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We consider opportunity-based age replacement (OAR) using nonparametric predictive inference (NPI) for the time to
failure of a future unit. Based on n observed failure times, NPI provides lower and upper bounds for the survival
function for the time to failure Xnþ 1 of a future unit which lead to upper and lower cost functions, respectively, for
OAR based on the renewal reward theorem. Optimal OAR strategies for unit nþ 1 follow by minimizing these cost
functions. Following this strategy, unit nþ 1 is correctively replaced upon failure, or preventively replaced upon the first
opportunity after the optimal OAR threshold. We study the effect of this replacement information for unit nþ 1 on the
optimal OAR strategy for unit nþ 2. We illustrate our method with examples and a simulation study. Our method is
fully adaptive to available data, providing an alternative to the classical approach where the probability distribution of a
unit’s time to failure is assumed to be known. We discuss the possible use of our method and compare it with the
classical approach, where we conclude that in most situations our adaptive method performs very well, but that counter-
intuitive results can occur.
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Introduction

In age replacement, a unit is replaced upon failure or upon

reaching a predetermined age, whichever occurs first. In

opportunity-based age replacement (OAR), a unit is

replaced upon failure or upon the first opportunity after

reaching a predetermined threshold age, whichever occurs

first. Within theory of stochastic processes, the optimal

preventive replacement age, in the sense of leading to

minimal expected costs per unit of time when the strategy is

used for a sequence of similar units over a long period of

time, is derived by application of the renewal reward

theorem, see, for example, Barlow and Proschan.1 Due to

its mathematical simplicity, this procedure is attractive even

though one realizes that the resulting optimal strategy may

only be used for a few such cycles, for example because the

unit would normally undergo some technical updates within

reasonable period of time, or one wishes to change the policy

in light of new information that may occur during the

process.

Age replacement has predominantly been studied from a

classical Operational Research perspective, where the prob-

ability distribution for the time to failure of the unit is

assumed to be known. However, Mazzuchi and Soyer2

studied age replacement within a Bayesian framework,

allowing the assumed parametric failure time distribution

to be updated when new data from the process become

available. Instead of using the renewal reward criterion, they

minimize the expected costs per unit of time over a single

cycle to avoid the assumption of long-term use of the same

strategy. Sheu et al3 also present a Bayesian approach to

preventive maintenance modelling. As an alternative,

recognizing that one often has scarce information in the

form of observed failure times, one could also base

replacement decisions entirely on expert judgments.4,5

As an alternative to these approaches, OR-based decision

making aspects for age replacement have been combined

with nonparametric predictive inference (NPI) for the failure

time distribution,6,7 where the age replacement problem

formulation is based on renewal theory, but instead of

assuming a known probability distribution for the time to

failure of a unit, imprecise predictive survival functions for

the time to failure of the next unit are used, based on failure

times of n previous units. Such NPI-based methods enable

study of the way that resulting optimal replacement

strategies adapt to available data.

Although age replacement has been widely studied, OAR

has not received much attention, see Dekker and Dijkstra8

and Jhang and Sheu9 for overviews. In this paper we

consider the same OAR model as Dekker and Dijkstra,8

where the opportunities are generated independently of the

time to failure of the unit considered, but we use imprecise

predictive survival functions for the failure time distribution
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of the next unit. As Dekker and Dijkstra,8 we restrict

attention to the case in which the opportunities occur

according to a Poisson process.

The outline of this paper is as follows. First, we provide

the necessary details of NPI, referring to the literature for

justifications and further discussions. Then we describe the

OAR model and we derive the lower and upper cost

functions and optimal OAR strategies for unit nþ 1. Then

we consider unit nþ 2, taking the failure time information

resulting from the replacement of unit nþ 1 into account in

our NPI-based adaptive replacement strategies. We present

the results of a simulation study used to analyse the

performance of our method. Finally, we comment on the

main conclusions of this work, and discuss the wider

relevance of this study. The proofs of some of the analytical

results are presented in Appendix A.

Nonparametric predictive inference

We consider a situation where we have observed n failure

times, ordered as x(1)ox(2)o?ox(n). Instead of assuming a

known probability distribution function for a future failure

time Xnþ 1, we specify direct probabilities for Xnþ 1

according to Hill’s assumption A(n),
10,11 that is,

PðXnþ 1 2 ðxðjÞ; xðjþ 1ÞÞÞ ¼
1

n þ 1
; j ¼ 0; . . . ; n

where x(0)¼ 0 and x(nþ 1)¼N, or x(nþ 1)¼ r if we can

assume a finite upper bound r for the support of Xnþ 1. A(n)

is a post-data assumption related to exchangeability12, see

Hill13 for a discussion of A(n) and on overview of related

work, see Coolen et al14 for an introduction to A(n)-based

NPI in reliability. The assumption A(n) is not sufficient to

derive precise probabilities for all possible events of interest,

as it only partially defines a probability distribution for

Xnþ 1. Applying De Finetti’s ‘fundamental theorem of

probability’12 it provides, however, optimal bounds for all

probabilities of interest, which are lower and upper

probabilities in the theory of interval probability.11

In this paper, we study how the optimal OAR strategy for

Xnþ 2 is affected if information on the failure time Xnþ 1

becomes available, once we have applied the optimal OAR

strategy for Xnþ 1. The observation of the failure time of unit

nþ 1 can either be an actual time of failure, if corrective

replacement took place, or a right-censored observation in

case of preventive replacement. As Hill’s A(n) does not

directly allow right-censored observations, we use a general-

ization of A(n), called right-censored-A(n) and denoted by rc-

A(n), developed by Coolen and Yan.15

To study the adaptive behaviour of the optimal OAR

strategies, we only use the assumption rc-A(nþ 1) for the

situation where the data consist of the n observed failure

times, denoted as before, and a right-censored observation

for Xnþ 1, denoted by xc. Note that rc-A(n) also allows the

method presented in this paper to be generalized to data sets

including multiple right-censored observations, but this

would greatly increase the complexity of the expressions

and would not add much to the insights we gain later in this

paper.

In this paper, we only use lower and upper survival

functions for Xnþ 1 and Xnþ 2 resulting from A(n) and,

depending on whether the observation for unit nþ 1 is a

failure time or a right-censoring time, A(nþ 1) or rc-A(nþ 1).

These lower and upper survival functions are the tightest

bounds corresponding to these assumptions, using the data

as described above. For Xnþ 1, based on A(n), the lower and

upper survival functions are denoted by SXnþ 1
ð�Þ and

SXnþ 1
ð�Þ, respectively, and are

SXnþ 1
ðxÞ ¼ SXnþ 1

ðxðjþ 1ÞÞ ¼
n� j

n þ 1

for x 2 xð ðjÞ; xðjþ 1Þ�; j ¼ 0; . . . ; n
ð1Þ

SXnþ 1
ðxÞ ¼ SXnþ 1

ðxðjÞÞ ¼
n þ 1� j

n þ 1

for x 2 ½xðjÞ; xðjþ 1ÞÞ; j ¼ 0; . . . ; n

ð2Þ

For Xnþ 2 the lower and upper survival functions depend

also on the observation for unit nþ 1. If an actual time of

failure is observed for unit nþ 1, then the assumption A(nþ 1)

leads to lower and upper survival functions for Xnþ 2 which

are directly obtained from (1) and (2) by replacing n by nþ 1.

In case of a right-censored observation xc for unit nþ 1, we

distinguish between two cases that are relevant in this paper,

both using the assumption rc-A(nþ 1). The lower and upper

survival functions below are easily justified using the theory

presented by Coolen and Yan,15 and can be regarded as

predictive alternatives to the well-known product-limit

estimator of Kaplan and Meier.14,15 We first consider the

lower survival functions, as these not only decrease at the

observed x(j), j¼ 1,y, n, but also at xc. The first case is when

xc¼x(k) for some kA{1,y, n}, a situation which also

occurred with NPI for age replacement,7 giving for

xA(x(j),x(jþ 1)],

SXnþ 2
ðxÞ ¼ n� j þ 1

n þ 2
for j ¼ 0; . . . ; k� 1 ð3Þ

SXnþ 2
ðxÞ ¼ ðn� jÞðn� k þ 2Þ

ðn þ 2Þðn� k þ 1Þ for j ¼ k; . . . ; n ð4Þ

The second case which is relevant in this paper, but did not

occur in Coolen-Schrijner and Coolen,7 is xcA(x(k),x(kþ 1))

for some kA{0,y, n}. The lower survival function for Xnþ 2

in this case is

SXnþ 2
ðxÞ ¼ n� j þ 1

n þ 2

for x 2 ðxðjÞ; xðjþ 1Þ�; j ¼ 0; . . . ; k� 1

ð5Þ
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SXnþ 2
ðxÞ ¼ n� k þ 1

n þ 2
for x 2 ðxðkÞ; xc� ð6Þ

SXnþ 2
ðxÞ ¼ ðn� kÞðn� k þ 2Þ

ðn þ 2Þðn� k þ 1Þ for x 2 ðxc; xðkþ 1Þ� ð7Þ

SXnþ 2
ðxÞ ¼ ðn� jÞðn� k þ 2Þ

ðn þ 2Þðn� k þ 1Þ
for x 2 ðxðjÞ; xðjþ 1Þ�; j ¼ k þ 1; . . . ; n

ð8Þ

For the upper survival functions we do not need to

distinguish between these two cases.15 Let kA{0,y, n} be

such that xcA[x(k),x(kþ 1)), then for xA[x(j),x(jþ 1)),

SXnþ 2
ðxÞ ¼ n� j þ 2

n þ 2
for j ¼ 0; . . . ; k� 1 ð9Þ

SXnþ 2
ðxÞ ¼ ðn� j þ 1Þðn� k þ 2Þ

ðn þ 2Þðn� k þ 1Þ for j ¼ k; . . . ;n ð10Þ

Note that in the points x(j) the upper and lower survival

functions are identical. These upper and lower predictive

survival functions are used to derive the cost functions in the

next section.

The opportunity-based age replacement model

In a basic age replacement model (AR),1 an item is replaced

upon failure (‘corrective replacement’) at a cost cf or upon

reaching the age T (‘preventive replacement’) at a cost cp
with 0ocpocf, whichever occurs first. In the classical setting,

a unit’s failure time is represented by a random quantity, say

X, assumed to belong to a population of independent and

identically distributed random quantities. For this case, the

survival function for X is denoted by SX(x)¼P(X4x). Let

C(T) be the long-run average cost per unit time under this

policy and let R(T) be the cost per cycle, which is the period

between two consecutive replacements, and L(T) be the

length of a cycle, then the renewal reward theorem gives1,6

CðTÞ ¼ E½RðTÞ�
E½LðTÞ� ¼

cf � ðcf � cpÞSXðTÞR T
0 SXðxÞdx

ð11Þ

It is not always possible to carry out preventive replacement

at any moment in time. In an OAR model,8 preventive

replacements are only possible at opportunities. We assume

that these opportunities occur according to a Poisson

process with rate l40, independently of the failure time of

the unit. Consequently, both after a corrective and after a

preventive replacement, the residual time Y to the next

opportunity for replacement after time T is exponentially

distributed with mean 1/l. As we also assume that in case of

both kinds of replacement a new unit is installed, both these

events may be considered as the end of a renewal cycle.

The OAR rule prescribes replacement of a unit at the first

opportunity after threshold age T (‘preventive replacement’)

at a cost cp40, or upon failure (‘corrective replacement’) at a

cost cf4cp whichever occurs first. Let Cop(T) be the long-run

average cost per unit time under the OAR rule, Rop(T) be the

cost per cycle, and Lop(T) the length of a cycle under this

policy. Then, according to the renewal reward theorem, the

long-run average cost per unit time is equal to the expected

cost per cycle divided by the expected length of a cycle under

the OAR rule, where

E½RopðTÞ� ¼cpE½PðXXT þ YÞ�
þ cfE½PðXoT þ YÞ�

¼cf � ðcf � cpÞE½SXðT þ YÞ�
ð12Þ

and (see Appendix A)

E½LopðTÞ� ¼ E½minðX ;T þ YÞ�

¼
ZT
0

SXðxÞdx þ E½Y �E½SXðT þ YÞ� ð13Þ

Hence, the long-run average cost per unit time under the

OAR rule is

CopðTÞ ¼ cf � ðcf � cpÞE½SXðT þ YÞ�R T
0 SXðxÞdx þ E½Y �E½SXðT þ YÞ�

ð14Þ

Note that the AR can be obtained by taking Y¼ 0 with

probability 1. Dekker and Dijkstra8 consider the case where

the lifetimes have a known distribution. Under this

assumption, they present a strategy for preventive replace-

ments which minimizes the long-run average cost (14) within

the so-called age-based control limit policies. Under an age-

based control limit policy, a component is preventively

replaced at an opportunity if its age has passed the control

limit. In this paper, we do not assume a known distribution

function for the lifetimes, indeed we do not even restrict to a

parametric family of underlying distributions, but we use the

NPI-based lower and upper survival functions, as presented

in the previous section, on the basis of the observed failure

times for n units, and we study the optimal replacement

strategies according to these lower and upper survival

functions under an age-based control limit policy.

In Coolen-Schrijner and Coolen6 we applied the same

method to age replacement problems. Using NPI and the

renewal reward theorem, optimal age replacement times for

unit nþ 1 were obtained by minimizing upper and lower cost

functions for Xnþ 1. In Coolen-Schrijner and Coolen7 we

studied the effect on these optimal age replacement times

when the observation for Xnþ 1 under the optimal age

replacement strategy became available. In this paper, we

study how our method can be applied to OAR problems,

where we consider both the method’s performance for unit

nþ 1 and the way in which optimal strategies adapt for unit

P Coolen-Schrijner et al—Opportunity-based age replacement strategies 3



nþ 2 in the light of an observation for unit nþ 1 from this

process. The upper and lower A(n)-based survival functions

straightforwardly lead to bounds for the cost function (14).

In the following sections we derive the lower and upper cost

functions for Xnþ 1 and the lower and upper cost functions

for Xnþ 2, combining NPI with the renewal reward theorem.

Lower cost function CXnþ 1;opðTÞ

In this section, we derive the NPI-based lower cost function,

denoted by CXnþ 1;op
ðTÞ, for unit nþ 1 which will be replaced

preventively at the first opportunity after T or upon failure,

whichever occurs first. From (14) it follows that CXnþ 1;op
ðTÞ

is obtained by substituting the upper survival function

SXnþ 1
ð�Þ for SX( � ), as Cop(T) is decreasing in SX( � ) so

CXnþ 1;op
ðTÞ ¼ cf � ðcf � cpÞE½SXnþ 1

ðT þ YÞ�R T
0
SXnþ 1

ðxÞdx þ E½Y �E½SXnþ 1
ðT þ YÞ�

ð15Þ

As we assume throughout this paper that preventive

replacement opportunities occur according to a Poisson

process with rate l, the probability density function of Y is

fY(y)¼ le�ly, for yX0. For TA[x(j),x(jþ 1)), SXnþ 1
(T ) is given

by (2), and

E½SXnþ 1
ðT þ YÞ� ¼

Z1
0

SXnþ 1
ðT þ yÞle�ly dy

¼
Zxðjþ 1Þ�T

0

SXnþ 1
ðxðjÞÞle�ly dy

þ
Xn�j

l¼1

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

SXnþ 1
ðxðjþ lÞÞle�ly dy

¼
Zxðjþ 1Þ�T

0

n� j þ 1

n þ 1
le�ly dy

þ
Xn�j

l¼1

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

n� j � l þ 1

n þ 1
le�ly dy

¼ n� j þ 1

n þ 1
ð1� e�lðxðjþ 1Þ�TÞÞ

þ
Xn�j

l¼1

n� j � l þ 1

n þ 1
ðe�lðxðjþ lÞ�TÞ � e�lðxðjþ lþ 1Þ�TÞÞ

¼ 1

n þ 1
ðn� j þ 1Þ �

Xnþ 1

l¼jþ 1

e�lðxðlÞ�TÞ

 !

ð16Þ

and

ZT
0

SXnþ 1
ðxÞ dx ¼

Xj�1

l¼0

Zxðlþ 1Þ

xðlÞ

SXnþ 1
ðxðlÞÞ dx þ

ZT
xðjÞ

SXnþ 1
ðxðjÞÞ dx

¼ 1

n þ 1

Xj
l¼1

xðlÞ þ ðn þ 1� jÞT
 !

ð17Þ

Substituting (16) and (17) into the lower cost func-

tion (15) for Xnþ 1, we obtain, for TA[x(j),x(jþ 1)) and

j¼ 0,y, n,

CXnþ 1;op
ðTÞ ¼

jcf þ ðn� j þ 1Þcp þ ðcf � cpÞ
Pnþ 1

l¼jþ 1

e�lðxðlÞ�TÞ

ðn� j þ 1ÞðT þ E½Y �Þ þ
Pj
l¼1

xðlÞ � E½Y �
Pnþ 1

l¼jþ 1

e�lðxðlÞ�TÞ

ð18Þ

As long as we do not assume a known upper bound for the

support of Xnþ 1 we have that CXnþ 1;op
ðTÞ ! 0 as T-N.

This is a minor complication that we avoid, in the first

instance, by restricting attention to the interval (0, x(n)] (see

Coolen-Schrijner and Coolen7), where we use the fact that

CXnþ 1;op
ðxðnÞÞ ¼ limT"xðnÞ CXnþ 1;op

ðTÞ since CXnþ 1;op
ð�Þ is a

continuous function as will be shown at the end of this

section.

Denote by T
j
nþ 1; op the value for the age replacement

threshold T for which CXnþ 1;op
ðTÞ is minimal over the

interval [x(j),x(jþ 1)). Then the optimal OAR threshold

T
nþ 1; op over (0,x(n)] is, of course,

T
nþ 1;op ¼ arg min

0pjpn�1
CXnþ 1;op

ðTj
nþ 1;opÞ ð19Þ

The proof of Lemma 1 is given in Appendix A.

Lemma 1 For OAR with unit nþ 1 replaced upon failure

or upon the first opportunity after threshold T, we have for

TA[x(j),x(jþ 1)) and j¼ 0,y, n�1,

C 0
Xnþ 1;op

ðTÞ ¼ 0 ,

ðcf � cpÞðSXnþ 1
ðTÞ � E½SXnþ 1

ðT þ YÞ�Þ
E½Y �E½SXnþ 1

ðT þ YÞ�
� CXnþ 1;op

ðTÞ ¼ 0

ð20Þ

If there does not exist a TA[x(j), x(jþ 1)) such that

C 0
Xnþ 1;op

ðTÞ ¼ 0, then C 0
Xnþ 1;op

ðTÞ is minimal over this

interval in one of the end-points.
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Substituting (2) and (16) into (20) yields

C 0
Xnþ 1;op

ðTÞ ¼ 0 ,
ðcf � cpÞ

Pnþ 1
l¼jþ 1 e

�lðxðlÞ�TÞ

E½Y �fðn� j þ 1Þ �
Pnþ 1

l¼jþ 1 e
�lðxðlÞ�TÞg

� CXnþ 1;op
ðTÞ ¼ 0

ð21Þ

To prove that (21) minimizes the lower cost function, we

must show that C 00
Xnþ 1;op

ðTÞ40 for TA(x(j),x(jþ 1)) and

j¼ 0,y, n�1. This proof is included in Appendix A, in a

manner that immediately also covers this optimality check as

required in the similar situations in the following sections.

To obtain the optimal OAR threshold T
nþ 1; op for unit

nþ 1 we must solve (21) for all intervals [x(j),x(jþ 1)),

j¼ 0,y, n�1, giving us the values Tj
nþ 1; op. Then T

nþ 1; op

is equal to the Tj
nþ 1; op for which the corresponding lower

costs are minimal. If we assume a known upper bound for

the support of Xnþ 1, say r, we also have to calculate

the minimum of CXnþ 1;op
over the interval [x(n), r), and

comparing this with CXnþ 1;op
ðT

nþ 1;opÞ yields the overall

minimal costs (see Coolen-Schrijner and Coolen7 where a

similar procedure was used and discussed in more detail).

The NPI-based lower cost function for unit nþ 1 in the

basic age replacement model is6

CXnþ 1
ðTÞ ¼

cf � ðcf � cpÞSXnþ 1
ðTÞR T

0 SXnþ 1
ðxÞdx

It follows from the proof of Lemma 1 that

C 0
Xnþ 1;op

ðTÞ ¼ 0 ,
ðcf � cpÞðSXnþ 1

ðTÞ � E½SXnþ 1
ðT þ YÞ�Þ

E½Y �E½SXnþ 1
ðT þ YÞ�

� CXnþ 1
ðTÞ ¼ 0

ð22Þ

and as a consequence,

C 0
Xnþ 1;op

ðTÞ ¼ 0 , CXnþ 1;op
ðTÞ ¼ CXnþ 1

ðTÞ ð23Þ

This is similar to a result by Dekker and Dijkstra8 but their

result holds for all T, so that they obtain a global minimum,

while our result holds for each interval, so that we obtain

local minima. However, it is easier to calculate the optimal

OAR threshold for unit nþ 1 using (21) than using (22), as

CXnþ 1
ðTÞ is a discontinuous function at the observed failure

times while CXnþ 1;op
ðTÞ is a continuous function, as

lim
T"xðjþ 1Þ

CXnþ 1;op
ðTÞ ¼ CXnþ 1;op

ðxðjþ 1ÞÞ

Upper cost function CXnþ 1;opðTÞ

In this section, we derive the NPI-based upper cost function,

denoted by CXnþ 1;opðTÞ, for unit nþ 1, which will be

replaced preventively at the first opportunity after T, or

upon failure, whichever occurs first. From (14) it follows

that CXnþ 1;opðTÞ is obtained by substituting the lower

survival function SXnþ 1
ð�Þ for SX ( � ), so

CXnþ 1;opðTÞ ¼
cf � ðcf � cpÞE½SXnþ 1

ðT þ YÞ�R T
0 SXnþ 1

ðxÞdx þ E½Y �E½SXnþ 1
ðT þ YÞ�

ð24Þ

For TA(x(j),x(jþ 1)], j¼ 0,y, n, SXnþ 1
ðTÞ is given by (1),

and

ZT
0

SXnþ 1
ðxÞdx ¼

Xj�1

l¼0

Zxðlþ 1Þ

xðlÞ

SXnþ 1
ðxðlÞÞdx þ

ZT
xðjÞ

SXnþ 1
ðxðjÞÞdx

¼ 1

n þ 1

Xj
l¼1

xðlÞ þ ðn� jÞT
 !

ð25Þ

and

E½SXnþ 1
ðT þ YÞ�

¼
Zxðjþ 1Þ�T

0

SXnþ 1
ðxðjþ 1ÞÞle�lydy

þ
Xn�j

l¼1

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

SXnþ 1
ðxðjþ 1þ lÞÞle�lydy

¼ n� j

n þ 1
ð1� e�lðxðjþ 1Þ�TÞÞ

þ
Xn�j

l¼1

n� j � l

n þ 1
ðe�lðxðjþ lÞ�TÞ � e�lðxðjþ lþ 1Þ�TÞÞ

¼ 1

n þ 1
ðn� jÞ �

Xn
l¼jþ 1

e�lðxðlÞ�TÞ

 !

ð26Þ

Substituting (25) and (26) into (24) gives, for TA(x(j),x(jþ 1)]

and j¼ 0,y, n,

CXnþ 1;opðTÞ ¼

ðj þ 1Þcf þ ðn� jÞcp þ ðcf � cpÞ
Pn

l¼jþ 1

e�lðxðlÞ�TÞ

ðn� jÞðT þ E½Y �Þ þ
Pj
l¼1

xðlÞ � E½Y �
Pn

l¼jþ 1

e�lðxðlÞ�TÞ

ð27Þ

From (27) it follows that CXnþ 1;opðTÞ ¼ CXnþ 1;opðxðnÞÞ for

TXx(n), so we only have to calculate the minimum of the

upper cost function over the interval (0,x(n)], and if the

minimum is obtained in x(n), then we might as well not

replace preventively at all. Denote by T
j

nþ 1;op the value of

T for which CXnþ 1;opðTÞ is minimal over the interval

(x(j),x(jþ 1)]. The optimal OAR thresholdT

nþ 1;op forXnþ 1 is

T

nþ 1;op ¼ arg min

0pjpn�1
CXnþ 1;opðT

j

nþ 1;opÞ ð28Þ

P Coolen-Schrijner et al—Opportunity-based age replacement strategies 5



The proof of Lemma 2 is omitted as it is similar to the proof

of Lemma 1.

Lemma 2 For OAR with unit nþ 1 replaced upon failure

or upon the first opportunity after threshold T, we have, for

TA(x(j), x(jþ 1)] and j¼ 0,y, n�1,

C 0
Xnþ 1;op

ðTÞ ¼ 0 ,
ðcf � cpÞðSXnþ 1

ðTÞ � E½SXnþ 1
ðT þ YÞ�Þ

E½Y �E½SXnþ 1
ðT þ YÞ� � CXnþ 1;opðTÞ ¼ 0

ð29Þ

If there does not exist a TA(x(j), x(jþ 1)] such that

C 0
Xnþ 1;op

ðTÞ ¼ 0, then C 0
Xnþ 1;op

ðTÞ is minimal over this

interval in one of the end-points.

With CXnþ 1
ðTÞ denoting the NPI-based upper cost

function for unit nþ 1 in the basic age replacement model,7

we also have

C 0
Xnþ 1;op

ðTÞ ¼ 0 , CXnþ 1;opðTÞ ¼ CXnþ 1
ðTÞ ð30Þ

Substituting (1) and (26) into Lemma 2, and using the fact

that C 00
Xnþ 1;op

ðTÞ40 (see Appendix A), we have that the

optimal OAR threshold T

nþ 1;op for unit nþ 1, in the sense

of minimizing the upper cost function, equals the solution

T
j

nþ 1;op for which the upper costs are minimal, where for

all intervals (x(j),x(jþ 1)], j¼ 0,y, n�1, T
j

nþ 1;op is the

solution to

C 0
Xnþ 1;op

ðTÞ ¼ 0 ,
ðcf � cpÞ

Pn
l¼jþ 1 e

�lðxðlÞ � TÞ
E½Y �fðn� jÞ �

Pn
l¼jþ 1 e

�lðxðlÞ�TÞg
� CXnþ 1;opðTÞ ¼ 0

ð31Þ

Examples

In this section, we illustrate the OAR results for unit nþ 1,

and we discuss the effect of l on the optimal thresholds.

Example 1

Suppose we have observed the following five lifetimes: 4, 6,

10, 11 and 15. Each preventive replacement costs cp¼ 1,

while each corrective replacement costs cf¼ 10. This example

was studied for the basic age replacement (AR) problem in

Coolen-Schrijner and Coolen.6 It was shown that the

optimal age replacement time that minimizes the upper cost

function for X6 was 4 with corresponding upper costs of

0.7500. The optimal age replacement time that minimizes the

lower cost function for X6 was 4
– with corresponding lower

costs of 0.2500. Here, the notation 4– means ‘just before 4’,

which is only a technicality caused by the discrete nature of

our NPI-based upper and lower survival functions which

caused the age replacement cost functions to have jumps at

the observed failure times, for practical purposes this can

just be interpreted as being equal to 4.6,7 This technicality is

less relevant in this paper as our OAR cost functions are

continuous.

We now assume that preventive replacement is only

possible at opportunities occurring according to a Poisson

process with rate l¼ 2. Solving (21) and (31) together with

(19) and (28) yields T
6;op ¼ 2:900 and T


6;op ¼ 8:961 with

corresponding lower and upper costs of 0.3449 and 0.8947,

respectively. Dekker and Dijkstra8 proved that for lifetime

distributions with an increasing hazard rate, with sufficiently

large limiting value, the optimal OAR threshold is smaller

than the optimal age replacement time. Here we do not have

such a result, due to the fact that these data do not strongly

indicate a lifetime distribution with an increasing hazard

rate.

Table 1 gives the optimal OAR thresholds and corre-

sponding costs for different values of l. Figure 1 shows a

plot of CX6
ðTÞ, CX6

ðTÞ and CX6;op
ðTÞ and CX6;opðTÞ with

l¼ 1, 2 and 5. The numbers underneath the curve

6 Journal of the Operational Research Society

Table 1 Optimal times and costs for OAR with different
opportunity rate

l T
6;op T


6;op

C6;opðT
6;opÞ C6;opðT


6;opÞ

1 2.50 8.42 0.3994 0.9360
2 2.90 8.96 0.3449 0.8947
3 3.12 9.20 0.3210 0.8778
4 3.25 3.46 0.3072 0.8659
5 3.35 3.52 0.2982 0.8512
10 3.60 3.69 0.2777 0.8131
15 3.70 3.76 0.2699 0.7969
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correspond to the value of l. If we increase l, the rate of

occurrence of the preventive replacement opportunities, then

the cost functions of the OAR model tend to the cost

functions of the AR model as one expects, and in this

example the optimal OAR threshold for the lower OAR cost

function tends to the optimal age replacement time for the

lower AR cost function. If l is not too small (in fact, if

lX3.75), this also holds for the upper cost functions, for

smaller l this OAR optimum threshold is in a later interval.

In Example 2 we discuss this convergence further, showing

that situations might occur which at first sight may appear to

be counter-intuitive.

Intuitively, one may expect that the optimal opportunity-

based preventive replacement threshold decreases with

decreasing opportunity rate l. Dekker and Dijkstra8 report

that their numerical observations confirm this intuition, but

did not prove or disprove this. In our NPI approach, this

intuition is confirmed in nearly all examples and simulated

cases we have computed, and we managed to derive a

sufficient condition on values for l and data for this intuition

to be correct. However, this also allowed us to construct

counter-examples, hence this intuition is not generally

correct, one such a counter-example is Example 2.

Example 2

Suppose we have five observed failure times: 0.1, 0.2, 0.3, 0.4

and 0.5, and we compare optimal preventive replacement

thresholds for l equal to 1 and 2. Restricted to the interval

[0, 0.5], our lower cost function for l¼ 1 is minimal at

T¼ 0.5, whereas for l¼ 2 it is minimal at T¼ 0.05. This is a

rather extreme constructed example, with relatively to the

observed failure times very few replacement opportunities.

The lower cost function for l¼ 1 is very flat, suggesting that

for l¼ 1 no preventive replacement at all may well be

equally effective as use of threshold T¼ 0.5. The lower cost

function for l¼ 2 is slightly less flat, which suggests that

in this situation our OAR policy with threshold 0.05 is

of benefit. Hence, the larger value of l, modelling more

frequent replacement opportunities, leads to an earlier

threshold in this situation. This may well be explained by

the fact that, with more frequent preventive replacement

opportunities, it may become beneficial to replace preven-

tively if opportunities indeed do occur, and this will also

hold for future units which is taken into account in this cost

function via the renewal reward theorem. Such a counter-

example can also be constructed for the upper cost function.

For this constructed example, the optimal replacement

thresholds per interval between two consecutive observed

failure times occur, for several such intervals, at end-points,

which does not often occur but is taken into account in the

theory throughout this paper.

Adaptive opportunity-based age replacement for unit nþ 2

Minimization of the lower and upper cost functions with

regard to OAR of unit nþ 1, using NPI and the renewal

reward theorem as described above, leads to the optimal

OAR thresholds T
nþ 1; op and T


nþ 1;op, respectively. We now

consider the effect of using such an optimal strategy for unit

nþ 1, and the resulting information about the failure time

Xnþ 1, on the optimal NPI-based OAR strategy for unit

nþ 2 with random failure time Xnþ 2.

Although our cost functions are based on the renewal

reward theorem, which assumes that the optimal strategy is

used for a long period, it is interesting to study how optimal

replacement times would actually adapt to new data from

the process under rather minimal assumptions for the failure

time distribution. For example, if our study would reveal

that the optimal strategy is unlikely to change much on the

basis of the new observation, this would suggest that the use

of this criterion is not unreasonable even when one wishes to

use such an adaptive method.

Suppose we follow an optimal OAR strategy for unit

nþ 1, that is unit nþ 1 is replaced upon failure or upon the

first opportunity after T
nþ 1; op (or T


nþ 1;op), and suppose

that the observation for Xnþ 1 from this process becomes

available. This observation is either a failure time less than

the optimal OAR threshold for Xnþ 1 (T
nþ 1; op or T


nþ 1;op)

plus the time to the next opportunity (say yop), which occurs

if unit nþ 1 is replaced correctively, or it is a right-censored

observation at the optimal OAR threshold for Xnþ 1 plus

yop, which occurs if unit nþ 1 is replaced preventively.

If we observe a failure time for unit nþ 1, then we can

directly apply the results of the previous sections with the

nþ 1 failure times, with A(n) replaced by A(nþ 1), to obtain the

optimal OAR thresholds T
nþ 2; op and T


nþ 2;op for unit nþ 2.

The case that unit nþ 1 is preventively replaced at the first

opportunity after the optimal OAR threshold, so that the

observation for unit nþ 1 is a right-censored observation,

leads to a more complicated situation. Here we have to use

recently developed theory for NPI with right-censored

data,15 as briefly presented in the section on NPI. In the

next two sections, we derive the lower and upper cost

functions for Xnþ 2 for the situation that the observation for

Xnþ 1 is a right-censored observation. Although these two

sections are again similar in nature, there is an important

difference due to the fact that, with one of the nþ 1

observations available being right-censored, the NPI lower

survival function for Xnþ 2 decreases at this right-censored

observation whereas the corresponding upper survival

function still only decreases at observed failure times.

CXnþ 2;opðTÞ with unit nþ 1 preventively replaced

In this section, we determine the lower cost function for unit

nþ 2, denoted by CXnþ 2;op
ðTÞ, where unit nþ 2 will be

preventively replaced at the first opportunity after T or upon

P Coolen-Schrijner et al—Opportunity-based age replacement strategies 7



failure, given that unit nþ 1 is preventively replaced at

xcA[x(k),x(kþ 1)) for some kA{0,y, n}. From (14) it follows

that CXnþ 2;op
ðTÞ is obtained by substituting the upper

survival function SXnþ 2
ð�Þ for SX( � ). Hence, our data consist

of n failure times and one right-censored observation at xc,

and the upper survival function for Xnþ 2 is given by (9) and

(10) in case xcA[x(k),x(kþ 1)).

Lemma 3 provides expressions for E½SXnþ 2
ðT þ YÞ�

which are used to calculate the lower cost function

CXnþ 2;op
ðTÞ in examples and simulations later. The proof

of Lemma 3 is given in Appendix A.

Lemma 3 Let xcA[x(k), x(kþ 1)), for some kA{0,y, n}, be

the right-censored observation for the failure time of unit

nþ 1, with further data available consisting of n failure times.

Let T be the OAR threshold for unit nþ 2. Using rc-A(nþ 1),

we get the following expressions for E½SXnþ 2
ðT þ YÞ�, where

Y represents the time to the next preventive replacement

opportunity and is assumed to be exponentially distributed

with rate l.

1. For TA[x(j),x(jþ 1)) with j¼ 0,y,k�1,

E½SXnþ 2
ðT þ YÞ� ¼ n� j þ 2

n þ 2
� 1

n þ 2

Xk
l¼jþ 1

e�lðxðlÞ�TÞ

� ðn� k þ 2Þ
ðn þ 2Þðn� k þ 1Þ

Xnþ 1

l¼kþ 1

e�lðxðlÞ�TÞ

ð32Þ

2. For TA[x(k),x(kþ 1)),

E½SXnþ 2
ðT þ YÞ� ¼ n� k þ 2

n þ 2

� ðn� k þ 2Þ
ðn þ 2Þðn� k þ 1Þ

Xnþ 1

l¼kþ 1

e�lðxðlÞ�TÞ
ð33Þ

3. For TA[x(j),x(jþ 1)) with j¼ kþ 1,y, n,

E½SXnþ 2
ðT þ YÞ� ¼ ðn� j þ 1Þðn� k þ 2Þ

ðn þ 2Þðn� k þ 1Þ

� ðn� k þ 2Þ
ðn þ 2Þðn� k þ 1Þ

Xnþ 1

l¼jþ 1

e�lðxðlÞ�TÞ
ð34Þ

Lemma 4 gives expressions for
R T
0 SXnþ 2

ðxÞ dx for the

same three cases as in Lemma 3, these will also be used to

calculate the lower cost function CXnþ 2;op
ðTÞ later. We omit

the proof of Lemma 4 as the results follow immediately by

substituting the corresponding NPI-based upper survival

function, as presented earlier in the paper, into

ZT
0

SXnþ 2
ðxÞdx ¼

Xj�1

l¼0

Zxðlþ 1Þ

xðlÞ

SXnþ 2
ðxÞdx þ

ZT
xðjÞ

SXnþ 2
ðxÞdx

Lemma 4 Assume the same setting as in Lemma 3. Using rc-

A(nþ 1), we get the following expressions for
R T
0 SXnþ 2

ðxÞ dx:

1. For TA[x(j),x(jþ 1)) with j¼ 0,y, k�1,

ZT
0

SXnþ 2
ðxÞdx ¼ 1

n þ 2

Xj
l¼1

xðlÞ þ ðn� j þ 2ÞT
( )

ð35Þ

2. For TA[x(k),x(kþ 1)),

ZT
0

SXnþ 2
ðxÞdx ¼ 1

n þ 2

Xk
l¼1

xðlÞ þ ðn� k þ 2ÞT
( )

ð36Þ

3. For TA[x(j),x(jþ 1)) with j¼ kþ 1,y, n,

ZT
0

SXnþ 2
ðxÞdx ¼ 1

n þ 2

Xk
l¼1

xðlÞ

þ ðn� k þ 2Þ
ðn þ 2Þðn� k þ 1Þ

Xj
l¼kþ 1

xðlÞ þ ðn� j þ 1ÞT
( )

ð37Þ

Substituting (32) and (35), (33) and (36), and (34) and (37),

respectively, into

CXnþ 2;op
ðTÞ ¼

cf � ðcf � cpÞE½SXnþ 2
ðT þ YÞ�R T

0 SXnþ 2
ðxÞdx þ E½Y �E½SXnþ 2

ðT þ YÞ�
ð38Þ

yields our lower cost function for OAR threshold T applied

to unit nþ 2 for Cases 1, 2 and 3 from Lemmas 3 and 4,

respectively.

As long as we do not assume a known upper bound

for the support of Xnþ 2, we have that CXnþ 2;op
ðTÞ ! 0 as

T-N.7 This is the same minor complication as discussed

before for Xnþ 1, which we avoid, in the first instance, by

restricting attention to the interval (0,x(n)]. Denote by

T
j
nþ 2; op the value of TA[x(j),x(jþ 1)) at which CXnþ 2;op

ðTÞ
is minimal over that interval. Then the overall optimal OAR

threshold for unit nþ 2, denoted by T
nþ 2; op is the value

T
j
nþ 2; op for which the corresponding lower costs are

minimal. Lemma 5 provides a useful result for computation

of the optimal thresholds restricted to intervals between

consecutive observed failure times. The proof of Lemma 5 is

omitted as it follows immediately from the proof of Lemma 1.

Lemma 5 For OAR with unit nþ 2 replaced upon failure or

upon the first opportunity after threshold T, and where unit

nþ 1 was preventively replaced at xcA[x(k),x(kþ 1)) we have,
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for TA[x(j),x(jþ 1)) and j¼ 0,y, n�1,

C 0
Xnþ 2;op

ðTÞ ¼ 0 ,
ðcf � cpÞðSXnþ 2

ðTÞ � E½SXnþ 2
ðT þ YÞ�Þ

E½Y �E½SXnþ 2
ðT þ YÞ�

� CXnþ 2;op
ðTÞ ¼ 0

ð39Þ

where SXnþ 2
ðTÞ is given by (9) and (10), E½SXnþ 2

ðT þ YÞ� is
given in Lemma 3, and CXnþ 2;op

ðTÞ is given by (38). If there

does not exist a TA[x(j),x(jþ 1)) such that C 0
Xnþ 2;op

ðTÞ ¼ 0,

then C 0
Xnþ 2;op

ðTÞ is minimal in one of the end-points.

We should remark here that we consider it logical in this

setting that xc will result from using the corresponding OAR

policy for unit nþ 1, so optimality of the threshold value in

the sense of minimization of the lower cost function. There is

no strong theoretical argument for this, but from the

possible interval probabilistic interpretations of the lower

and upper survival functions used in our method this is most

natural. In our later examples and simulations, we always

work with either the lower cost function for both units

considered, or the upper cost function for both units. One

could consider mixing such strategies, but we do not

consider this or great interest.

In Appendix A we show that C 00
Xnþ 2;op

ðTÞ40, for T in the

open intervals created by consecutive observed failure times,

so the optimal OAR threshold T
nþ 2; op is given by the value

of Tj
nþ 2; op, for 0pjpn�1, for which this lower cost function

is minimal, where the Tj
nþ 2; op can be obtained by solving

(39). If we assume a known finite upper bound for the

support of Xnþ 1, say r, we also have to calculate the

minimum of CXnþ 2;op
over the interval (x(n), r), and compar-

ing this with CXnþ 2;op
ðT

nþ 2;opÞ would then yield the global

minimal costs.

CXnþ 2;opðTÞ with unit nþ 1 preventively replaced

In this section, we determine the upper cost function for unit

nþ 2, denoted by CXnþ 2;opðTÞ, where unit nþ 2 will be

preventively replaced at the first opportunity after T or upon

failure, given that unit nþ 1 is preventively replaced at

xcA[x(k),x(kþ 1)) for some kA{0,y, n}. This section is very

similar to the previous section, the main difference is due to

the fact that our NPI-based lower survival function for Xnþ 2

decreases not only at the n observed failure times, but also at

the observed right-censoring time xc for unit nþ 1,15 where

we must distinguish between the case of xc tied with an x(k)
and the case where xcA(x(k),x(kþ 1)). From (14) it follows

that CXnþ 2;opðTÞ is obtained by substituting the lower

survival function SXnþ 2
ð�Þ for SXð�Þ: Hence, our data consist

of n real failure times and one right-censored observation

at xc, and the lower survival function for Xnþ 2 is given by

(5)–(8) if xcA(x(k),x(kþ 1)) and by (3) and (4) if xc¼ x(k). As

the lower survival function is continuous from the left in

all observations (failures and right-censored data),15 formula

(6) also holds if the right end-point of the interval is included

as well.

Lemma 6 provides expressions for E½SXnþ 2
ðTþYÞ� which

are used to calculate the upper cost function CXnþ 2;opðTÞ in
examples and simulations later. The proof of Lemma 6 is

given in Appendix A.

Lemma 6 Let (a) xcA(x(k),x(kþ 1)) or (b) x
c¼x(k), for some

kA{0,y, n}, be the right-censored observation for the failure

time of unit nþ 1, with further data available consisting of

n failure times. Let T be the OAR threshold for unit nþ 2.

Using rc-A(nþ 1), we get the following expressions for

E½SXnþ 2
ðTþYÞ� where Y represents the time to the next

preventive replacement opportunity and is assumed to be

exponentially distributed with rate l.

(a) For xcA(x(k),x(kþ 1)) we have

1. For TA(x(j),x(jþ 1)] with j¼ 0,y,k�1,

E½SXnþ 2
ðT þ YÞ�

¼ 1

n þ 2
ðn� j þ 1Þ �

Xn
l¼jþ 1

e�lðxðlÞ�TÞ

"

� 1

n� k þ 1
e�lðxc�TÞ þ

Xn
l¼kþ 1

e�lðxðlÞ�TÞ

( )#

ð40Þ

2. For TA(x(k),x
c],

E½SXnþ 2
ðT þ YÞ�

¼ 1

n þ 2
ðn� k þ 1Þ �

Xn
l¼kþ 1

e�lðxðlÞ�TÞ

"

� 1

n� k þ 1
e�lðxc�TÞ þ

Xn
l¼kþ 1

e�lðxðlÞ�TÞ

( )#

ð41Þ

3. For TA(xc,x(kþ 1)],

E½SXnþ 2
ðT þ YÞ� ¼ 1

n þ 2
1 þ 1

n� k þ 1

� �

� ðn� kÞ �
Xn

l¼kþ 1

e�lðxðlÞ�TÞ

" #

ð42Þ

4. For TA(x(j),x(jþ 1)] with j¼ kþ 1,y, n,

E½SXnþ 2
ðT þ YÞ� ¼ 1

n þ 2
1 þ 1

n� k þ 1

� �

� ðn� jÞ �
Xn
l¼jþ 1

e�lðxðlÞ�TÞ

" #

ð43Þ

(b) For xc¼x(k) we have that for TA(x(j),x(jþ 1)] with

j¼ 0,y,k�1, E½SXnþ 2
ðT þ YÞ� is given by (40), while
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for TA(x(j),x(jþ 1)] with j¼ k,y, n, E½SXnþ 2
ðT þ YÞ� is

given by (43).

Lemma 7 gives expressions for
R T
0 SXnþ 2

ðxÞ dx for the same

cases as in Lemma 6, these will also be used to calculate the

upper cost function CXnþ 2;opðTÞ later. As for Lemma 4, the

proof is again omitted as the results follow immediately by

using the corresponding NPI-based lower survival function.

Lemma 7 Assume the same setting as in Lemma 6. Using rc-

A(nþ 1) we get the following expressions for
R T
0 SXnþ 2

ðxÞ dx.

(a) For xcA(x(k),x(kþ 1)) we have

1. For TA(x(j),x(jþ 1)] with j¼ 0,y,k�1,

ZT
0

SXnþ 2
ðxÞ dx ¼ 1

n þ 2
ðn� j þ 1ÞT þ

Xj
l¼0

xðlÞ

" #

ð44Þ

2. For TA(x(k),x
c],

ZT
0

SXnþ 2
ðxÞ dx ¼ 1

n þ 2
ðn� k þ 1ÞT þ

Xk
l¼0

xðlÞ

" #

ð45Þ

3. For TA(xc,x(kþ 1)],

ZT
0

SXnþ 2
ðxÞ dx ¼ 1

n þ 2

"
ðn� kÞT þ

Xk
l¼0

xðlÞ:

þ 1

n� k þ 1
fðn� kÞT þ xcg

#

ð46Þ

4. For TA(x(j),x(jþ 1)] with j¼ kþ 1,y, n,

ZT
0

SXnþ 2
ðxÞ dx ¼ 1

n þ 2
ðn� jÞT þ

Xj
l¼0

xðlÞ

"

þ 1

n� k þ 1
ðn� jÞT þ xc þ

Xj
l¼kþ 1

xðlÞ

( )#

ð47Þ

(b) For xc¼x(k) we have that for TA(x(j),x(jþ 1)] with

j¼ 0,y,k�1,
R T
0 SXnþ 2

ðxÞ dx is given by (44), while for

TA(x(j),x(jþ 1)] with j¼ k,y, n,
R T
0 SXnþ 2

ðxÞ dx is given

by (47).

For xcA(x(k),x(kþ 1)), substituting (40) and (44), (41) and

(45), (42) and (46), and (43) and (47), respectively, into

CXnþ 2;opðTÞ ¼
cf � ðcf � cpÞE½SXnþ 2

ðT þ YÞ�R T
0 SXnþ 2

ðxÞdx þ E½Y �E½SXnþ 2
ðT þ YÞ�

ð48Þ

yields our upper cost function for OAR threshold T applied

to unit nþ 2 for Cases 1, 2, 3 and 4 from part (a) of Lemmas

6 and 7, respectively. For xc¼ x(k), the upper cost function

for unit nþ 2 is obtained, for TA(x(j),x(jþ 1)], j¼ 0,y,k�1,

and for TA(x(j),x(jþ 1)], j¼ k,y, n, by substituting (40) and

(44), and (43) and (47), respectively, into (48). As discussed

before, CXnþ 2;opðTÞ ¼ CXnþ 2;opðxðnÞÞ for TXx(n), so we only

have to calculate the minimum of the upper costs over the

interval (0,x(n)].

For xcA(x(k),x(kþ 1)), denote by T
j

nþ 2;op, T
k;c

nþ 2;op and

T
c;kþ 1

nþ 2;op the minima of CXnþ 2;opðTÞ over the intervals

(x(j),x(jþ 1)], for j¼ 0,y,k�1, kþ 1,y, n�1, (x(k),x
c] and

(x(c),x(kþ 1)], respectively. For xc¼ x(k) denote by T
j

nþ 2;op,

j¼ 0,y, n�1 the minima of CXnþ 2;opðTÞ over the intervals

(x(j),x(jþ 1)], j¼ 0,y, n�1. Then the overall optimal OAR

threshold for unit nþ 2 corresponding to this NPI-based

upper cost function, denoted by T

nþ 2;op, is the appropriate

optimal threshold per interval for which the corresponding

upper costs are minimal. Lemma 8 provides a useful result

for computation of the optimal thresholds restricted to

intervals between consecutive observations, similarly divided

into Cases (a) and (b) as Lemmas 6 and 7. The proof of

Lemma 8 is omitted as it follows immediately from the proof

of Lemma 1.

Lemma 8 For OAR with unit nþ 2 replaced upon failure or

upon the first opportunity after threshold T, and where unit

nþ 1 was preventively replaced at (a) xcA(x(k),x(kþ 1)) and (b)

at xc¼ x(k), we have,

(a) If xcA(x(k),x(kþ 1)) we have that, for TA(x(j),x(jþ 1)],

j¼ 0,y,k�1, kþ 1,y, n�1, for TA(x(k),x
c], and for

TA(xc,x(kþ 1)],

C 0
Xnþ 2;op

ðTÞ ¼ 0 ,
ðcf�cpÞðSXnþ 2

ðTÞ�E½SXnþ 2
ðT þYÞ�Þ

E½Y �E½SXnþ 2
ðT þ YÞ� �CXnþ 2;opðTÞ ¼ 0

ð49Þ

where SXnþ 2
ðTÞ is given by (5)–(8), E½SXnþ 2

ðT þ YÞ� is
given in Lemma 6, and CXnþ 2;opðTÞ is given by (48).

(b) If xc¼x(k), (49) holds for TA(x(j),x(jþ 1)], j¼ 0,y, n�1,

where SXnþ 2
ðTÞ is given by (3) and (4), E½SXnþ 2

ðT þ YÞ�
is given in Lemma 6, and CXnþ 2;opðTÞ is given

by (48).

For both cases we have that if there does not exist a

TA(x(j),x(jþ 1)] such that C 0
Xnþ 2;op

ðTÞ ¼ 0, then C 0
Xnþ 2;op

ðTÞ
is minimal over this interval in one of the end-points.

In Appendix A we show that C 00
Xnþ 2;op

ðTÞ40; for T

in the open intervals created by the consecutive observed

failure times and right-censoring time, so the optimal

OAR threshold T

nþ 2;op is given by the value of T

j

nþ 2;op

for j¼ 0,y,k�1, kþ 1,y, n�1, or T
k;c

nþ 2;op or T
c;kþ 1

nþ 2;op, for

which this upper cost function is minimal, for the case that
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xcA(x(k),x(kþ 1)), while if xc¼x(k), T

nþ 2;op is given by the

value of T
j

nþ 2;op for j¼ 0,y, n�1, for which this cost

function is minimal, where the optima per interval can be

obtained using Lemma 8.

Examples

In this section, we illustrate our OAR results for unit nþ 2,

depending on the observation for unit nþ 1. All data values

in this section are actually simulated from the Weibull

distribution with scale parameter 1 and shape parameter 2,

which we also used for the simulation study presented later.

These examples also serve to explain the steps used in the

simulation study presented in the next section, which allows

further conclusions on the performance of our method.

Example 3

Suppose we have observed n¼ 5 failure times: x(1)¼ 0.05925,

x(2)¼ 0.39199, x(3)¼ 0.88939, x(4)¼ 0.93966 and x(5)¼
1.04197. Each preventive replacement cost cp¼ 1, while each

corrective replacement costs cf¼ 50. Preventive replace-

ment is possible only at opportunities occurring according

to a Poisson process with rate l¼ 25. For this situation,

we have T
6;op ¼ 0:78348 with corresponding lower costs

CX6;op
ðT

6;opÞ ¼ 29:00838. Suppose that the uncensored

value for X6 is 0.99503 (again simulated from the same

Weibull distribution), and that the residual time until the

next opportunity (yop) is 0.00316 (simulated from the

Exponential distribution with rate 25). Hence, we actually

have a right-censored observation for unit 6 when we aim at

minimization of the lower cost function, as this unit would

be replaced preventively at time 0.78348þ 0.00316¼
0.78664, which is less than the simulated failure time

0.99503 for this unit, so here we have xc¼ 0.78664A
(x(2),x(3)). Applying Lemma 5 for unit 7 yields

T
7;op¼ 0.77644, with CX7;op

ðT
7;opÞ ¼ 24:23028.

For the upper cost function, we get for these same

simulated values: T

6;op ¼ 0:79596 with CX6;opðT


6;opÞ ¼

53:88973, so that the value for X6 is also a right-censored

observation xc¼ 0.78664 when we aim at minimization

of the upper cost function, and for unit 7 we get T
7;op ¼

0:75416 with CX7;opðT
7;opÞ ¼ 44:40754.

In this example, the minimal values of the lower and upper

cost functions both decrease from unit 6 to 7, which is what

we might expect when we have a right-censored observation,

as effectively a good preventive replacement was performed

and this might lead to more optimism about the quality of

the units in the sense that our extra information about unit 6

might lead us to expect that such units are more reliable

early on. However, we also see that the optimal replacement

thresholds, corresponding to the lower and upper cost

functions, have both decreased. This may well be considered

counter-intuitive at first sight, but such occurrences are

explained by our use of the renewal reward theorem, in the

sense that if we have a right-censored observation xc, then

the NPI-based probabilities assigned for the next unit lead to

less probability of failure in the interval (0,xc). But, the

optimization criterion based on the renewal reward theorem

effectively takes into account the quality of a later unit as

well, and now such a later unit is considered less likely to fail

early on, hence replacing a unit earlier may indeed be

worthwile as we expect the next unit to be more reliable early

on, overall leading to lower probability of a costly corrective

replacement being required. It will be clear from the

examples in this paper, and from our simulation study

reported in the next section, that intuition often cannot be

trusted upon when aiming at such optimal OAR strategies

using the renewal reward criterion.

Example 4

Suppose we have 10 failure times: 0.29329, 0.31628, 0.33891,

0.43982, 0.45423, 0.57758, 0.87230, 1.40275, 1.42630 and

1.83003; costs cp¼ 1 and cf¼ 10; and preventive replacement

opportunities occurring with rate l¼ 10. For unit 11, this

leads to T
11;op ¼ 0:15527 and CX11;op

ðT
11;opÞ ¼ 6:44046. The

simulated value for X11 is 0.49210 and the simulated residual

time to the next opportunity yop is 0.09331. Hence, for

unit 11 we actually have a right-censored observation

xc¼ 0.24858 as this is less than the simulated value

0.49210, and this right-censored observation actually lies in

the first interval, so xcA(x(0),x(1)). In this case, (33) and (34)

reduce to (16) while (36) and (37) reduce to (17). So the

upper survival functions for X11 and X12 are now identical,

and also the lower cost functions for units 11 and 12 are

now identical, hence T
11;op ¼ T

12;op and CX11;op
ðT

11;opÞ ¼
CX12;op

ðT
12;opÞ.

For the upper costs we do not have such a similar result as

the lower survival function is affected by the right-censored

observation even when this falls in the first interval. In

this case, T

11;op ¼ 0:19049 with CX11;opðT


11;opÞ ¼ 10:49942,

so we get again a right-censored observation in the first

interval, and correspondingly for unit 12 we get T

12;op ¼

0:18599 with CX12;opðT

12;opÞ ¼ 10:26470.

Example 4 showed a case where, due to a right-censored

observation for unit nþ 1 in the first interval, the lower cost

functions for units nþ 1 and nþ 2 are the same. This results

from the fact that, with such a right-censored observation

for unit nþ 1 in the first interval, the upper survival

functions for unit nþ 1 and unit nþ 2 based on A(n) and

rc-A(nþ 1), respectively, are identical.15 Because the corre-

sponding lower survival functions are not identical, the

upper cost functions for units nþ 1 and nþ 2 are always

different. Such a right-censored observation for unit nþ 1 in

the first interval is the only situation for which our optimal

replacement threshold, corresponding to the lower cost

functions, is identical for units nþ 1 and nþ 2.
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Example 5

Suppose we have five failure times: 0.43424, 0.73462,

0.79511, 0.91624 and 1.44354; costs cp¼ 1 and cf¼ 50;

and preventive replacement opportunities occurring with

rate l¼ 25. For unit 6 we get T
6;op ¼ 0:27323 with

CX6;op
ðT

6;opÞ ¼ 3:65993. The simulated value for X6 is

0.33862 and the simulated residual time to the next

opportunity yop is 0.09942. Hence, the observation for X6

corresponding to the replacement policy according to the

lower cost function is a failure time, as 0.33862o0.27323þ
0.09942. Intuitively, one might expect that the costs now

increase, when considering unit 7 compared to unit 6, due to

this failure of unit 6, and one might expect that one would

wish to replace unit 7 earlier. Indeed, we get T
7;op ¼ 0:19395

and CX7;op
ðT

7;opÞ ¼ 5:15587. For the optimal replacement

threshold and corresponding costs when using the upper cost

function we get a similar result, as T

6;op ¼ 0:35095 with

CX6;opðT

6;opÞ ¼ 31:34369, so that the observed value for

X6 is again a failure time, and T

7;op¼ 0.26385 with

CX7;opðT

7;opÞ ¼ 35:37360.

We should, however, point out that this intuitively logical

decrease of the optimal replacement threshold for unit nþ 2

and increasing costs, in case of an observed failure time for

unit nþ 1, does not always occur. For example, suppose we

have five failure times: 0.09385, 0.12496, 0.29252, 0.86637

and 1.58141, and further parameters as earlier in this

example. The simulated value for X6 is 1.04793 and the

simulated residual time to the next opportunity yop is

0.04607. Then we have T
6;op ¼ 1:47690 with CX6;op

ðT
6;opÞ ¼

46:63504. So, according to the optimal replacement policy

based on this lower cost function, the observation for unit 6

is a failure time, and for unit 7 we get T
7;op ¼ 0:78528 with

CX7;op
ðT

7;opÞ ¼ 42:16362. For the upper cost functions

we get T

6;op¼ 1.47331 with CX6;opðT


6;opÞ ¼ 88:03892, so

that the observation for unit 6 is again a failure time,

and T

7;op¼ 0.79329 with CX7;opðT


7;opÞ ¼ 70:21287. Hence,

according to both our cost functions our optimal replace-

ment threshold adapts in the sense that the costs decrease

with smaller replacement threshold. This happens when the

observation x(1) is relatively small and x(n) large, so that there

is a large variation in the data. For unit nþ 1, OAR might

then not be very effective, as is shown by the large value of

the threshold implying that there is a large probability that a

cycle would end with corrective replacement. If, in such a

case, the failure time for unit nþ 1 is also large, as is the case

in this example, one becomes relatively more optimistic

about the quality of such units earlier on, so earlier

replacement with a new unit might become more cost

effective, and such further costs are implicitly taken into

account in our optimization criterion based on the renewal

reward theorem. This is a further illustration that, when

using an optimality criterion based on this theorem in such

replacement situations, one might get results which at first

may appear to be counter-intuitive.

Simulations

In this section, we present results from a simulation study to

illustrate our method and discuss several of its features. All

simulations are performed with the statistical package R.16

For the simulations reported here, all failure times are

simulated from the Weibull distribution with scale parameter

1 and shape parameter 2, which has increasing hazard rate

so preventive replacement may be sensible from theoretical

perspective.1,8 We have also performed simulations from the

Weibull distribution with shape parameter 3, the conclusions

of which were fully in agreement with those for shape

parameter 2, hence we do not present these results explicitly.

In this study, we compare our simulation results for the

optimal replacement thresholds for the lower and upper

cost functions with the theoretical optimal replacement

thresholds T .8 As only the ratio cf/cp is relevant for the

optimum thresholds according to our cost functions, we

have set cp¼ 1 without loss of generality. We have run

simulations with cf equal to 10 or 50. The rate l with which

the preventive replacement opportunities occur is set at 10 or

25. The number of initially observed failure times, n, equals

10 or 50, and in each case we have simulated 1000 times. In

the simulations, we do not assume a known upper bound for

the support of Xnþ 1. Hence we restrict attention to the

interval (0,x(n)], see our earlier discussion. Throughout we

use A(n) for our inference leading to T
nþ 1; op and T


nþ 1;op,

and A(nþ 1) or rc-A(nþ 1) leading to T
nþ 2; op and T


nþ 2;op,

depending on whether the observation for unit nþ 1 is a

failure time or a right-censored observation.

Table 2 gives the theoretical optimal replacement

thresholds T  and the corresponding minimal costs Cop(T
)

for the Weibull failure time distribution used in our

simulations.8 We have also included the limiting values of

these cost functions for T-N, denoted by Cop(N), which

relate to no preventive replacement being carried out, so the

value of l is irrelevant and these values are the same as for

the AR model in our approach.7 To compare our method

with the theoretical results, we have calculated Lop(T
)¼

(Cop(N)�Cop(T
))/Cop(T

), which indicates the loss, rela-

tive to the optimal costs, if no preventive replacements were

carried out. Note that Dekker and Dijkstra8 analyse

performance of OAR with a similar quantity, but instead

they take Cop(N) as denominator, which of course has a

slightly different interpretation of this performance measure

Table 2 Theoretical results

cf¼ 10 cf¼ 50

l¼ 10 l¼ 25 l¼ 10 l¼ 25

T 0.256 0.300 0.077 0.109
Cop(T

) 6.269 6.094 16.822 14.542
Cop(N) 11.284 11.284 56.419 56.419
Lop(T

) 0.800 0.852 2.354 2.880
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but gives effectively the same conclusions. The values of

Lop(T
) for the simulations with Weibull shape parameter 3

(not reported) were larger than for shape parameter 2, which

shows that the effectiveness of opportunity-based preventive

replacement increases with increasing Weibull shape para-

meter, which is logical as increasing Weibull shape parameter

gives decreasing variance of the failure time distribution.

To present the simulation results we introduce the

notation: C
Xnþ i ;op

¼ CXnþ i ;op
ðT

nþ i;opÞ and C

Xnþ i ;op

¼
CXnþ i ;opðT


nþ i;opÞ and we define Lnþ i;op ¼ ðCopðT

nþ i;opÞ �
CopðTÞÞ=CopðTÞ and Lnþ i;op ¼ ðCopðT


nþ i;opÞ�CopðTÞÞ=

CopðTÞ for i¼ 1, 2. These L’s indicate how good our

optimal replacement strategies are compared to the corre-

sponding theoretical optimal strategies, judged by compar-

ing the loss in the theoretical long-run average costs per unit

of time that would be incurred by using our optimal

thresholds instead of the theoretical optimum, as fraction of

the long-run average costs per unit of time in the theoretical

optimum. Tables 3 and 4 present summaries of the

simulation results for the lower and upper cost functions.

We discuss the conclusions from the study in the next

section.

In this study, we have recorded the number of times

that our optimal OAR thresholds, and the correspond-

ing optimal costs, are decreasing or increasing when

comparing unit nþ 1 with unit nþ 2, after the information

on unit nþ 1, that is, either an observed failure time or a

right-censoring time, becomes available, see Tables 5 and 6.

The number between brackets is the number of times that

the increase or decrease was due to a right-censored

observation.

Simulation conclusions

In this section, we discuss the main conclusions and

observations from the simulation study.

1. The means and medians of T
nþ 1; op, T


nþ 2; op, T


nþ 1;op

and T

nþ 2;op are all greater than the corresponding

theoretical T ’s. The medians of these optimal OAR

thresholds are all less than the corresponding means, so

the medians are closer to the theoretical T ’s than the

means. As the distributions of these simulated values are

all skewed to the right, the medians may be better

indications of the performance of our method than the

means.

2. The means and medians of C
Xnþ 1;op

and C
Xnþ 2;op

are

less, and the means and medians of C

Xnþ 1;op

and C

Xnþ 2;op

are greater than the corresponding long-run average costs

per unit time in the theoretical optima, which is what we

expect, although this does, of course, not hold for each

individual simulated case due to the variation in the

simulated data sets.

3. The means and medians of T
nþ 1; op and T


nþ 1;op tend to

be greater than the corresponding means and medians

of T
nþ 2; op and T


nþ 2;op, respectively. For a few situations

they were about the same, for example the medians of the

Table 3 Simulation results for the lower cost function

T
nþ 1;op C

Xnþ 1;op
Lnþ 1;op T

nþ 2;op C
Xnþ 2 ;op

Lnþ 2;op

Case 1: n¼ 10, cf¼ 10, l¼ 10
Mean 0.3712 5.2202 0.0809 0.3589 5.2965 0.0765
Median 0.3061 4.8860 0.0282 0.2997 5.0650 0.0262
SD 0.2364 1.8492 0.1267 0.2205 1.7948 0.1179

Case 2: n¼ 50, cf¼ 10, l¼ 10
Mean 0.2922 5.9467 0.0285 0.2903 5.9476 0.0276
Median 0.2698 5.8850 0.0120 0.2694 5.8801 0.0121
SD 0.1028 1.0901 0.0438 0.1008 1.0784 0.0422

Case 3: n¼ 50, cf¼ 50, l¼ 10
Mean 0.1048 16.0122 0.0394 0.1045 16.0163 0.0390
Median 0.0862 15.3060 0.0086 0.0860 15.3389 0.0086
SD 0.0634 5.0226 0.0864 0.0631 4.9915 0.0858

Case 4: n¼ 50, cf¼ 10, l¼ 25
Mean 0.3320 5.6478 0.0395 0.3294 5.6567 0.0388
Median 0.3124 5.5397 0.0190 0.3106 5.5556 0.0187
SD 0.1118 1.0545 0.0518 0.1105 1.0445 0.0513

Case 5: n¼ 50, cf¼ 50, l¼ 25
Mean 0.1448 12.6139 0.0778 0.1148 12.6387 0.0783
Median 0.1281 11.9794 0.0345 0.1282 12.0195 0.0345
SD 0.0726 4.6308 0.1140 0.0731 4.6022 0.1152
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optimal threshold of the lower cost function in Case 5,

this is due to the variation in the simulated data. Hence,

these means and medians tend to move towards the

theoretical values, indicating that our method adapts well

to the additional information on unit nþ 1. From Table 5,

it follows that for individual cases these optimal

replacement thresholds can move in both directions, both

if the observation for unit nþ 1 is a failure time or a right-

censored observation, which may perhaps be somewhat

counter-intuitive.

4. The means and medians of Lnþ 1;op; Lnþ 2;op;

Lnþ 1;op and Lnþ 2;op are much smaller than the corre-

sponding theoretical values Lop(T
), as given in Table 2,

which indicates that our thresholds nearly always lead

to better performance than if one would not replace

preventively at all.

5. There is no clear move of the means and medians of

our optimal lower and upper costs towards the theoretical

optimal costs in a similar manner as for the optimal

thresholds. The effect of the additional information

Table 4 Simulation results for the upper cost function

T

nþ 1;op C


Xnþ 1;op

Lnþ 1;op T

nþ 2;op C


Xnþ 2 ;op

Lnþ 2;op

Case 1: n¼ 10, cf¼ 10, l¼ 10
Mean 0.4807 7.9555 0.1266 0.4483 7.8842 0.1088
Median 0.4161 7.5862 0.0638 0.3879 7.6969 0.0477
SD 0.2548 2.3318 0.1567 0.2215 2.2288 0.1395

Case 2: n¼ 50 cf¼ 10, l¼ 10
Mean 0.3222 6.5694 0.0335 0.3210 6.5626 0.0331
Median 0.3017 6.5180 0.0139 0.2985 6.5269 0.0141
SD 0.1067 1.1333 0.0515 0.1055 1.1185 0.0503

Case 3: n¼ 50, cf¼ 50, l¼ 10
Mean 0.1547 21.0004 0.0866 0.1531 20.9663 0.0845
Median 0.1346 20.3679 0.0400 0.1321 20.4406 0.0370
SD 0.0701 5.3749 0.1152 0.0699 5.3474 0.1145

Case 4: n¼ 50, cf¼ 10, l¼ 25
Mean 0.3614 6.2952 0.0440 0.3571 6.2962 0.0422
Median 0.3390 6.1900 0.0207 0.3367 6.2153 0.0198
SD 0.1194 1.1061 0.0596 0.1160 1.0944 0.0564

Case 5: n¼ 50, cf¼ 10, l¼ 25
Mean 0.1977 18.1813 0.1411 0.1947 18.1602 0.1356
Median 0.1832 17.7959 0.0811 0.1807 17.6933 0.0765
SD 0.0827 5.0747 0.1700 0.0814 5.0551 0.1652

Table 5 Comparison of optimal replacement threshold for units nþ 1 and nþ 2

Case 1 Case 2 Case 3 Case 4 Case 5

T
nþ 1;op4T

nþ 2;op 336 (222) 438 (380) 280 (246) 522 (466) 316 (299)

T
nþ 1;opoT

nþ 2;op 324 (229) 514 (437) 373 (362) 442 (357) 259 (241)

T
nþ 1;op ¼ T

nþ 2;op 340 (340) 48 (48) 347 (347) 36 (36) 425 (425)

T

nþ 1;op4T


nþ 2;op

767 (622) 624 (559) 812 (772) 693 (637) 856 (822)

T

nþ 1;opoT


nþ 2;op

233 (94) 376 (288) 188 (165) 307 (202) 144 (116)

Table 6 Comparison of optimal costs for units nþ 1 and nþ 2

Case 1 Case 2 Case 3 Case 4 Case 5

C
Xnþ 1 ;op

4C
Xnþ 2;op

473 (451) 822 (817) 611 (608) 830 (823) 541 (540)

C
Xnþ 1 ;op

oC
Xnþ 2;op

187 (0) 130 (0) 42 (0) 134 (0) 34 (0)

C
Xnþ 1 ;op

¼ C
Xnþ 2;op

340 (340) 48 (48) 347 (347) 36 (36) 425 (425)

C

Xnþ 1 ;op

4C

Xnþ 2;op

784 (716) 855 (847) 942 (937) 851 (839) 940 (938)

C

Xnþ 1 ;op

oC

Xnþ 2;op

216 (0) 145 (0) 58 (0) 149 (0) 60 (0)

14 Journal of the Operational Research Society



on unit nþ 1 tends to be quite small on these cost

function values. Table 6 shows that these optimal

lower and upper cost function values can move in

both directions if the observation for unit nþ 1 is

a failure time (see Example 5 for discussion). However,

in case of a right-censored observation for unit nþ 1, the

optimal lower and upper cost function values never

increased. This strongly agrees with intuition, but we

have not been able to prove or disprove that this holds

generally.

6. The means, medians and standard deviations of T
nþ 1; op,

T
nþ 2; op, T


nþ 1;op and T


nþ 2;op for n¼ 10 observed failure

times are all greater than the corresponding values for

n¼ 50 observed failure times. This implies that our

method indeed adapts well to the available data, in the

sense that more data tend to bring these optimal

thresholds closer to the theoretical values. The reduction

in the variation of these thresholds is also due to the fact

that more data provide less fluctuating information about

the underlying failure time distribution. The means,

medians and standard deviations of the Lnþ 1;op;

Lnþ 2;op; Lnþ 1;op and Lnþ 2;op are all greater for n¼ 10

than for n¼ 50, which also indicates better performance

of our method when there are more observed failure

times.

The means and medians of C
Xnþ 1;op

and C
Xnþ 2;op

for

n¼ 10 are less than the corresponding means and

medians of C
Xnþ 1;op

and C
Xnþ 2;op

for n¼ 50. The means

and medians of C

Xnþ 1;op

and C

Xnþ 2;op

for n¼ 10 are

greater than the corresponding means and medians of

C

Xnþ 1;op

and C

Xnþ 2;op

for n¼ 50. So larger n, these lower

and upper optimal cost function values tend to be closer

to the theoretical optimum cost function values. These

optimal lower and upper cost function values also vary

less for larger n, which is shown by the smaller standard

deviations for n¼ 50 than for n¼ 10.

7. If we increase l, the occurrence rate of the preventive

replacement opportunities, then the means, medians and

standard deviations of the optimal replacement thresh-

olds increase, and the means and medians of the

corresponding optimal cost function values decrease.

This agrees with intuition, and was also observed in a

numerical study by Dekker and Dijkstra.8 However, as

we have shown in Example 2, this does not hold

generally.

8. If the cost of corrective replacement, cf, increases then

the means, medians and standard deviations of our

optimal replacement thresholds decrease, and the

means, medians and standard deviations of the

corresponding optimal cost function values increase.

Hence, if cf increases then we tend to earlier preventive

replacements, if opportunities occur, but this cannot

prevent the higher average costs. This also agrees

with numerical observations by Dekker and

Dijkstra.8

Conclusions

In this paper, we have developed and analysed theory for

OAR from nonparametric predictive inferential perspective,

providing a method to derive optimal preventive replacement

thresholds that is fully adaptive to failure data from the

process. This work extends our earlier studies for age

replacement from the same perspective,6,7 and supports the

conclusions in those papers. This paper presents the first

combination of aspects from classical stochastic processes, in

the form of the homogeneous Poisson process describing the

occurrence of preventive replacement opportunities, with NPI.

The method proves successful in the sense that for relatively

few failure data (n¼ 10) the thresholds based on simulated

data from a known Weibull distribution were mostly close to

the theoretical optimum, and for larger numbers of failure

data the method performs indeed better. We explicitly studied

the method’s ability to take information on unit nþ 1 into

account, after applying our optimal age replacement strategy

based on the first n failure times. This showed that the method

can take this extra information into account appropriately,

and also revealed that on some occasions counter-intuitive

results may appear, which may be explained by the optimality

criterion, for which the renewal reward theorem was used. In

particular, via examples and simulations we have shown that

it is possible that the optimal OAR threshold may exceed the

optimal AR time corresponding to the same failure data and

costs, and that increasing rate of occurrence of preventive

replacement opportunities does not necessarily imply an

increase of the replacement threshold.

Our method requires failure data, which may not be

available in many practical situations. However, we regard

our analysis as an important alternative approach to the

classical OAR problem, as studied by Dekker and Dijkstra,8

where the failure time distribution is assumed to be known,

which is perhaps even less realistic. Both these approaches

together can provide detailed insights, for example via

simulation studies as we have presented and discussed in this

paper, leading to better understanding of the optimality

criterion used. Our method is restrictive in the sense that a

lower and an upper cost function are derived, without any

further comments on which of these to use for decision

making or the possibility to choose a cost function in

between these two extremes. This is because we did not want

to make further assumptions that could influence our

optimal replacement thresholds in rather vague manners. If

we would have to choose between using the upper or lower

cost function, we may have a slight preference for the upper

cost function, as this relates to the NPI-based lower survival

function and as such can be considered to be conservative.

We would prefer, however, to study both these functions

simultaneously, if the resulting optimal thresholds are close

then one can be fairly confident that it may be reasonable to

use one of them, if they differ substantially this may indicate

that the data do not strongly support a particular threshold,
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and that it may not be possible to avoid further assumptions,

for example via expert judgements,4,5 to decide on a value

for the threshold. It would be interesting to develop methods

that combine NPI, on aspects of decision problems where

data are sufficiently available, with subjective methods.

Quite a few counter-intuitive results appeared in this

study, and to a lesser extend also in our NPI-based age

replacement,6,7 these are mostly due to the use of the renewal

reward theorem to derive our optimality criterion. Although

this criterion, taking into account many replacement cycles

over a long (‘infinite’) time horizon, is mathematically

attractive and well established, in our future research we

will compare it with optimal (opportunity-based) age

replacement strategies which take only the cost per unit of

time over a single cycle into account,2 which also fits more

naturally with the possibility of changing strategies to adapt

to all available information.
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Appendix A

Derivation of (13)

We derive an expression for E[Lop(T)] which is similar to

Equation (9) of Dekker and Dijkstra,8 but in a form more

suitable for this paper. This expression holds for exponen-

tially distributed Y, with probability density function fY(.).

E½LopðTÞ� ¼E½minðX ;T þ YÞ�

¼
Z1
0

E½minðX ;T þ YÞjY ¼ y�fYðyÞ dy

¼
Z1
y¼0

ZT þ y

x¼0

ð1� FXðxÞÞfY ðyÞ dxdy

¼E½minðX ;TÞ� þ
Z1
y¼0

ZT þ y

x¼T

SXðxÞfY ðyÞ dx dy

¼
ZT
0

SXðxÞ dx þ
Z1
x¼T

Z1
y¼x�T

SXðxÞfY ðyÞ dydx

¼
ZT
0

SXðxÞ dx þ
Z1
0

SXðT þ xÞSYðxÞ dx

¼
ZT
0

SXðxÞ dx þ
Z1
0

SXðT þ xÞE½Y �fYðxÞ dx

¼
ZT
0

SXðxÞ dx þ E½Y �E½SXðT þ YÞ�

where the penultimate equality follows from the fact that

SY(x)¼E[Y]dFY(x)/dx, as Y has an Exponential distribution.

Proof of Lemma 1

C 0
Xnþ 1;op

ðTÞ ¼

"
�ðcf � cpÞ

d

dT
E½SXnþ 1

ðT þ YÞ�

�
ZT
0

SXnþ 1
ðxÞdx þ E½Y �E½SXnþ 1

ðT þ YÞ�

0
@

1
A

� ðcf � ðcf � cpÞE½SXnþ 1
ðT þ YÞ�Þ

� d

dT

ZT
0

SXnþ 1
ðxÞdx þ E½Y � d

dT
E½SXnþ 1

ðT þ YÞ�

0
@

1
A
#

�
ZT
0

SXnþ 1
ðxÞdx þ E½Y �E½SXnþ 1

ðT þ YÞ�

0
@

1
A

�2

ðA:1Þ
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Here,

d

dT
E½SXnþ 1

ðT þ YÞ� ¼

� 1

E½Y � ðSXnþ 1
ðTÞ � E½SXnþ 1

ðT þ YÞ�Þ
ðA:2Þ

see, for example Dekker and Dijkstra,8 and

d

dT

ZT
0

SXnþ 1
ðxÞdx ¼ SXnþ 1

ðTÞ ðA:3Þ

Substituting (A.2) and (A.3) into (A.1) yields

C 0
Xnþ 1;op

ðTÞ ¼ E½SXnþ 1
ðT þ YÞ�R T

0 SXnþ 1
ðxÞ dx þ E½Y �E½SXnþ 1

ðT þ YÞ�

� ðcf � cpÞðSXnþ 1
ðTÞ � E½SXnþ 1

ðT þ YÞ�Þ
E½Y �E½SXnþ 1

ðT þ YÞ�

(

� cf � ðcf � cpÞE½SXnþ 1
ðT þ YÞ�R T

0 SXnþ 1
ðxÞ dx þ E½Y �E½SXnþ 1

ðT þ YÞ�

)

As the last expression is equal to CXnþ 1;op
ðTÞ, and both

E½SXnþ 1
ðT þ YÞ� and

R T
0
SXnþ 1

ðxÞdx þ E½Y �E½SXnþ 1
ðT þ YÞ�

are positive, we have, for TA[x(j),x(jþ 1)) and j¼ 0,y, n

C 0
Xnþ 1;op

ðTÞ ¼ 0 ,
ðcf � cpÞðSXnþ 1

ðTÞ � E½SXnþ 1
ðT þ YÞ�Þ

E½Y �E½SXnþ 1
ðT þ YÞ�

� CXnþ 1;op
ðTÞ ¼ 0

Proof of C 00
Xnþ 1;op

ðTÞ40;C 00
Xnþ 1;op

ðTÞ40;C 00
Xnþ 2;op

ðTÞ40
and C 00

Xnþ 2;op
ðTÞ40

Obviously, we only prove this for TA(x(j),x(jþ 1)) and

j¼ 0,y, n�1, as the second derivatives do not exist in the

observed values x(j). Differentiating Cop(T) of Equation (14)

with respect to T, and using (A.2) and (A.3) with Xnþ 1

replaced by X, obtain

Cop
0 ðTÞ ¼ E½LðTÞ�

E2½LopðTÞ� gðTÞ ðA:4Þ

where

gðTÞ ¼ ðcf � cpÞðSXðTÞ � E½SXðT þ YÞ�Þ
E½Y �

� E½SXðT þ YÞ�CðTÞ
ðA:5Þ

Hence, as E[L(T)] and E[Lop(T)] are both strictly positive,

we have

Cop
0 ðTÞ ¼ 0 , gðTÞ ¼ 0: ðA:6Þ

Now,

Cop
00 ðTÞ ¼ 1

E2½LopðTÞ�
d

dT
E½LðTÞ�

� �
gðTÞ

�

þ E½LðtÞ�g0ðTÞ

�
2E½LðTÞ�gðTÞð d

dT
E½LopðTÞ�Þ

E½LopðTÞ�

�
ðA:7Þ

where

g0ðTÞ ¼ ðcf � cpÞ
EðYÞ

d

dT
ðSXðTÞ � E½SXðT þ YÞ�Þ

� �

� d

dT
E½SXðT þ YÞ�CðTÞ � E½SXðT þ YÞ�C0ðTÞ

ðA:8Þ

with C0(T) the first derivative of the age replacement cost

function (11). Moreover, we have

d

dT
E½RðTÞ� ¼ �ðcf � cpÞ

d

dT
SðTÞ

and using (A.2), with Xnþ 1 replaced by X,

d

dT
E½RopðTÞ� ¼ ðcf � cpÞðSXðTÞ � E½SXðT þ YÞ�Þ

E½Y �

so that

d2

dT2
E½RopðTÞ� ¼ ðcf � cpÞ

E½Y �
d

dT
ðSXðTÞ � E½SXðT þ YÞ�Þ

¼ ðcf � cpÞ
E2½Y � ðSXðTÞ � E½SXðT þ YÞ�Þ

� 1

E½Y �
d

dT
E½RðTÞ� ðA:9Þ

Substituting (A.9) into (A.8) yields

g0ðTÞ ¼ d2

dT2
E½RopðTÞ� þ ðSðTÞ � E½SðT þ YÞ�ÞCðTÞ

E½Y �

� E½SðT þ YÞ�C0ðTÞ

¼ gðTÞ
EðYÞ �

d
dT
E½RðTÞ� � ð d

dT
E½LðTÞ�ÞCðTÞ

E½Y �
� E½SðT þ YÞ�C0ðTÞ ðA:10Þ

Differentiating the age replacement cost function C(T)

(11) with the respect to T yields

C0ðTÞ ¼
ð d
dT
E½RðTÞ�ÞE½LðTÞ� � ð d

dT
E½LðTÞ�ÞE½RðTÞ�

E2½LðTÞ�
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and since E[L(T)]40 for all T40,

d

dT
E½RðTÞ� � ð d

dT
E½LðTÞ�ÞCðTÞ ¼ E½LðTÞ�C0ðTÞ

so that (A.10) can be written as

g0ðTÞ ¼ gðTÞ
EðYÞ �

E½LðTÞ�
E½Y � þ E½SXðT þ YÞ�

� �
C0ðTÞ

ðA:11Þ

Using (A.11), we have

d

dT
ðE½LðTÞ�gðTÞÞ ¼ d

dT
E½LðTÞ�

� �
gðTÞ þ E½LðTÞ�g0ðTÞ

¼ d

dT
E½LðTÞ�

� �
þ E½LðTÞ�

E½Y �

� �
gðTÞ

� E½LðTÞ�
E½Y � þ E½SXðT þ YÞ�

� �
E½LðTÞ�C0ðTÞ

ðA:12Þ

Substituting (A.12) into (A.7) yields

Cop
00 ðTÞ ¼ 1

E2½LopðTÞ�

"(
d

dT
E½LðTÞ�

�
2ð d

dT
E½LopðTÞ�ÞE½LðTÞ�

E½LopðTÞ� þ E½LðTÞ�
E½Y �

)
gðTÞ

� E½LðTÞ�
E½Y � þ E½SXðT þ YÞ�

� �
E½LðTÞ�C0ðTÞ

#
ðA:13Þ

However, at the optimal OAR threshold Top
 we have

g(Top
 )¼ 0 according to (A.6). From Lemmas 2.2 and 3.2 of

Coolen-Schrijner and Coolen6 we know that the first

derivatives of our NPI based age replacement cost functions

C 0
Xnþ 1

ðTÞ, C 0
Xnþ 1

ðTÞ, C 0
Xnþ 2

ðTÞ, C 0
Xnþ 2

ðTÞ are all negative.

Substituting the lower and upper survival functions

in E[L(T)] and E[SX(TþY)] yields corresponding

lower and upper bounds which are all positive. Then,

from (A.13), it follows that C 00
Xnþ 1;op

ðTÞ, C 00
Xnþ 1;op

ðTÞ,
C 00

Xnþ 2;op
ðTÞ, C 00

Xnþ 2;opðTÞ are all positive.

Proof of Lemma 3

1. TA[x(j),x(jþ 1)) with j¼ 0,y,k�1.

In this case, Equation (32) can be obtained by noting that

E½SXnþ 2
ðT þ YÞ� ¼

Zxðjþ 1Þ�T

0

SXnþ 2
ðxðjÞÞfYðyÞdy

þ
Xk�j�1

l¼1

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

SXnþ 2
ðxðjþ lÞÞfY ðyÞ dy

þ
Xn�j

l¼k�j

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

SXnþ 2
ðxðjþ lÞÞfYðyÞ dy

¼
Zxðjþ 1Þ�T

0

n� j þ 2

n þ 2
le�ly dy

þ
Xk�j�1

l¼1

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

n� j � l þ 2

n þ 2
le�ly dy

þ
Xn�j

l¼k�j

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

ðn� j � l þ 1Þðn� k þ 2Þ
ðn þ 2Þðn� k þ 1Þ le�ly dy

2. TA[x(k),x(kþ 1)).

In this case, Equation (33) can be obtained by noting that

E½SXnþ 2
ðT þ YÞ� ¼

Zxðkþ 1Þ�T

0

SXnþ 2
ðxðkÞÞfY ðyÞ dy

þ
Xn�k

l¼1

Zxðkþ lþ 1Þ�T

xðkþ lÞ�T

SXnþ 2
ðxðkþ lÞÞfYðyÞ dy

¼
Zxðkþ 1Þ�T

0

n� k þ 2

n þ 2
le�ly dy

þ
Xn�k

l¼1

Zxðkþ lþ 1Þ�T

xðkþ lÞ�T

ðn� k þ 2Þðn� k� l þ 1Þ
ðn þ 2Þðn� k þ 1Þ le�ly dy

3. TA[x(j),x(jþ 1) with j¼ kþ 1,y, n.

In this case, Equation (34) can be obtained by noting that

E½SXnþ 2
ðT þ YÞ� ¼

Zxðjþ 1Þ�T

0

SXnþ 2
ðxðjÞÞfYðyÞdy

þ
Xn�j

l¼1

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

SXnþ 2
ðxðjþ 1ÞÞfY ðyÞdy

¼
Zxðjþ 1Þ�T

0

ðn� j þ 1Þðn� k þ 2Þ
ðn þ 2Þðn� k þ 1Þ le�lydy

þ
Xn�j

l¼1

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

ðn� k þ 2Þðn� j � l þ 1Þ
ðn þ 2Þðn� k þ 1Þ le�lydy

&

Proof of Lemma 6

We only prove part (a)-1 of the lemma, the proofs of the

other parts are similar. Suppose TA(x(j),x(jþ 1)] with
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j¼ 0,y,k�1, then

E½SXnþ 2
ðT þ YÞ� ¼

Zxðjþ 1Þ�T

0

SXnþ 2
ðy þ TÞfYðyÞ dy

þ
Xk�j�1

l¼1

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

SXnþ 2
ðy þ TÞfY ðyÞ dy

þ
Zxc�T

xðkÞ�T

SXnþ 2
ðy þ TÞfYðyÞ dy

þ
Zxðkþ 1Þ�T

xc�T

SXnþ 2
ðy þ TÞfYðyÞ dy

þ
Xn�k�1

l¼1

Zxðkþ lþ 1Þ�T

xðkþ lÞ�T

SXnþ 2
ðy þ TÞfY ðyÞ dy

þ
Z1

xðnÞ�T

SXnþ 2
ðy þ TÞfY ðyÞ dy

¼
Zxðjþ 1Þ�T

0

n� j þ 1

n þ 2
fYðyÞ dy

þ
Xk�j�1

l¼1

Zxðjþ lþ 1Þ�T

xðjþ lÞ�T

n� j � l þ 1

n þ 2
fY ðyÞ dy

þ
Zxc�T

xðkÞ�T

n� k þ 1

n þ 2
fYðyÞ dy

þ
Zxðkþ 1Þ�T

xc�T

ðn� kÞðn� k þ 2Þ
ðn þ 2Þðn� k þ 1Þ fYðyÞ dy

þ
Xn�k�1

l¼1

Zxðkþ lþ 1Þ�T

xðkþ lÞ�T

ðn� k� lÞðn� k þ 2Þ
ðn þ 2Þðn� k þ 1Þ fY ðyÞ dy

þ
Z1

xðnÞ�T

0 fYðyÞ dy

As Y has an Exponential distribution with parameter l,
the result follows.
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