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Abstract

We demonstrate how the imprecise Dirichlet model can be used in modelling fault trees. As
a simple example, we consider a system consisting of two parallel subsystems A and B, and
assume that the whole system C fails if and only if both components A and B fail. Given
test data about the failure of A or B in a sequence of experiments, what can we say about
the (interval-valued) posterior predictive probability of a particular component of the system
failing upon a further single test or use of the system, taking differing assumptions about the
data and the dependence of components A and B into account?
We will use the standard Bayesian framework with a Dirichlet multinomial model, and then
generalise this to allow classes of priors, as in Walley’s imprecise Dirichlet model (Walley 1996).
Restricted to the standard Bayesian approach, this is just a simple special case of system
reliability inference with multilevel failure information, which was theoretically developed in
the 80’s (Vesely, Goldberg, Roberts, and Haasl 1981, p. XI-24).
We extend various features of the imprecise Dirichlet model to accommodate the particular
problem at hand, and we are led to study various statistical assumptions about how the
sample was generated. This simple example allows us to pin-point a number of interesting
effects on the precision of the posterior probabilities under varying assumptions, and also
admits an analytical analysis. Scaling these extensions to more complex systems presents a
major research challenge.

1 Introduction: The Imprecise Dirichlet Model

In studying the reliability of a system, often, the main sources of information are frequencies of particular
primary events, and expert opinions in the form of subjective probabilities of events. A fault tree can
then be considered as a tool to combine these frequencies and expert opinions into a measure of reliability
of the whole system, for instance, a probability of complete failure.

A frequent problem in fault trees is that sometimes insufficient data is available to arrive at a reliable
probability estimate. This is particularly problematic for rare events, and such events often arise in
reliability. Another problem is that experts sometimes find it hard to formulate a precise probability, and
are more comfortable with providing lower and upper probabilities rather than being forced to pinpoint
an accurate probability. This is particularly true in fault tree analysis where failure probabilities are
often only known up to a factor 10 or more. The imprecise Dirichlet model (Walley 1996) addresses both
of these problems in an elegant way.

The imprecise Dirichlet model begins with a set of k mutually exclusive and exhaustive events Ω =
{1, . . . , k}. These events could for example be failures, faults, or particular conditions under which certain
faults occur. Let θi be the uncertain probability of each event i, and denote by θθθ = (θ1, . . . , θk). Since
we are concerned with the case where the probability vector θθθ cannot be specified precisely, a standard
Bayesian approach is to put a distribution over θθθ to model our prior knowledge about θθθ, and then apply
Bayes theorem using the proper likelihood, as specified by the sampling model. In this way we arrive at
a posterior distribution over θθθ, which can be used for further inferences about θθθ.

Imagine that our data consists of a particular i.i.d. sequence of N of such events, and say that each
event i is observed ni times in this sequence; let nnn = (n1, . . . , nk). Then the probability of observing such



a sequence, if we knew the probability vector θθθ, is

P (nnn|θθθ) =
k∏

i=1

θni
i (1)

In the Bayesian framework this probability, as a function of θθθ, is called the likelihood function.
A particularly interesting form for the prior distribution on θθθ is one which is conjugate to the above

likelihood:

π(θθθ) ∝
k∏

i=1

θsti−1
i

This prior is called the Dirichlet distribution with hyperparameters s > 0 and ttt = (t1, . . . , tk). The vector
ttt is a probability vector representing the prior expectation of θθθ (with each ti > 0 for technical reasons).
To understand the meaning of s, consider the posterior distribution

π(θθθ|nnn) ∝ P (nnn|θθθ)π(θθθ) =
k∏

i=1

θni+sti−1
i

The posterior expectation of θθθ is hence nnn+sttt
N+s : the parameter s controls the relative impact of prior versus

data on the posterior. For large values of s, more data are required to move the posterior expectation of
θθθ away from its prior expectation ttt.

We have combined both expert information, through the prior, and frequency data, through the
likelihood. The lack of a large amount of data is, so to speak, compensated by expert information,
modelled by the hyperparameters s and ttt. As more data become available, the impact of the expert
information will decrease. In principle, we could now go on studying fault trees using this model. Indeed,
this is just a simple special case of system reliability inference with multilevel failure information, which
was theoretically developed in the 80’s (Vesely, Goldberg, Roberts, and Haasl 1981, p. XI-24). For
computational methods in fault tree analysis, such as Markov chain Monte Carlo, see (Hamada, Martz,
Reese, Graves, Johnson, and Wilson 2004), who also provide details of the earlier literature.

However, what if no expert information is available at all? Or what if experts find it hard to assess
precise values for the hyperparameters s and ttt? This is where the imprecise Dirichlet model comes into
play. Instead of considering just a single Dirichlet distribution as prior, the imprecise Dirichlet model
starts with the set of all Dirichlet distributions for a fixed value of s. That is, for each value of the
hyperparameter ttt, the corresponding Dirichlet distribution is updated using the likelihood in Eq. (1),
inducing a set of posterior Dirichlet distributions, which can then be used for further inferences about θθθ.

Considering all hypervectors ttt corresponds (or at least, is meant to correspond) to the extreme case
where no expert information is available at all. In case expert information is available, one could ask the
expert to provide a set of prior expectations for θθθ, and this set of prior expectations can be used in the
same way as above.

For example, we arrive at the following interval for the probability θi that we observe event i:[
ni

N + s
,
ni + s

N + s

]
For the purpose of quantitative fault tree analysis, it often makes sense to focus on just one end of this
interval: as reliability is often concerned with worst case scenarios, we might mostly be interested in the
upper probability of total failure. If decisions regarding the system need to be made, then matters are
slightly more complicated; we refer to the literature for further discussion (Troffaes (in press)).

2 A Toy Example

In the remainder of this paper, we attempt to apply the imprecise Dirichlet model on fault trees. In doing
so, we consider a simple two-component system, with components A and B, where total failure occurs



only if both A and B fail. We are both interested in the failure of the whole system, say C, and in the
failure of one of the components, say A. So, we shall be studying the following fault tree:

A B

C

AND

where we identify the event of failure of A with the same letter A, and similar for B and C.
This simple example allows us to pin-point a number of interesting effects on the precision of the

posterior probabilities under varying assumptions, and also admits an analytical analysis. Upscaling
these extensions to more complex systems presents a major challenge.

We are given test data as follows: in a sequence of N = NA + NB + NC experiments, A failed nA

out of NA times, B failed nB out of NB times, and C failed nC out of NC times. What do these data
tell us about the probability of failure of the components of the system? More precisely, what can we
say about the (interval-valued) posterior predictive probability of the whole system C failing, or a single
component A failing, upon a further single test or use of the system, taking differing assumptions about
the data and the dependence of components A and B into account?

3 Independent Components

Let θA and θB be the (possibly uncertain) probabilities of the events A and B. Assuming that failure of
A is statistically independent from failure of B, we have P (C|θA, θB) = θAθB .

We denote the data on A by nnnA = (NA, nA), and similarly for the events B and C. All data together
are denoted by nnn. Then the likelihood function is

P (θA, θB |nnn) ∝ θnA

A (1− θA)NA−nA

× θnB

B (1− θB)NB−nB

× (θAθB)nC (1− θAθB)NC−nC

A convenient (and standard) choice of prior p(θA, θB) is derived by assuming prior independence of these
two parameters, and choosing conjugate priors on each parameter:

p(θA) ∝ θstA−1
A (1− θA)s(1−tA)−1

and
p(θB) ∝ θstB−1

B (1− θB)s(1−tB)−1

with s > 0, and tA and tB ∈ (0, 1). The parameter tA is the prior expectation of θA, and similarly for
tB . Again, the parameter s controls the impact of the prior on the posterior. We use the same value
s for the prior both on θA and θB : this is not essential, but it simplifies the formulas; generalization is
straightforward.

The posterior distribution follows directly

p(θA, θB |nnn) ∝ θnA+stA−1
A (1− θA)NA−nA+s(1−tA)−1

× θnB+stB−1
B (1− θB)NB−nB+s(1−tB)−1

× (θAθB)nC (1− θAθB)NC−nC (2)



To calculate the posterior predictive probability of A and C (i.e. the posterior expectation of θA and
θC) we need to integrate over the above posterior distribution. This calculation is not straightforward,
because the posterior is not a product of a Dirichlet distribution in θA and a Dirichlet distribution in θB .

Elsewhere (Troffaes and Coolen (submitted)), we have shown that these posterior predictive proba-
bilities can be calculated analytically. Unfortunately, the analytical expressions are quite large. For the
purpose of this paper, let us simply give bounds on the posterior predictive probabilities of A and of C,
also derived in (Troffaes and Coolen (submitted)):

P (C|nnn) ∈
[
nA + stA + nC

NA + s + nC
× nB + stB + nC

NB + s + NC
,
nA + stA + nC

NA + s + NC
× nB + stB + NC

NB + s + NC

]
∩

[
nB + stB + nC

NB + s + nC
× nA + stA + nC

NA + s + NC
,
nB + stB + nC

NB + s + NC
× nA + stA + NC

NA + s + NC

]
(where [a, b] = {x : min{a, b} ≤ x ≤ max{a, b}}) and

P (A|nnn) ∈
[
nA + stA + nC

NA + s + NC
,
nA + stA + nC

NA + s + nC

]
These expressions give reasonably accurate estimates of the posterior predictive probabilities of failure of
A, and of C, based on the data nnn, and the initial expert estimates tA and tB .

However, what if no initial expert estimates are available? In that case, let us consider an imprecise
Dirichlet model on both θA and θB , i.e., we consider the set of all possible values of tA ∈ (0, 1) and
tB ∈ (0, 1). As the above bounds are monotone in tA and tB , we can immediately infer lower and upper
bounds on the lower and upper predictive probabilities as well,

For example, the lower and upper probabilities P (C|nnn) and P (C|nnn) are the infimum and supremum,
respectively, of the set of corresponding predictive posterior probabilities P (C|nnn) for all possible values
of the prior parameters tA and tB , and are therefore bounded by

max

{
min

{
nA+nC

NA+s+nC
× nB+nC

NB+s+NC
,

nA+nC

NA+s+NC
× nB+NC

NB+s+NC

}
,min

{
nB+nC

NB+s+nC
× nA+nC

NA+s+NC
,

nB+nC

NB+s+NC
× nA+NC

NA+s+NC

}}
,

≤ P (C|nnn) ≤ P (C|nnn) ≤

min

{
max

{
nA+s+nC

NA+s+nC
× nB+s+nC

NB+s+NC
,

nA+s+nC

NA+s+NC
× nB+s+NC

NB+s+NC

}
,max

{
nB+s+nC

NB+s+nC
× nA+s+nC

NA+s+NC
,

nB+s+nC

NB+s+NC
× nA+s+NC

NA+s+NC

}}

Similarly, we have
nA + nC

NA + s + NC
≤ P (A|nnn) ≤ P (A|nnn) ≤ nA + s + nC

NA + s + nC

Next we discuss a few special cases.

3.1 No Observations of C

If NC = 0, then
nA

NA + s
× nB

NB + s
≤ P (C|nnn) ≤ P (C|nnn) ≤ nA + s

NA + s
× nB + s

NB + s

and
nA

NA + s
≤ P (A|nnn) ≤ P (A|nnn) ≤ nA + s

NA + s

Recall that in this case, the posterior is an independent product of two Dirichlet distributions. Therefore,
it is not so surprising that the posterior predictive probability intervals are a product of the two posterior
predictive probability intervals induced by each imprecise Dirichlet model on A and on B separately.



3.2 Only observations of C

If NA = NB = 0 then
nC

nC + s
× nC

NC + s
≤ P (C|nnn) ≤ P (C|nnn) ≤ nC + s

NC + s
(3)

which is slightly more conservative than the Dirichlet model without the independence assumption—
which would yield nC

NC+s as a lower bound.
Regarding A, we have

nC

NC + s
≤ P (A|nnn) ≤ P (A|nnn) ≤ 1

The upper bound of 1, which is completely uninformative, can be explained as follows: if we only have
observations regarding C then, in each case where C does not fail, there is no way of telling whether A

failed or whether B failed. In fact, we only learn about the product of θA and θB . For example, imagine
we have many observations of C, so fC = nC

NC
can be used as a good estimate for θC . Because A and B

are statistically independent, also approximately θAθB = fC . But, the only fact about θA we can infer
from θAθB = fC , is that θA must belong to [fC , 1]. This interval is the best we can do without additional
prior information.

4 Dropping the Independence Assumption

Let us now analyse the fault trees again, without assuming independence of A and B.

4.1 Partial observations

Because the fault tree involves observations not just from mutually exclusive events—for example, if we
observe failure of A, then we do not know whether B failed or not—we cannot apply the usual imprecise
Dirichlet model directly. Let us investigate this problem in more detail.

The simplest sample space which fully models all possible outcomes of the fault tree consists of four
elements:

A Ac

B 1 2
Bc 3 4

Category 1 obtains when both A and B fail, 2 when B fails but A does not, 3 when A fails but B does
not, and 4 if both do not fail. C corresponds to category 1.

Recall, we are given N = NA + NB + NC observations, which can be summarized in the following
contingency table:

event count
A nA

Ac NA − nA

B nB

Bc NB − nB

C nC

Cc NC − nC

But, not all of our observations correspond to the observation of a single category. We are dealing with
partial observations: for instance, during the sequence of NA experiments where A was monitored, we
have not been told whether B failed or not. During that sequence, we only learn that the true state of
the system belongs to either {1, 3} or {2, 4}, but nothing more.



4.2 An Imprecise Dirichlet Model for Partial Observations

Partial observations can be dealt with by a straightforward extension of the imprecise Dirichlet model.
Assume we have k categories, and let Ω = {1, . . . , k} be the sample space. A multinomial sampling model
generates a sequence of N outcomes (ω1, . . . , ωN ) where each ωi is independently chosen from Ω with an
identical probability distribution θθθ = (θ1, . . . , θk).

The likelihood of observing the sequence of events (rather than single categories, as in the traditional
imprecise Dirichlet model) (O1, . . . , ON ) is given by

N∏
i=1

 ∑
j∈Oi

θj

 =
∏

O⊆Ω

∑
j∈O

θj

nO

where nO is the number of times event O occurs in the sequence (O1, . . . , ON ). This can also be written
as

=
∑
νOj

 ∏
O⊆Ω

(
nO

νO1, . . . , νOk

)  k∏
j=1

θ
P

O⊆Ω νOj

j


if we take the convention that νOj = 0 whenever j 6∈ O, and where it is understood that the sum over
νOj runs over all counts νOj for all O ⊆ Ω and all j = 1, . . . , k such that

∑
j∈O νOj = nO. Again, the

likelihood depends on the observations only through nnn = (nO;O ⊆ Ω).
If we are unsure about the true value of θθθ, the standard approach is to model our knowledge about

θθθ by a Dirichlet prior with parameters s and ttt. After observation we have by Bayes theorem a posterior
distribution

π(θθθ|nnn) ∝
∑
νOj

∏
O⊆Ω

(
nO

νO1, . . . , νOk

) k∏
j=1

θ
stj+

P
O⊆Ω νOj−1

j (4)

where the proportionality constant follows from normalization. Note that the posterior is now a convex
combination of Dirichlet distributions. It is possible to arrive at an analytic expression for the posterior
predicitive of an event O in Ω, however the expression is rather large (Troffaes and Coolen (submitted)).

In similar spirit to the imprecise Dirichlet model, if we keep s fixed and let ttt vary over all possible
values, 0 < tj < 1, and

∑k
j=1 tj = 1, we end up with a set of posteriors, which are now convex

combinations of Dirichlet distributions. This time, we have to rely on numerical methods for calculating
lower and upper probabilities, because the posterior predictive probabilities are strongly non-linear in ttt.

However, again, we can easily come up with bounds for the posterior predictive lower and upper
probabilities:

inf
νOj

∑
O⊆Ω νOB

N + s
≤ P (ωN+1 ∈ B|nnn) ≤ P (ωN+1 ∈ B|nnn) ≤ sup

νOj

∑
O⊆Ω νOB + s

N + s

where we denote by νOB the partial sum of νO` over all ` ∈ B:

νOB =
∑
`∈B

νO`.

This expression can be interpreted in terms of selection bias, which we address in the following section.

4.3 Compensating for Selection Bias

It is a very interesting observation that the containing interval just obtained exactly entails taking possible
selection bias into account. One could for instance imagine a mechanism which reports specific events O

for specific outcomes of the multinomial process.



For example, in case of our fault tree, we could imagine A only to be tested if B did not fail, in an
attempt to make component A come out better in the resulting statistics. The statistics will be biased
towards component A, but unless such crucial details about the experimental setup are revealed, we have
no way to tell in general how much bias there is towards this or that event.

Another instance of selection bias happens when the data are reorganized to report only particular
events if particular categories had been observed, effectively selecting part of the data. For example, one
could report failure of only B whenever actually both components failed, so all failures of C would be
reported as failures of B, and all failures of A would be instances where B did not fail. In this way one
explicitly removes information from the contingency table: data are missing. But, even if we know that
the data may have been tampered with, we usually do not know what selecting mechanism was used.

The proper way to model such situations where we cannot exclude the possibility of selection bias or
missing data, but we wish to account for it, is by considering the set of all likelihood functions induced
by all possible selection mechanisms, or equivalently, all possible completions νOj of the counts nO (De
Cooman and Zaffalon 2004; Utkin 2006). Those completions νOj are exactly the counts introduced
previously:

P (θθθ|νOj) =
∏

O⊆Ω

∏
j∈O

θ
νOj

j =
∏
j∈O

θ
P

O⊆Ω νOj

j

Hence, applying the imprecise Dirichlet model, but now with a set of likelihood functions, and hence,
a set of counts of the form nj =

∑
O⊆Ω νOj running over all possible completions νOj , we immediately

recover the bounding interval mentioned in the previous section.

4.4 Application on Fault Trees

In our example, we arrive at

nC

N + s
≤ P (C|nnn) ≤ P (C|nnn) ≤ nA + nB + nC + s

N + s

and
nA + nC

N + s
≤ P (A|nnn) ≤ P (A|nnn) ≤ nA + NB + NC + s

N + s

For example, the lower bound for P (C|nnn) obtains exactly when in all nA failures of A, B did not fail,
and in all nB failures of B, A did not fail (a full compensation effect). The upper bound for P (C|nnn)
corresponds to the case in which all failures of A, B failed as well, and vice versa.

The lower bound for P (A|nnn) obtains when A never failed in case Cc, B, or Bc was observed. The
upper bound for P (A|nnn) obtains if A always failed if Cc, B, or Bc was observed.

Note that in general these bounds are very imprecise, even when the counts are large. If we have no
model of the selection mechanism, then additional observations do not necessarily improve precision.

4.5 No Observations of C

If NC = 0, then

0 ≤ P (C|nnn) ≤ P (C|nnn) ≤ nA + nB + s

NA + NB + s

and
nA

NA + NB + s
≤ P (A|nnn) ≤ P (A|nnn) ≤ nA + NB + s

NA + NB + s

4.6 Only Observations of C

If NA = NB = 0, then
nC

NC + s
≤ P (C|nnn) ≤ P (C|nnn) ≤ nC + s

NC + s

and
nC

NC + s
≤ P (A|nnn) ≤ P (A|nnn) ≤ 1



5 Concluding Remarks

Independence has an obvious effect on the imprecision of the posterior. This effect is most clear in case
we have no observations about C, i.e., when NC = 0. In case we make no assumptions regarding the
independence of A and B, and even take possible selection bias into account, then the posterior predictive
probability intervals for both A and C usually become wider. These intervals will also not converge to
points as more data become available. In conclusion, wrongfully assuming independence, we may end up
with a too precise posterior and thereby underestimate the true risk of the system. This stresses the need
for making good assumptions about data, and in particular the importance of modelling dependencies
correctly.

A huge problem is how these calculations can be expanded to larger fault trees used in practice. For
example, can we formulate simple rules by which imprecision propagates in a fault tree along particular
gates?

An interesting question for future research is how various forms of dependence between the components
A and B can be taken into account, and how one can learn about such dependence from the data. There
are, of course, many ways to take dependence into account. Exchangeable components—when we know a
priori that θA = θB—is clearly one important case of dependence. More generally, it may be difficult to
learn about the form of dependence from the data. In particular, it is not clear how to arrive at a model
which allows updating of dependencies.
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