10 “Answers” to the exerises Answer: We prove these by induction. Equations (4) are obvi-
. ously true for k = 0. Assume they are true for k — 1. At time k
Exercises
we have, for the mean,

1. Prove Theorem 2.1 using elementary probability (for simplicity, do
B0k | Di]

= E[E[0i1k | Or4r—1,D:] | Dyl
E[E[0i1 | Or+r—1] | Di]
ElG

t+k Otpx—1 | Di]

not bother to condition everything on D). a(k) =

Answer: This is first-year book-work!

= Zp(x

= Z Z plai | ) p(z) | @i
using the graph of the DLM in the usual fashion. The variance

= Zp(zj) szp(xz | ;) is similar.
J i

We can do the covariance a bit differently. We have, introducing

Givrar(k—1)

= E[E[z; | 2]] Ort5,

as requlred. COV[9t+j, 0t+k | Dt] = COV[9t+j, E[9t+k | 9t+j] | Df] .

2. Prove Cov[z, y | D] = Cov[z, E[y | =, D] | D].

. . . Then it is easy to see that, as above,
Answer: We introduce x itself. In this case Cov[z, y |z,D] = 0

and its expectation is also 0, so we are left with Cov[z, y | D] = E[0r4s | 01+i] = E[E[0rrk | Orn1] | Ors]

CovlE[z | z, D], Ely | z, D] | D] = Cov[z, Ely | =, D] | D], as required.
= Gk E[0t -1 | 0145]

3. (a) Show that (equation numbers relate to hand-out sheet 2) = ...

El0isr | D] = ar(k) := Gryrar(k — 1) (4) rrk TR LT
Var (04 | Di] = Ri(k) := Giqp Re(k — 1) Gy + Wiy, Substsituting this into the covariance expression gives
subject to the initial values a;(0) := m; and R;(0) := C;, and Cov[fiyj, Orsr | Di] = Cov[Oisj, Orsi | Di] (Gior Geyn1 -+ Gy jrr)T
that, f 0<j<k .
at, forany U= J < #, = R.(j) G1+j+1G-tr+j+2 Gk
Cov[0ttj, Orrr | Di] = Ce(j, k) = Ce(4, k — 1) Giy, (5) which is the explicit form of the recursive expression above.

subject to the initial values Ci(4,j) = R:(j). (b) Give explicit (i.e. non-recursive) expressions for (4) and (5) in



the case where {FH;C, ‘/}+k,Gt+k7Wt+k} = {F, V,G,W} for all
k>1.

Answer: By back-substitution we must have

at(k) = kat
k—1

Colk) =D _(GYW(G)' + GFCy(GT)*
i=0

4. Consider the ‘random walk with noise’ DLM,

Yo =0+ 1y v ~ (0, V)
O =01 +w w~ (0, W)

where 0; is a scalar, and both V and W are time-invariant. Starting
from 0,1 ~ (my_1, Cy_1), compute the mean and variance for 6; |
D;.

Answer: In this DLM we have F = G = 1. So we find that
at = E[Gt | Dt—l] = E[E[et | 9t—1] | Dt—l] = E[et—l \ Dt—l] =Mmt—1

Rt:Var[Gt ‘ thl] :"':thl"’_W

Then it follows (from F = 1) that y; | Dy—1 ~ {(as, Ry + V) and
Cov[b:, yi | Di—1] = R;. This gives

Cia +W

El0, | D) =my, 4+ — =L
b1 Du] = mums + Z= =y e = me)
=wi_1 Y+ (1 —wp—1) M1

(Cy_1 +W)?
Var[0, | D, =Cp 1+ W — =t )
ar{fe | Di] = G + Coa WV

=wi1 V

where w;_1 := (Ci—1 + W)/(Ci—1 + W + V) and we must have 0 <

wi_1 <1V >0and W > 0.

. In the generic DLM we can have known non-zero ‘intercepts’ h; and

g¢ in the observation and state equations respectively,

Yo =he + F 0 + 1y v ~ (0, Vi)
O =gt +Gi 01 +wr wp ~ (0, Wy)
How does the presence of these two intercepts affect the updating of

our beliefs about ; by the datum ;7

Answer: Tt simply changes the values of E[f; | D;_1] and E[y: | Dy—1].
Thus E[; | D;] will be different but Var [f; | D;] will be unchanged.

. Consider the case of an object in 2-dimensional Euclidean space

falling freely (but not necessarily vertically) under gravity. Denote
the location of this object by (z¢,y:), and denote the general state

vector as 0;.

(a) What is an appropriate state equation for this object? How do

you interpret the elements of the state vector?

Answer: It’s falling freely under gravity, so the only force it
experiences is a constant downward force. Neglecting friction,

this suggests bolting two plynomial growth models together:

Ly O
0, = 01 + ~ (0, W
t (0 L3> t—1 T Wt Wt < >

where 0; = (xt,a'ct, yt,yt,yt) In other words, = ‘velocity’ (&) is
‘constant’ (i.e. not systematically increasing or decreasing), and

y ‘acceleration’ ({;) is ‘constant’.

(b) What factors might you consider in determining the error vari-

ance for your state equation?



Answer: Remember with the simple polynomial growth model
of order n that
W =L,D(L,)"

where D is a diagonal variance matrix. If we bolt two together,

W (LQDI(LQ)T 0 )
0 L3Dy(L3)T

we get

where D, and D, are diagonal variance matrices for the hori-
zontal and vertical displacement terms, respectively. So we need

one variance scalar per term of 6.

Friction affects the vertical displacement (and the horizontal
displacement if &; is large), in conjunction with the object’s
shape and rotation. Winds affect the horizontal displacement.
I might be tempted to put most of my uncertainty into the
evolution of the &; and §j; terms, with only a bit in the others to
account for the truncation error that must be present because

we are working with discrete time steps At rather than dt.

Every five seconds I record the angle a; between the ground
and the object from my location (z,0). What is the observation

equation?

Answer: By simple trigonometry we have tan oy = y; /(2 — Z),
or
Qp = arctan (yt/(gjt - Zf)) —+ 1 Vg ~ <0, V>

where V is the variance of the measurement error.

Given 0y | Dy—1 ~ {(as, R:), how do I compute the mean and

variance of oy | D;_1, and the covariance Cov[f;, ay | Dy—1] ?

Answer: 1 linearise the observation equation around a;, the

prior mean for 6;. In general, if a; = f(6;) + v4, then
o ~ f(at) + Vf(at)(Qt - at) +
(treating V f(a;) as a row vector). So, after conditioning on 6,

Elay | Di—1] = f(ar)
Var [O[t | thl] = (Ft)TRtFt +V
COV[Qgt, (e % | Dt—l] = RtFt

where (Fy)" = V f(ay).

In this particular case we have

f(6;) = arctan (y;/(z; — &)) = arctan (6y3/ (0,1 — T)).

This gives us f(a;) directly, leaving only F} to be found. Re-

membering that - arctanz = 1/(1 + 22), we have

—a3/(ap — T)?

0
1
Fy = 1/(apn —
].+ (atg/(atl — f))2 /( 0 )
0

which completes the calculation.



