
10 “Answers” to the exerises

Exercises

1. Prove Theorem 2.1 using elementary probability (for simplicity, do
not bother to condition everything on D).

Answer: This is first-year book-work!

E[x] =
∑

i

p(xi) xi

=
∑

i

∑
j

p(xi | zj) p(zj)

 xi

=
∑

j

p(zj)
∑

i

xi p(xi | zj)

= E[E[xi | z]]

as required.

2. Prove Cov[x, y | D] = Cov[x, E[y | x,D] | D].

Answer: We introduce x itself. In this case Cov[x, y | x, D] = 0
and its expectation is also 0, so we are left with Cov[x, y | D] =
Cov[E[x | x,D] , E[y | x,D] | D] = Cov[x, E[y | x, D] | D], as required.

3. (a) Show that (equation numbers relate to hand-out sheet 2)

E[θt+k | Dt] = at(k) := Gt+k at(k − 1)

Var [θt+k | Dt] = Rt(k) := Gt+k Rt(k − 1) GT

t+k + Wt+k

(4)

subject to the initial values at(0) := mt and Rt(0) := Ct, and
that, for any 0 ≤ j < k,

Cov[θt+j , θt+k | Dt] = Ct(j, k) := Ct(j, k − 1) GT

t+k (5)

subject to the initial values Ct(j, j) = Rt(j).

Answer: We prove these by induction. Equations (4) are obvi-
ously true for k = 0. Assume they are true for k− 1. At time k

we have, for the mean,

at(k) := E[θt+k | Dt]

= E[E[θt+k | θt+k−1, Dt] | Dt]

= E[E[θt+k | θt+k−1] | Dt]

= E[Gt+k θt+k−1 | Dt]

= Gt+k at(k − 1)

using the graph of the dlm in the usual fashion. The variance
is similar.

We can do the covariance a bit differently. We have, introducing
θt+j ,

Cov[θt+j , θt+k | Dt] = Cov[θt+j , E[θt+k | θt+j ] | Dt] .

Then it is easy to see that, as above,

E[θt+k | θt+j ] = E[E[θt+k | θt+k−1] | θt+j ]

= Gt+k E[θt+k−1 | θt+j ]

= · · ·

= Gt+k Gt+k−1 · · ·Gt+j+1 θt+j .

Substsituting this into the covariance expression gives

Cov[θt+j , θt+k | Dt] = Cov[θt+j , θt+j | Dt] (Gt+k Gt+k−1 · · ·Gt+j+1)T

= Rt(j)GT

t+j+1G
T

t+j+2 · · ·GT

t+k

which is the explicit form of the recursive expression above.

(b) Give explicit (i.e. non-recursive) expressions for (4) and (5) in



the case where
{
Ft+k, Vt+k, Gt+k,Wt+k

}
=
{
F, V, G,W

}
for all

k ≥ 1.

Answer: By back-substitution we must have

at(k) = Gkmt

Ct(k) =
k−1∑
i=0

(Gi)W (GT)i + GkCt(GT)k

4. Consider the ‘random walk with noise’ dlm,

yt = θt + νt νt ∼ 〈0, V 〉

θt = θt−1 + ωt ωt ∼ 〈0, W 〉

where θt is a scalar, and both V and W are time-invariant. Starting
from θt−1 ∼ 〈mt−1, Ct−1〉, compute the mean and variance for θt |
Dt.

Answer: In this dlm we have F = G = 1. So we find that

at = E[θt | Dt−1] = E[E[θt | θt−1] | Dt−1] = E[θt−1 | Dt−1] = mt−1

Rt = Var [θt | Dt−1] = · · · = Ct−1 + W.

Then it follows (from F = 1) that yt | Dt−1 ∼ 〈at, Rt + V 〉 and
Cov[θt, yt | Dt−1] = Rt. This gives

E[θt | Dt] = mt−1 +
Ct−1 + W

Ct−1 + W + V
(yt −mt−1)

= wt−1 yt + (1− wt−1) mt−1

Var [θt | Dt] = Ct−1 + W − (Ct−1 + W )2

Ct−1 + W + V

= wt−1 V

where wt−1 := (Ct−1 + W )/(Ct−1 + W + V ) and we must have 0 <

wt−1 < 1 if V > 0 and W > 0.

5. In the generic dlm we can have known non-zero ‘intercepts’ ht and
gt in the observation and state equations respectively,

yt = ht + F T

t θt + νt νt ∼ 〈0, Vt〉

θt = gt + Gt θt−1 + ωt ωt ∼ 〈0, Wt〉

How does the presence of these two intercepts affect the updating of
our beliefs about θt by the datum yt?

Answer: It simply changes the values of E[θt | Dt−1] and E[yt | Dt−1].
Thus E[θt | Dt] will be different but Var [θt | Dt] will be unchanged.

6. Consider the case of an object in 2-dimensional Euclidean space
falling freely (but not necessarily vertically) under gravity. Denote
the location of this object by (xt, yt), and denote the general state
vector as θt.

(a) What is an appropriate state equation for this object? How do
you interpret the elements of the state vector?

Answer: It’s falling freely under gravity, so the only force it
experiences is a constant downward force. Neglecting friction,
this suggests bolting two plynomial growth models together:

θt =

(
L2 0

0 L3

)
θt−1 + ωt ωt ∼ 〈0, W 〉

where θt =
(
xt, ẋt, yt, ẏt, ÿt

)
In other words, x ‘velocity’ (ẋt) is

‘constant’ (i.e. not systematically increasing or decreasing), and
y ‘acceleration’ (ÿt) is ‘constant’.

(b) What factors might you consider in determining the error vari-
ance for your state equation?



Answer: Remember with the simple polynomial growth model
of order n that

W = LnD(Ln)T

where D is a diagonal variance matrix. If we bolt two together,
we get

W =

(
L2Dx(L2)T 0

0 L3Dy(L3)T

)
where Dx and Dy are diagonal variance matrices for the hori-
zontal and vertical displacement terms, respectively. So we need
one variance scalar per term of θt.

Friction affects the vertical displacement (and the horizontal
displacement if ẋt is large), in conjunction with the object’s
shape and rotation. Winds affect the horizontal displacement.
I might be tempted to put most of my uncertainty into the
evolution of the ẋt and ÿt terms, with only a bit in the others to
account for the truncation error that must be present because
we are working with discrete time steps ∆t rather than dt.

(c) Every five seconds I record the angle αt between the ground
and the object from my location (x̄, 0). What is the observation
equation?

Answer: By simple trigonometry we have tanαt = yt/(xt − x̄),
or

αt = arctan
(
yt/(xt − x̄)

)
+ νt νt ∼ 〈0, V 〉

where V is the variance of the measurement error.

(d) Given θt | Dt−1 ∼ 〈at, Rt〉, how do I compute the mean and
variance of αt | Dt−1, and the covariance Cov[θt, αt | Dt−1] ?

Answer: I linearise the observation equation around at, the

prior mean for θt. In general, if αt = f(θt) + νt, then

αt ≈ f(at) +∇f(at)(θt − at) + νt

(treating ∇f(at) as a row vector). So, after conditioning on θt,

E[αt | Dt−1] = f(at)

Var [αt | Dt−1] = (Ft)TRtFt + V

Cov[θt, αt | Dt−1] = RtFt

where (Ft)T = ∇f(at).

In this particular case we have

f(θt) = arctan
(
yt/(xt − x̄)

)
= arctan

(
θt3/(θt1 − x̄)

)
.

This gives us f(at) directly, leaving only Ft to be found. Re-
membering that d

dx arctanx = 1/(1 + x2), we have

Ft =
1

1 +
(
at3/(at1 − x̄)

)2

−at3/(at1 − x̄)2

0
1/(at1 − x̄)

0
0


which completes the calculation.


