Hurrah for Proxy Data!

Jonathan Rougier

Dept. Mathematical Sciences, University of Durham, UK

Abstract

Acceptable inferences for future climate need to be constrained by a range of different types of data, taken not just from the climate state vector, but also from physical and biological processes that are affected by climate ("proxy data"). I explain why this is, what types of proxy data might be used, and, looking to the future, how they should be incorporated.

Computer Experiments

Computer Experiment: (Probabilistic) inference about a system using a computer simulator:

Model + Treatment + Solver = Simulator

Computer Experiments

Computer Experiment: (Probabilistic) inference about a system using a computer simulator:

Model + Treatment + Solver = Simulator

- Sources of uncertainty:
 - Uncertain model parameters
 - Simulator inadequacy (a.k.a. "structural error")
 - Measurement error on system data used for calibration

Computer Experiments

Computer Experiment: (Probabilistic) inference about a system using a computer simulator:

```
Model + Treatment + Solver = Simulator
```

- Sources of uncertainty:
 - Uncertain model parameters
 - Simulator inadequacy (a.k.a. "structural error")
 - Measurement error on system data used for calibration
- Statistical insights can help with
 - Specifying prior uncertainties
 - Understanding the inferential calculation
 - Choosing informative evaluations
 - In the second second

Question: What is the probability that global mean climate will be 2°C warmer in 2100?

- Question: What is the probability that global mean climate will be 2°C warmer in 2100?
- Climate sensitivity is the change in steady-state global mean temperature following a doubling of atmospheric CO₂. We denote it as λ. It is a key input into climate change impact assessment, and into the development of response strategies (mitigate, adapt).

- Question: What is the probability that global mean climate will be 2°C warmer in 2100?
- Climate sensitivity is the change in steady-state global mean temperature following a doubling of atmospheric CO₂. We denote it as λ. It is a key input into climate change impact assessment, and into the development of response strategies (mitigate, adapt).
- Solution We ought to be able to compute it using a computer simulator of climate, $g(\cdot)$ say. The problem is that we are not sure about the correct parameterisation of the simulator. In a nutshell, we need to estimate

$$F_{\lambda}(\ell) \triangleq \Pr(\lambda \leq \ell)$$
 where $\lambda \triangleq g_{\lambda}(x^*)$

and x^* is uncertain, with probability distribution function F_{x^*} .

- Question: What is the probability that global mean climate will be 2°C warmer in 2100?
- Climate sensitivity is the change in steady-state global mean temperature following a doubling of atmospheric CO₂. We denote it as λ. It is a key input into climate change impact assessment, and into the development of response strategies (mitigate, adapt).
- Solution We ought to be able to compute it using a computer simulator of climate, $g(\cdot)$ say. The problem is that we are not sure about the correct parameterisation of the simulator. In a nutshell, we need to estimate

$$F_{\lambda}(\ell) \triangleq \Pr(\lambda \leq \ell)$$
 where $\lambda \triangleq g_{\lambda}(x^*)$

and x^* is uncertain, with probability distribution function F_{x^*} .

To help us, we will *calibrate* our climate simulator using observations on actual climate.

The prior predictive distribution

 F_{λ} is known as the *prior predictive distribution*. Formally we write it as

$$F_{\lambda}(\ell) = \int_{x} \mathbf{1} (g_{\lambda}(x) \le \ell) \ dF_{x^*}(x)$$

where $\mathbf{1}(\cdot)$ is the indicator function. This operation sums the probability content of the region of x^* for which the simulator gives a climate sensitivity value less than ℓ .

The prior predictive distribution

 F_{λ} is known as the *prior predictive distribution*. Formally we write it as

$$F_{\lambda}(\ell) = \int_{x} \mathbf{1} (g_{\lambda}(x) \le \ell) \ dF_{x^*}(x)$$

where $\mathbf{1}(\cdot)$ is the indicator function. This operation sums the probability content of the region of x^* for which the simulator gives a climate sensitivity value less than ℓ .

The simplest way to estimate F_{λ} is by Monte Carlo integration:

$$\hat{F}_{\lambda}^{(n)}(\ell) \triangleq n^{-1} \sum_{i=1}^{n} \mathbf{1} \big(g_{\lambda}(X_i) \leq \ell \big)$$

where X_1, \ldots, X_n are independently sampled from F_{x^*} .

The prior predictive distribution

 F_{λ} is known as the *prior predictive distribution*. Formally we write it as

$$F_{\lambda}(\ell) = \int_{x} \mathbf{1} (g_{\lambda}(x) \le \ell) \ dF_{x^*}(x)$$

where $\mathbf{1}(\cdot)$ is the indicator function. This operation sums the probability content of the region of x^* for which the simulator gives a climate sensitivity value less than ℓ .

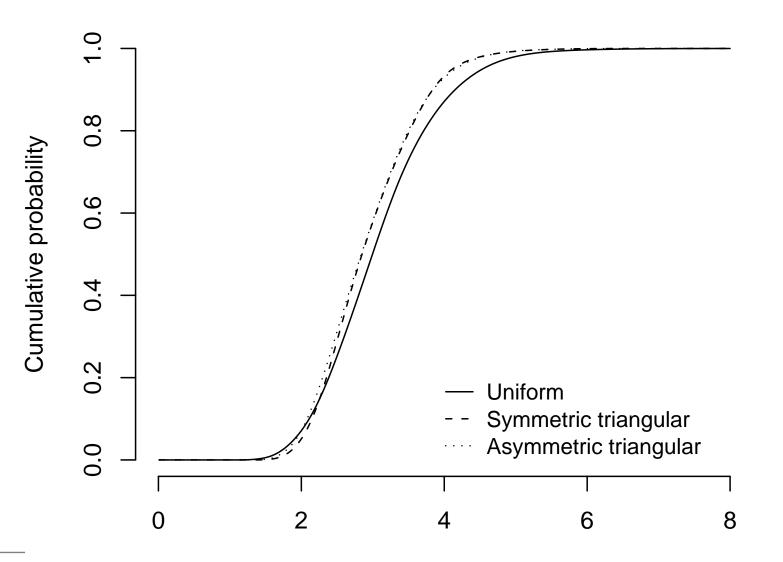
The simplest way to estimate F_{λ} is by *Monte Carlo integration*:

$$\hat{F}_{\lambda}^{(n)}(\ell) \triangleq n^{-1} \sum_{i=1}^{n} \mathbf{1} \big(g_{\lambda}(X_i) \leq \ell \big)$$

where X_1, \ldots, X_n are independently sampled from F_{x^*} .

Solution By the Strong Law of Large Numbers, we have $\lim_{n\to\infty} \hat{F}_{\lambda}^{(n)}(\ell) \to F_{\lambda}(\ell)$. There are lots of ways we might improve our estimate of F_{λ} , for example importance sampling with variance reduction techniques.

An example, following Murphy et al (2004)



Climate sensitivity, K

Hurrah for Proxy Data! - p. 6/

The posterior predictive distribution

This distribution is much more interesting! It incorporates information about x^* from actual climate data.

The posterior predictive distribution

- This distribution is much more interesting! It incorporates information about x^* from actual climate data.
- Applying Bayes's theorem,

$$\begin{split} F_{\lambda|z}(\ell) &\triangleq \Pr(\lambda \le \ell \mid z = \tilde{z}) \\ &= c \int_{x} \mathbf{1} \big(g_{\lambda}(x) \le \ell \big) \operatorname{Lik}_{\tilde{z}}(x) \ dF_{x^{*}}(x) \end{split}$$

where
$$c \triangleq \Pr(z = \tilde{z})^{-1}$$
 and $\operatorname{Lik}_{\tilde{z}}(x) \triangleq \Pr(z = \tilde{z} \mid x^* = x)$.

Here z denotes the actual climate data, and \tilde{z} their observed values.

The posterior predictive distribution

- This distribution is much more interesting! It incorporates information about x^* from actual climate data.
- Applying Bayes's theorem,

$$F_{\lambda|z}(\ell) \triangleq \Pr(\lambda \le \ell \mid z = \tilde{z})$$
$$= c \int_{x} \mathbf{1} (g_{\lambda}(x) \le \ell) \operatorname{Lik}_{\tilde{z}}(x) \, dF_{x^{*}}(x)$$

where
$$c \triangleq \Pr(z = \tilde{z})^{-1}$$
 and $\operatorname{Lik}_{\tilde{z}}(x) \triangleq \Pr(z = \tilde{z} \mid x^* = x)$.

Here z denotes the actual climate data, and \tilde{z} their observed values.

In order to specify the *likelihood function* $\text{Lik}_{\tilde{z}}(\cdot)$, we need a statistical model linking x^* and z; for example

$$z = g_z(x^*) + \epsilon + e$$

where x^* , ϵ and e are mutually independent, and $(\epsilon, e) \sim$ Gaussian.

The posterior PD (cont)

Under our assumptions we have

$$\mathsf{Lik}_{\tilde{z}}(x) = \phi\big(\tilde{z} ; g_z(x), \Sigma^{\epsilon} + \Sigma^e\big)$$

where $\phi(\cdot; \cdot, \cdot)$ is a gaussian probability density function with given mean vector and variance matrix (we must specify Σ^{ϵ} and Σ^{e}).

The posterior PD (cont)

Under our assumptions we have

$$\mathsf{Lik}_{\tilde{z}}(x) = \phi\big(\tilde{z} ; g_z(x), \Sigma^{\epsilon} + \Sigma^e\big)$$

where $\phi(\cdot; \cdot, \cdot)$ is a gaussian probability density function with given mean vector and variance matrix (we must specify Σ^{ϵ} and Σ^{e}).

Now we can estimate $F_{\lambda|z}$ using the Monte Carlo approach:

$$\hat{F}_{\lambda|z}^{(n)}(\ell) \triangleq \sum_{i=1}^{n} w_i \, \mathbf{1} \big(g_{\lambda}(x) \le \ell \big)$$

where $w_i \propto \text{Lik}_{\tilde{z}}(X_i)$ and $\sum_{i=1}^n w_i = 1$, and X_1, \ldots, X_n are sampled as before.

The posterior PD (cont)

Under our assumptions we have

$$\mathsf{Lik}_{\tilde{z}}(x) = \phi\big(\tilde{z} ; g_z(x), \Sigma^{\epsilon} + \Sigma^e\big)$$

where $\phi(\cdot; \cdot, \cdot)$ is a gaussian probability density function with given mean vector and variance matrix (we must specify Σ^{ϵ} and Σ^{e}).

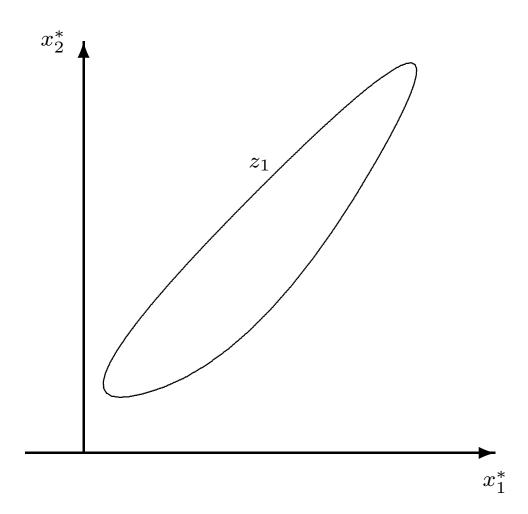
Now we can estimate $F_{\lambda|z}$ using the Monte Carlo approach:

$$\hat{F}_{\lambda|z}^{(n)}(\ell) \triangleq \sum_{i=1}^{n} w_i \, \mathbf{1} \big(g_{\lambda}(x) \le \ell \big)$$

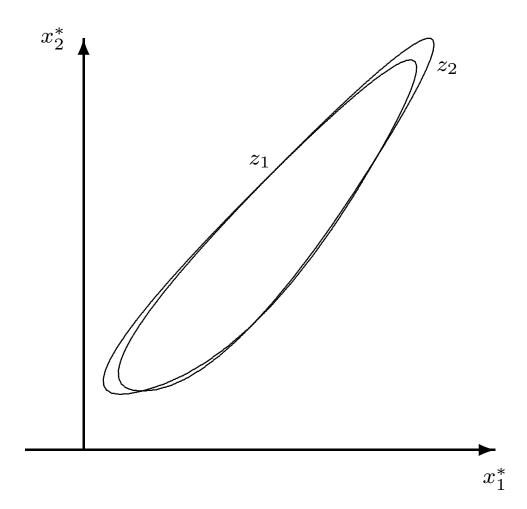
where $w_i \propto \text{Lik}_{\tilde{z}}(X_i)$ and $\sum_{i=1}^n w_i = 1$, and X_1, \ldots, X_n are sampled as before.

For the prior predictive distribution we had $w_i \propto 1$. The effect of the data $z = \tilde{z}$ is to down-weight the contribution of candidate values for x^* for which the simulator is not able to replicate the actual data \tilde{z} .

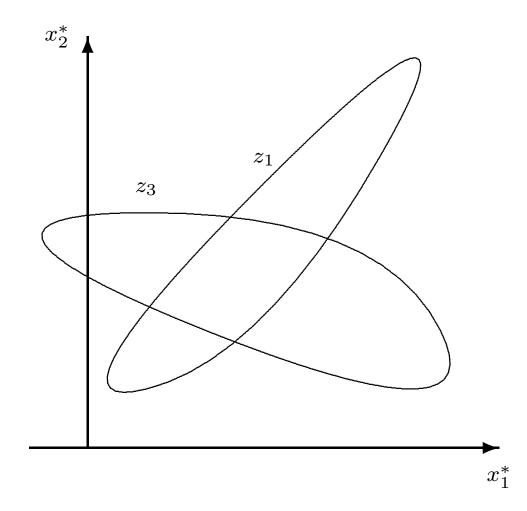
The role of the data z



The role of the data z



The role of the data z



In the Bayesian paradigm, the role of the prior distribution F_{x^*} is diminished as the amount of data becomes large, and the likelihood function becomes 'concentrated'.

- In the Bayesian paradigm, the role of the prior distribution F_{x^*} is diminished as the amount of data becomes large, and the likelihood function becomes 'concentrated'.
- The standard data comprises observations on the *climate state vector*, i.e. measurements that can be mapped directly to the output of the climate simulator: temperature, pressure, salinity, humidity, velocity, clouds *etc.*. These measurements are plentiful, but they do not constrain x* enough.

- In the Bayesian paradigm, the role of the prior distribution F_{x^*} is diminished as the amount of data becomes large, and the likelihood function becomes 'concentrated'.
- The standard data comprises observations on the *climate state vector*, i.e. measurements that can be mapped directly to the output of the climate simulator: temperature, pressure, salinity, humidity, velocity, clouds *etc.*. These measurements are plentiful, but they do not constrain x* enough.
- Proxy data are observations made on processes that are affected by climate. They are quite different from the climate state vector, and quite different from each other.

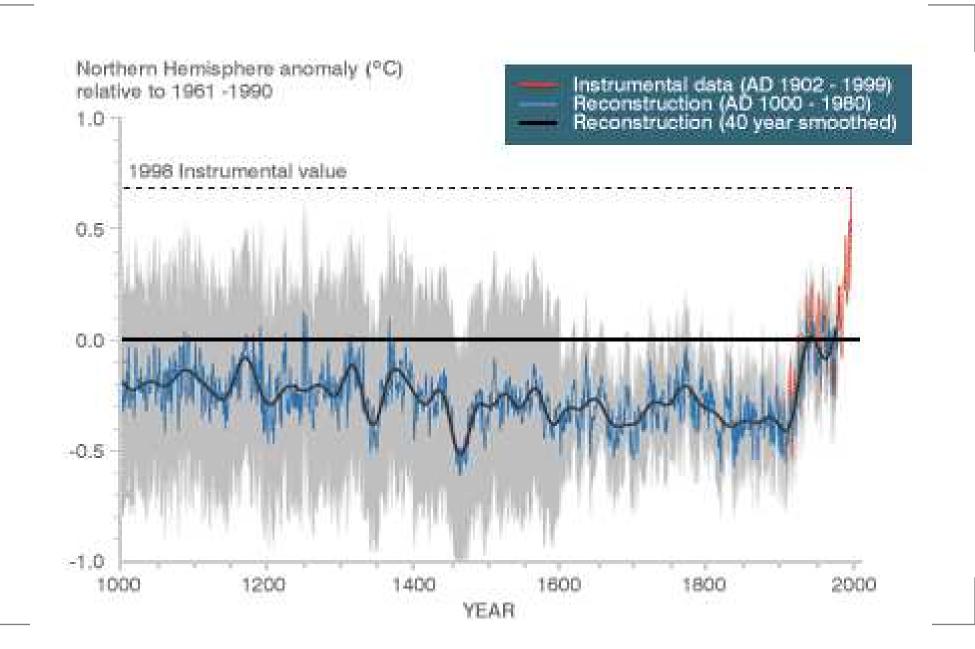
- In the Bayesian paradigm, the role of the prior distribution F_{x^*} is diminished as the amount of data becomes large, and the likelihood function becomes 'concentrated'.
- The standard data comprises observations on the *climate state vector*, i.e. measurements that can be mapped directly to the output of the climate simulator: temperature, pressure, salinity, humidity, velocity, clouds *etc.*. These measurements are plentiful, but they do not constrain x* enough.
- Proxy data are observations made on processes that are affected by climate. They are quite different from the climate state vector, and quite different from each other.
- My favourite sources of proxy data:
 - Fossilised tree-rings (dendrochronology)
 - Sedimentary record of temperature-sensitive organisms
 - Oceanic water oxygen-isotope ratio
 - Composition of atmospheric bubbles in ice-cores
 - Geological evidence from strata

If z is our proxy data, and y is the true value of the climate state vector, then typically we can construct a 'forward' mapping of the form

 $(x^*, y) \mapsto z$

where x^* contains important climate forcing variables like atmospheric CO₂, or spatio-temporal descriptors such as land-use and forestation.

■ The wrong way: Try and turn the proxy data into measurements on the climate state vector. This will not work well because the 'forward' mapping is not invertible in the form $z \rightarrow y$. But that has not stopped the climate scientists!



If z is our proxy data, and y is the true value of the climate state vector, then typically we can construct a 'forward' mapping of the form

 $(x^*, y) \to z$

where x^* contains important climate forcing variables like atmospheric CO₂, or spatio-temporal descriptors such as land-use and forestation.

■ The wrong way: Try and turn the proxy data into measurements on the climate state vector. This will not work well because the 'forward' mapping is not invertible in the form $z \rightarrow y$. But that has not stopped the climate scientists!

If z is our proxy data, and y is the true value of the climate state vector, then typically we can construct a 'forward' mapping of the form

 $(x^*, y) \to z$

where x^* contains important climate forcing variables like atmospheric CO₂, or spatio-temporal descriptors such as land-use and forestation.

- The wrong way: Try and turn the proxy data into measurements on the climate state vector. This will not work well because the 'forward' mapping is not invertible in the form z → y. But that has not stopped the climate scientists!
- The right way: Add the forward mapping to the simulator, and include the proxy data in the simulator output. The rationale: The Bayesian approach is going to solve the inverse problem anyway, as long as we can write down the forward model.

Conclusion

- If you are doing a computer experiment and you want to make probabilistic inferences, there is a large body of literature to help
- Different computer experiments have different problems; with climate prediction, one problem is that the data are not sufficiently differentiated for a useful calibration
- Any data that are affected by the system being simulated can be used for calibration, if we can construct a 'forward model'
- Proxy data in climate, including biological data, could be disproportionately useful in calibrating climate simulators.