state vector’). The model
is defined by the four quantities {Ft, Vi, G, Wt} which we assume are known at
time ¢: F} is a n vector, V; a non-negative scalar, G; a n x n matrix, and Wy anxn
variance matrix, i.e. symmetric and positive (semi)-definite. Here ‘~’ denotes ‘is
modelled as’, and ‘{u, )’ a random quantity with mean p and variance X.

A more general way of writing this model is

yr = F 0 + 1y vy ~ (0, V4)

(2)
Gt = Gt 9t—1 +wr wg <0, Wt> .

Clearly, (2) implies (1). On the other hand, (2) is not a complete specification,
as it does not tell us of the relationship between the quantities v, and w;, nor the
relationship between, say, vy and w;_1.

The best way to think of a DLM is as the graphical structure

Y1 Y2 Yt—1 Yt Yt+1

0, [/ ete. 0,1 0,

0o

imposed on the model (2). This graph has two features. First, the state vector
¢ follows a markov process, so that 6,1 6; | 0x—1, for all 1 < j < k < t. This
implies that w; L wy in (2). Second, 6 separates yj from everything else, so that

yeLyj,0; | 0. This implies that v, L wy and vp L v;,w; in (2).

Notation. Our data are denoted by Dy := (y1,...,yk), for k =1,2,...,t. The
value of each y; may be numeric, or it may indicate a missing value. Our prior

beliefs about the state vector are written

E[fo] = mo, Var[fp] = Cy or, equivalently, 6y ~ (mg, Cp) .

We supply values for mg and Cy. In order to preserve the structure of the graph
we must have 6y L v, wy for all k = 1,...,t. After adjusting by the data Dy we
write

my := E[0x | D] and Cy := Var[0y | Dg]

for k=1,...,t. The bLM allows us to compute m; and Cj, from my_1, Cr_1 and
yk. In this way we can find, by advancing one period at a time, the quantities m;
and C¢, which are our current mean and variance for the state vector (‘current’ in
the sense that we are using all currently available information). We will see how

to do this later on.

Computing on the graph. The key operation on the graph is to simplify
calculations of means and variances by introducing variables suggested by the

graph. The fundamental result should be well-known to you.

Theorem 2.1. Ifx, z and D are random quantities then the expectation of x | D

can be computed by introducing z, as E[z | D] = E[E[z | z,D] | D].

We can use this result to forecast the mean of the state vector at a time ¢ + 1

starting from 6, | Dy ~ (my, Cy):

E[0:+1 | D¢] = E[E[f¢11 | 0, D] | D¢] Introduce 6,
E[E[GH_l ‘ gt] | Dt] As 0t+1_”_ Dt | 9,5 from the graph (3)
E[Gi410: | Di] From the model (2)

Gi+1E[0; | D]

Assuming Gyy1 known at time ¢

= Gy1my By definition.

In forecasting we need to assume that {Ft+k, Viik, Gk, Wt+k} are known at time
tfork=1,2,....

We can use Theorem 2.1 to extend this approach to the covariance.

Corollary 2.2. Under the same conditions as Theorem 2.1,
Cov(z, y | D] = Cov[E[z | 2, D], Ely | z, D] | D] + E[Cov[z, y | 2, D] | D].

Proof. For simplicity take x, y and z to be scalars, and drop the conditioning on



D (which appears everywhere). Then

Cov[z, y] = E[zy] — E[z] - E[y]
= E[E[zy | 2]] — E[E[z | 2]] - E[E[y | 2]]

using Theorem 2.1. Subtracting and adding E[E[z | z] - E[y | z]] allows this to be

written in the required form. O

Remembering that the the variance is just a special case of the covariance, we
can use this Corollary to compute the variance of 6;,1 | D; from the starting point
9t ‘ .Dt ~ <mt, Ct>1

Var [9t+1 | Dt} = Var[E[@Hl | 9,5] | Dt] =+ E[Var [0t+1 | 9,5] | Dt]
= Var [Gt+1 9,5 | Dt] + E[Wt+1 | Dt]
= Gt+1 Ct GI—i—l + Wt+1
using the same steps as before, where G} ; is the transpose of Gy 1. There is a very
useful special case of Corollary 2.2, namely Cov|z, y | D] = Cov[z, E[y | z, D] | D].
We can use this to compute Cov[fy, 0;11 | Dy]:
COV[Gt, 9t+1 | Df] = Cov[&t, E[Gt_,_l | 01»] | Df]
= COV[et, Gt+1 9t | Dt]
=C G-

Note that in both of these results we have used implicitly the fact that 6;41 L D; |
0, from (3).

General forecasting results. We can extend the above results to find, for any
k> 1, that 041 | Dy ~ (a:(k), Re(k)) where

= —_ = —_ T+
at(k) : Gt+k at(kz 1) and Rt(k‘) : Gt+l<: Rt(k‘ 1) Gt k + Wt+k: (4)

subject to the initial values a;(0) := m; and R;(0) := C;. We can also find, for
any 0 < j < k, that Cov[f;y;, 0i1x | Di] = Ci(J, k), where

Ct(ja k) = Ct(ja k - 1) GI—H? (5)

subject to the initial values C¢(j,j) = R¢(4)-
It is also easy for us to forecast any linear combination of 6;, . For example, we
are often interested in the ‘mean response function’ pyix := FY, ;. 0;1%. It follows

immediately that
pesr | Dy~ (Fypag(k), Fiyp Re(k) Firr)
and, for any 0 < j < k, that

Covlpttj, ptr | Di) = Fly; Ce(d, k) Frpp-

Exercises

1. Prove Theorem 2.1 using elementary probability (for simplicity, do not bother

to condition everything on D).
2. Prove Cov[z, y | D] = Cov[z, E[y | z, D] | D].
3. Prove (4) and (5).

4. Give explicit (i.e. non-recursive) expressions for (4) and (5) in the case where
{Fiir, Visrs Goyrs Wig} = {F,V,G,W} for all k > 1. A DLM in which these

four quantities are time-invariant is known as a ‘times series DLM’.



