
2 Basic features, and forecasting

The basic structure. In the last lecture we set up a model with the following
generic structure:

yt | θt ∼ 〈F T

t θt, Vt〉

θt | θt−1 ∼ 〈Gt θt−1, Wt〉
(1)

where yt is a scalar (the datum) and θt is a n-vector (the ‘state vector’). The model
is defined by the four quantities

{
Ft, Vt, Gt,Wt

}
which we assume are known at

time t: Ft is a n vector, Vt a non-negative scalar, Gt a n×n matrix, and Wt a n×n
variance matrix, i.e. symmetric and positive (semi)-definite. Here ‘∼’ denotes ‘is
modelled as’, and ‘〈µ, Σ〉’ a random quantity with mean µ and variance Σ.

A more general way of writing this model is

yt = F T

t θt + νt νt ∼ 〈0, Vt〉

θt = Gt θt−1 + ωt ωt ∼ 〈0, Wt〉 .
(2)

Clearly, (2) implies (1). On the other hand, (2) is not a complete specification,
as it does not tell us of the relationship between the quantities νt and ωt, nor the
relationship between, say, νt and ωt−1.

The best way to think of a dlm is as the graphical structure

y1 y2 yt−1 yt yt+1

θ0 θ1 θ2 etc. θt−1 θt θt+1

(3)

imposed on the model (2). This graph has two features. First, the state vector
θ follows a markov process, so that θk⊥⊥ θj | θk−1, for all 1 ≤ j < k ≤ t. This
implies that ωj⊥⊥ωk in (2). Second, θk separates yk from everything else, so that
yk⊥⊥ yj , θj | θk. This implies that νk⊥⊥ωk and νk⊥⊥ νj , ωj in (2).

Notation. Our data are denoted by Dk := (y1, . . . , yk), for k = 1, 2, . . . , t. The
value of each yk may be numeric, or it may indicate a missing value. Our prior
beliefs about the state vector are written

E[θ0] = m0, Var [θ0] = C0 or, equivalently, θ0 ∼ 〈m0, C0〉 .

We supply values for m0 and C0. In order to preserve the structure of the graph
we must have θ0⊥⊥ νk, ωk for all k = 1, . . . , t. After adjusting by the data Dk we
write

mk := E[θk | Dk] and Ck := Var [θk | Dk]

for k = 1, . . . , t. The dlm allows us to compute mk and Ck from mk−1, Ck−1 and
yk. In this way we can find, by advancing one period at a time, the quantities mt

and Ct, which are our current mean and variance for the state vector (‘current’ in
the sense that we are using all currently available information). We will see how
to do this later on.

Computing on the graph. The key operation on the graph is to simplify
calculations of means and variances by introducing variables suggested by the
graph. The fundamental result should be well-known to you.

Theorem 2.1. If x, z and D are random quantities then the expectation of x | D
can be computed by introducing z, as E[x | D] = E

[
E[x | z,D] | D

]
.

We can use this result to forecast the mean of the state vector at a time t + 1
starting from θt | Dt ∼ 〈mt, Ct〉:

E[θt+1 | Dt] = E[E[θt+1 | θt, Dt] | Dt] Introduce θt

= E[E[θt+1 | θt] | Dt] As θt+1⊥⊥Dt | θt from the graph (3)

= E[Gt+1 θt | Dt] From the model (2)

= Gt+1 E[θt | Dt] Assuming Gt+1 known at time t

= Gt+1mt By definition.

In forecasting we need to assume that
{
Ft+k, Vt+k, Gt+k,Wt+k

}
are known at time

t for k = 1, 2, . . . .

We can use Theorem 2.1 to extend this approach to the covariance.

Corollary 2.2. Under the same conditions as Theorem 2.1,

Cov[x, y | D] = Cov
[
E[x | z,D] , E[y | z,D] | D

]
+ E

[
Cov[x, y | z,D] | D

]
.

Proof. For simplicity take x, y and z to be scalars, and drop the conditioning on



D (which appears everywhere). Then

Cov[x, y] = E[xy]− E[x] · E[y]

= E[E[xy | z]]− E[E[x | z]] · E[E[y | z]]

using Theorem 2.1. Subtracting and adding E
[
E[x | z] · E[y | z]

]
allows this to be

written in the required form.

Remembering that the the variance is just a special case of the covariance, we
can use this Corollary to compute the variance of θt+1 | Dt from the starting point
θt | Dt ∼ 〈mt, Ct〉:

Var [θt+1 | Dt] = Var [E[θt+1 | θt] | Dt] + E[Var [θt+1 | θt] | Dt]

= Var [Gt+1 θt | Dt] + E[Wt+1 | Dt]

= Gt+1 CtG
T

t+1 +Wt+1

using the same steps as before, where GT
t+1 is the transpose of Gt+1. There is a very

useful special case of Corollary 2.2, namely Cov[x, y | D] = Cov[x, E[y | x,D] | D].
We can use this to compute Cov[θt, θt+1 | Dt]:

Cov[θt, θt+1 | Dt] = Cov[θt, E[θt+1 | θt] | Dt]

= Cov[θt, Gt+1 θt | Dt]

= CtG
T

t+1.

Note that in both of these results we have used implicitly the fact that θt+1⊥⊥Dt |
θt, from (3).

General forecasting results. We can extend the above results to find, for any
k ≥ 1, that θt+k | Dt ∼ 〈at(k), Rt(k)〉 where

at(k) := Gt+k at(k − 1) and Rt(k) := Gt+k Rt(k − 1)GT

t+k +Wt+k (4)

subject to the initial values at(0) := mt and Rt(0) := Ct. We can also find, for
any 0 ≤ j < k, that Cov[θt+j , θt+k | Dt] = Ct(j, k), where

Ct(j, k) := Ct(j, k − 1)GT

t+k (5)

subject to the initial values Ct(j, j) = Rt(j).
It is also easy for us to forecast any linear combination of θt+k. For example, we

are often interested in the ‘mean response function’ µt+k := F T

t+kθt+k. It follows
immediately that

µt+k | Dt ∼
〈
F T

t+k at(k), F T

t+k Rt(k)Ft+k
〉
,

and, for any 0 < j ≤ k, that

Cov[µt+j , µt+k | Dt] = F T

t+j Ct(j, k)Ft+k.

Exercises

1. Prove Theorem 2.1 using elementary probability (for simplicity, do not bother
to condition everything on D).

2. Prove Cov[x, y | D] = Cov[x, E[y | x,D] | D].

3. Prove (4) and (5).

4. Give explicit (i.e. non-recursive) expressions for (4) and (5) in the case where{
Ft+k, Vt+k, Gt+k,Wt+k

}
=
{
F, V,G,W

}
for all k ≥ 1. A dlm in which these

four quantities are time-invariant is known as a ‘times series dlm’.


