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Abstract

Nonparametric predictive inference (NPI) is a statistical approach based on few assumptions
about probability distributions, with inferences based on data. NPI assumes exchangeability
of random quantities, both related to observed data and future observations, and uncertainty
is quantified via lower and upper probabilities. In this paper, lifetimes of units from groups
X and Y are compared, based on observed lifetimes from an experiment that may have ended
before all units had failed. We present upper and lower probabilities for the event that the
lifetime of a future unit from X is less than the lifetime of a future unit from Y , and we
compare this approach with traditional precedence testing.

1 Introduction

Comparison of lifetimes of units from different groups is a common problem. Units from different groups

are simultaneously placed on a life-testing experiment, and decisions may be needed before all units

have failed due to cost or time considerations. In precedence testing, the experiment is terminated

at a certain time or after a certain number of failures (for a particular group), so the data consist of

both observed lifetimes and right-censored observations. Epstein (1955) presented precedence testing,

Nelson (1963) proposed it as an efficient life-test procedure that enables decisions after relatively few

lifetimes are observed. Balakrishnan and Ng (2006) describe several nonparametric precedence tests

based on the hypothesis of equal lifetime distributions. As an alternative, we propose nonparametric

predictive precedence testing for two groups, with lower and upper probabilities for the event that a

future observation from one group is less than a future observation from another group.

Section 2 is a short overview of nonparametric predictive inference (NPI), in Section 3 we present our

NPI approach to precedence testing and derive the main results. In Section 4 we briefly describe some

established nonparametric precedence tests, and we compare our method with these tests via an example.

Section 5 contains some concluding remarks.

2 Nonparametric predictive inference

Nonparametric predictive inference (NPI) is a statistical method based on Hill’s assumption A(n) (Hill

1968), which gives a direct conditional probability for a future observable random quantity, conditional

on observed values of related random quantities (Augustin and Coolen 2004, Coolen 2006). Suppose that

X1, . . . , Xn, Xn+1 are positive, continuous and exchangeable random quantities representing lifetimes.

Let the ordered observed values of X1, . . . , Xn be denoted by x1:n < x2:n < . . . < xn:n < ∞, and let

x0:n = 0 for ease of notation. We assume that no ties occur, our results can be generalised to allow ties

(Hill 1993). For positive Xn+1, representing a future observation, based on n observations, A(n) (Hill

1968) is

P (Xn+1 ∈ (xj−1:n, xj:n)) =
1

n + 1
, j = 1, 2, . . . , n, and P (Xn+1 ∈ (xn:n,∞)) =

1

n + 1
. (2.1)

A(n) does not assume anything else, and is a post-data assumption related to exchangeability (De Finetti

1974). Hill (1988) discusses A(n) in detail. Inferences based on A(n) are predictive and nonparametric,



and can be considered suitable if there is hardly any knowledge about the random quantity of interest,

other than the n observations, or if one does not want to use such information, e.g. to study effects of

additional assumptions underlying statistical models. A(n) is not sufficient to derive precise probabilities

for many events of interest, but it provides bounds for probabilities via the ‘fundamental theorem of

probability’ (De Finetti 1974), which are lower and upper probabilities in interval probability theory

(Walley 1991, Weichselberger 2001).

In precedence testing for two groups, units of both groups are placed simultaneously on a life-testing

experiment, and failures are observed as they arise during the experiment, which is terminated as soon

as a certain stop criterion has been reached, so the lifetimes of some units are typically right-censored.

Coolen and Yan (2004) presented a generalization of A(n), called rc-A(n) , suitable for right-censored

data. In this paper, all right-censored observations are the same which simplifies the use of rc-A(n) .

To formulate the required form of rc-A(n) , we need notation for probability mass assigned to intervals

without further restrictions on the spread within the intervals. Such a partial specification of a probability

distribution is called an M -function (Coolen and Yan 2004).

Definition 2.1 A partial specification of a probability distribution for a real-valued random quantity

X can be provided via probability masses assigned to intervals, without any further restriction on the

spread of the probability mass within each interval. A probability mass assigned, in such a way, to an

interval (a, b) is denoted by MX(a, b), and referred to as M -function value for X on (a, b).

In precedence testing the experiment is terminated as soon as a certain stop criterion has been

reached. We assume that this stop criterion is expressed in terms of a stopping time T0, but if instead

a number of failures were used as stop criterion then this would not affect our method, as it is of no

relevance in NPI how T0 is determined. When considering a single group of units, let r denote the

number of observations of X1, . . . , Xn that occur before the stopping time T0, so n − r observations are

right-censored at T0. The next definition provides the M -functions required for precedence testing, which

follow from rc-A(n) (Coolen and Yan, 2004).

Definition 2.2 For nonparametric predictive precedence testing with stopping time T0, the assumption

rc-A(n) implies that the probability distribution for a nonnegative random quantity Xn+1 on the basis

of data including r real and n − r right-censored observations, is partially specified by the following

M -function values:

MXn+1(xj−1:n, xj:n) =
1

n + 1
, j = 1, . . . , r,

MXn+1(xr:n,∞) =
1

n + 1
and MXn+1(T0,∞) =

n − r

n + 1
. (2.2)

In comparison to A(n), rc-A(n) uses the extra assumption that, at the moment of censoring, the

residual lifetime of a right-censored unit is exchangeable with the residual lifetimes of all other units that

have not yet failed or been censored. Further details of rc-A(n) are given in Coolen and Yan (2004).

In this paper we consider nonparametric predictive precedence testing for two groups, say X and Y ,

and we are interested in the lower and upper probabilities that a future observation Xnx+1 of group X

is less than a future observation Yny+1 of group Y , based on nx and ny observations of group X and Y ,

stopping time T0, and the assumptions rc-A(nx) and rc-A(ny). The derivation of these lower and upper

probabilities, given in the next section, require the following lemma from Coolen and Yan (2003).

Lemma 2.1 For s ≥ 2, let Jl = (jl, r), with j1 < j2 < . . . < js < r, so we have nested intervals

J1 ⊃ J2 ⊃ . . . ⊃ Js with the same right end-point r (which may be infinity). We consider two independent

real-valued random quantities, say X and Y . Let the probability distribution for X be partially specified

via M -function values, with all probability mass P (X ∈ J1) described by the s M -function values MX(Jl),



so
∑s

l=1 MX(Jl) = P (X ∈ J1). Then, without additional assumptions,
s

∑

l=1

P (Y < jl)MX(Jl) ≤ P (Y <

X, X ∈ J1) ≤ P (Y < r)P (X ∈ J1), and these bounds are the maximum lower and minimum upper

bounds that generally hold.

3 Precedence testing

In this section NPI precedence testing is presented. Subsection 3.1 presents the NPI lower and upper

probabilities for the event that a future observation of group X is less than a future observation of group

Y , some of their properties are discussed in Subsection 3.2.

3.1 Upper and lower probabilities

To compare two groups of lifetime data by precedence testing, we use the notation as introduced above,

but we add an index x or y corresponding to the groups X and Y . So, nx and ny units of groups X and

Y are placed simultaneously on a life-testing experiment and rx and ry lifetimes of groups X and Y are

observed before the experiment is terminated at time T0. So nx − rx and ny − ry lifetimes of groups X

and Y are right-censored at T0. Throughout we assume that information on units from one group does

not hold any information about units from the other group, so Xnx+1 and Yny+1 are independent and

data from group X contain no information on Yny+1, and vice versa.

Bounds for the probability of Xnx+1 < Yny+1, given the data and stopping time T0 and based on

rc-A(nx) and rc-A(ny), are presented in Theorem 3.1. Throughout, conditioning on the data is left out of

the notation. As these bounds are optimal, without any additional assumptions, they are lower and upper

probabilities (Walley 1991), which we denote by P (Xnx+1 < Yny+1) and P (Xnx+1 < Yny+1), respectively.

The indicator function 1A is equal to 1 if event A occurs and 0 else.

Theorem 3.1 For the above scenario, the lower and upper probabilities for the event Xnx+1 < Yny+1

are

P (Xnx+1 < Yny+1) =
1

(nx + 1)(ny + 1)





ry
∑

j=1

rx
∑

i=1

1{xi:nx<yj:ny} + rx(ny − ry)



, (3.3)

P (Xnx+1 < Yny+1) =
1

(nx + 1)(ny + 1)





ry
∑

j=1

rx
∑

i=1

1{xi:nx<yj:ny} + ry + (nx + 1)(ny − ry + 1)



. (3.4)

Proof The lower probability for the event Xnx+1 < Yny+1 given the data and T0 is derived as follows:

P (Xnx+1 < Yny+1) =
ry
∑

j=1

P (Xnx+1 < Yny+1, Yny+1 ∈ (yj−1:ny
, yj:ny

)) +

P (Xnx+1< Yny+1, Yny+1∈ (yry :ny
,∞))

≥
ry
∑

j=1

P (Xnx+1 < yj−1:ny
) MYny+1(yj−1:ny

, yj:ny
) +

P (Xnx+1 < yry :ny
) MYny+1(yry :ny

,∞) + P (Xnx+1 < T0) MYny+1(T0,∞)

=
1

ny+1

ry
∑

j=1

P (Xnx+1 < yj−1:ny
) +

1

ny+1
P (Xnx+1 < yry:ny

) +
ny−ry

ny+1
P (Xnx+1 < T0)

≥
1

(nx+1)(ny+1)





ry
∑

j=1

rx
∑

i=1

1{xi:nx<yj−1:ny}+

rx
∑

i=1

1{xi:nx<yry :ny}
+(ny−ry)

rx
∑

i=1

1{xi:nx<T0}





=
1

(nx + 1)(ny + 1)





ry
∑

j=1

rx
∑

i=1

1{xi:nx<yj:ny} + rx(ny − ry)



 .

The first inequality follows by putting all mass of Yny+1 corresponding to the intervals (yj−1:ny
, yj:ny

)

(j = 1, . . . , ry), (yry :ny
,∞) and (T0,∞) in the left end points of these intervals, and by using Lemma



2.1 for the nested intervals (yry :ny
,∞) and (T0,∞). The second inequality follows by putting all mass of

Xnx+1 corresponding to the intervals (xi−1:nx
, xi:nx

) (i = 1, . . . , rx), (xrx:nx
,∞) and (T0,∞) in the right

end points of these intervals.

The corresponding upper probability for the event Xnx+1 < Yny+1 is derived as follows:

P (Xnx+1 < Yny+1) =
ry
∑

j=1

P (Xnx+1 < Yny+1, Yny+1 ∈ (yj−1:ny
, yj:ny

)) +

P (Xnx+1< Yny+1, Yny+1∈ (yry :ny
,∞))

≤
ry
∑

j=1

P (Xnx+1 < yj:ny
) MYny+1(yj−1:ny

, yj:ny
) +

P (Xnx+1 < ∞) MYny+1(yry:ny
,∞) + P (Xnx+1 < ∞) MYny+1(T0,∞)

=
1

ny + 1

ry
∑

j=1

P (Xnx+1 < yj:ny
) +

1

ny + 1
P (Xnx+1 < ∞) +

ny − ry

ny + 1
P (Xnx+1 < ∞)

≤
1

(nx + 1)(ny + 1)

ry
∑

j=1

rx+1
∑

i=1

1{xi−1:nx<yj:ny} +
1

ny + 1
+

ny − ry

ny + 1

=
1

(nx + 1)(ny + 1)





ry
∑

j=1

rx
∑

i=1

1{xi:nx<yj:ny} + ry + (ny − ry + 1)(nx + 1)



 .

The first inequality follows by putting all mass of Yny+1 corresponding to the intervals (yj−1:ny
, yj:ny

)

(j = 1, . . . , ry), (yry :ny
,∞) and (T0,∞) in the right end points of these intervals, using Lemma 2.1 for

the nested intervals (yry :ny
,∞) and (T0,∞). The second inequality follows by putting all mass of Xnx+1

corresponding to the intervals (xi−1:nx
, xi:nx

) (i = 1, . . . , rx), (xrx:nx
,∞) and (T0,∞) in the left end

points of these intervals. 2

These lower and upper probabilities are based only on xi:nx
(i = 1 . . . , rx), yj:ny

(j = 1, . . . , ry) and

T0, further information on location as contained in the observations is not used. As such, this approach

can be regarded as a fully predictive alternative to standard rank-based methods (Lehmann 1975). As

these lower and upper probabilities are F -probability in the theory of interval probability (Augustin

and Coolen 2004, Weichselberger 2001), the conjugacy property holds, that is for an event A and its

complementary event Ac, P (A) = 1 − P (Ac).

From Theorem 3.1 it follows that if rx = 0 and ry ∈ {0, 1, . . . , ny}, that is, the experiment is terminated

before the first observation of group X is observed, we have

P (Xnx+1 < Yny+1) = 0 and P (Xnx+1 < Yny+1) = 1 −
nxry

(nx + 1)(ny + 1)
. (3.5)

This lower probability is zero, reflecting that on the basis of the data one cannot exclude the possibility

that the X observations will always exceed all Y observations. If ry = 0 and rx ∈ {0, 1, . . . , nx}, that is,

the experiment is terminated before the first observation of group Y is observed, we have

P (Xnx+1 < Yny+1) =
rxny

(nx + 1)(ny + 1)
and P (Xnx+1 < Yny+1) = 1. (3.6)

This upper probability is one, reflecting that one cannot exclude the possibility that the X observations

will always be less than all Y observations. The lower and upper probabilities in (3.6) can also be obtained

from (3.5) by using the conjugacy property.

If all units of group Y are observed before the first observation of group X is observed, that is,

yny:ny
< x1:nx

, and the experiment is terminated after the last unit of group Y is observed (T0 > yny :ny
)

then, independent of the number of units of group X observed, we have

P (Xnx+1 < Yny+1) = 0 and P (Xnx+1 < Yny+1) = 1 −
nxny

(nx + 1)(ny + 1)
. (3.7)



Similarly, if all units of group X are observed before the first observation of group Y is observed, that is

xnx:nx
< y1:ny

, and the experiment is terminated after the last unit of group X is observed (T0 > xnx:nx
)

then, independent of the number of units of group Y observed, we have

P (Xnx+1 < Yny+1) =
nxny

(nx + 1)(ny + 1)
and P (Xnx+1 < Yny+1) = 1. (3.8)

Again the lower and upper probabilities in (3.8) can be obtained from (3.7) in exactly the same way as

the probabilities in (3.6) can be obtained from (3.5) as described before.

3.2 Analysis of upper and lower probabilities

Suppose that the stopping time is increased from T0 to T ∗
0 , and denote by r∗x and r∗y the number of

lifetimes of group X and Y , respectively, observed before T ∗
0 . The lower and upper probabilities for the

event Xnx+1 < Yny+1, based on the data, T0, rc-A(nx) and rc-A(ny), are denoted by P (Xnx+1 < Yny+1)

and P (Xnx+1 < Yny+1), while the corresponding lower and upper probabilities for T ∗
0 are denoted by

P ∗(Xnx+1 < Yny+1) and P
∗
(Xnx+1 < Yny+1). We can write r∗x = rx + a and r∗y = ry + b with a, b

nonnegative integers. Using (3.3) the lower probability P ∗(Xnx+1 < Yny+1) can be written as follows:

P ∗(Xnx+1 < Yny+1) =
1

(nx + 1)(ny + 1)





ry+b
∑

j=1

rx+a
∑

i=1

1{xi:nx<yj:ny} + (rx + a)(ny − ry − b)





= P (Xnx+1 < Yny+1) +
1

(nx + 1)(ny + 1)





ry
∑

j=1

rx+a
∑

i=rx+1

1{xi:nx<yj:ny}+

ry+b
∑

j=ry+1

rx+a
∑

i=1

1{xi:nx<yj:ny} + a(ny − ry − b) − brx



 .

(3.9)

In a similar way, using (3.4), the upper probability P
∗
(Xnx+1 < Yny+1) can be written as follows:

P
∗
(Xnx+1<Yny+1)=

1

(nx+1)(ny+1)





ry+b
∑

j=1

rx+a
∑

i=1

1{xi:nx<yj:ny} + ry + b + (nx + 1)(ny − ry − b + 1)





= P (Xnx+1 < Yny+1) +
1

(nx + 1)(ny + 1)





ry
∑

j=1

rx+a
∑

i=rx+1

1{xi:nx<yj:ny}
+

ry+b
∑

j=ry+1

rx+a
∑

i=1

1{xi:nx<yj:ny} − bnx



 .

(3.10)

Theorem 3.2 follows from (3.9) and (3.10).

Theorem 3.2

a. Consider the situation that rx is increasing while ry is kept constant. Then (i) the lower probability

P (Xnx+1 < Yny+1) is strictly increasing in rx, except if xrx+1:nx
> yny :ny

in which case the lower

probability remains constant, and (ii) the upper probability P (Xnx+1 < Yny+1) remains constant.

b. Consider the situation that ry is increasing while rx is kept constant. Then (i) the lower probability

P (Xnx+1 < Yny+1) remains constant, and (ii) the upper probability P (Xnx+1 < Yny+1) is strictly

decreasing in ry , except if xnx:nx
< yry+1:ny

in which case the upper probability remains constant.



Proof We prove part a, the proof of part b is similar. To prove (i), increasing rx while keeping ry

constant implies that a is a positive integer and b = 0. Substituting b = 0 into (3.9) yields

P ∗(Xnx+1<Yny+1) = P (Xnx+1<Yny+1) +
1

(nx+1)(ny+1)





ry
∑

j=1

rx+a
∑

i=rx+1

1{xi:nx<yj:ny}+ a(ny−ry)



 .

From this it follows that the lower probability is strictly increasing in rx unless ny = ry and the double

sum equals zero, that is, if ny = ry and all xi:nx
, i = rx + 1, . . . , rx + a, are larger than yry:ny

. These two

conditions hold when xrx+1:nx
> yny :ny

. To prove (ii), substituting b = 0 into (3.10) yields

P
∗
(Xnx+1 < Yny+1) = P (Xnx+1 < Yny+1) +

1

(nx + 1)(ny + 1)





ry
∑

j=1

rx+a
∑

i=rx+1

1{xi:nx<yj:ny}



 .

From this it follows that the upper probability is strictly increasing in rx unless the double sum equals

zero, that is, if xrx+1:nx
> yry:ny

. However, xrx+1:nx
is by definition larger than yry :ny

and consequently

the upper probability always remains constant in this case. 2

The following example has been created to illustrate some of the special situations from Theorem 3.2.

Example 3.1 Six units each of group X and group Y are placed simultaneously on a life-testing exper-

iment and their lifetimes are 1, 2, 3, 10, 11, 12 for X , and 4, 5, 6, 7, 8, 9 for Y , so all 6 observations

of group Y are between the 3rd and 4th observations of group X . Suppose now that we would have

terminated the experiment at stopping time T0. We calculate the lower and upper probabilities that

the lifetime of a future unit of group X is less than the lifetime of a future unit of group Y , given the

observed lifetimes before T0 for both groups and based on rc-A(6) for both groups. Table 3.1 and Figure

3.1 show the lower probabilities (3.3) and upper probabilities (3.4) when T0 increases from 0 to ∞. As

the lower and upper probabilities may only change when a lifetime of either group is observed, we only

have to consider a finite number of time-intervals.

Table 3.1: Lower and upper probabilities for the event X7 < Y7

T0 rx ry P (X7 < Y7) P (X7 < Y7) T0 rx ry P (X7 < Y7) P (X7 < Y7)
[0, 1) 0 0 0 1 [7, 8) 3 4 0.3673 0.7551
[1, 2) 1 0 0.1224 1 [8, 9) 3 5 0.3673 0.6939
[2, 3) 2 0 0.2449 1 [9, 10) 3 6 0.3673 0.6327
[3, 4) 3 0 0.3673 1 [10, 11) 4 6 0.3673 0.6327
[4, 5) 3 1 0.3673 0.9388 [11, 12) 5 6 0.3673 0.6327
[5, 6) 3 2 0.3673 0.8776 [12,→) 6 6 0.3673 0.6327
[6, 7) 3 3 0.3673 0.8163

From Table 3.1 we see that, when increasing rx while keeping ry constant, the lower probability is

stepwise increasing, except for T0 ≥ 9 as then xrx+1:nx
> yny :ny

. When increasing ry while keeping rx

constant, the upper probability is stepwise decreasing. All this is in agreement with Theorem 3.2.

For each T0,
1
2 ∈ [P (X7 < Y7), P (X7 < Y7)] which implies that there is not much evidence that

X7 < Y7. Table 3.1 also shows that the imprecision (difference between the lower and upper probability)

decreases as the number of observations (or T0) increases. The interval [0.3673, 0.6327] is symmetric

around 1
2 , due to the fact that our data are ‘symmetric’ in the order the observations occur: first 3

lifetimes of group X , followed by 6 lifetimes of group Y and then again 3 lifetimes of group X . This

interval [0.3673, 0.6327] has been reached already at T0 = 9 as at that moment all units of group Y are

observed, implying that the 3 remaining lifetimes of group X must be larger than the largest lifetime of

group Y . For our method only the order is important, not the magnitude.
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Figure 3.1: Lower and upper probabilities for the event X7 < Y7 (Ex. 3.1)

We should emphasize that the NPI lower (upper) probability for the event Xnx+1 < Yny+1 never

decreases (increases) if T0 increases. This is in line with intuition, as all possible orderings of all lifetimes

which are right-censored at T0 are taken into account, and also with the general idea behind NPI, which

is to explore what can be inferred from data with only few assumptions added.

4 Comparison with other nonparametric precedence tests

In Subsection 4.1 we briefly discuss several nonparametric precedence tests from the literature, and in

Subsection 4.2 we compare our NPI approach with these more established methods via an example.

4.1 Some nonparametric precedence tests

We briefly discuss several nonparametric precedence tests, for more details we refer to Balakrishnan and

Ng (2006). We compare the lifetimes of units from groups X and Y . Their lifetime distributions are

denoted by FX and FY , respectively, and nx and ny are the number of units of group X and Y that

are placed simultaneously on a life-testing experiment. We assume that the experiment is terminated as

soon as the rth
y failure of group Y is observed (for these tests, the actual stop criterion employed is of

relevance). The number of failures of group X observed before the rth
y failure of group Y is denoted by

rx.

The Classical precedence test was introduced by Nelson (1963). One is interested in testing the null

hypothesis H0 that FX(x) = FY (x) for all x ≥ 0. Let Di be the random quantity representing the

number of observed lifetimes of group X that are between the (i−1)th and ith observed lifetime of group

Y , for i = 1, . . . , ry, and denote their observed values by di. The precedence test statistic Q(ry) is the

number of lifetimes of group X that precede the rth
y lifetime from group Y , so Q(ry) =

ry
∑

i=1

Di. Under H0,

the distribution of Q(ry) is

P (Q(ry) = j|H0) =

(

j + ry − 1

j

)(

nx + ny − j − ry

nx − j

)

(

nx + ny

ny

) , j = 0, . . . , nx. (4.11)



The Maximal precedence test was proposed by Balakrishnan and Frattina (2000) to avoid the possible

masking effect of the classical precedence test that the null hypothesis is not rejected for a certain value

of ry whilst there may exist a value less than this ry such that the null hypothesis is rejected, at the

same level of significance. The test statistic U(ry) is the maximum number of lifetimes from group X that

occur between the (i− 1)th and ith failure of group Y , for i = 1, . . . , ry, so U(ry) = max
i=1,...,ry

Di. Under the

null hypothesis H0 that both lifetime distributions are the same, the cumulative distribution function of

U(ry) is given by

P (U(ry)≤d|H0) = P (D1≤d, D2≤d, . . . , Dry
≤d|H0) =

d
∑

di(i=1,...,ry)=0
ry
P

i=1
di≤nx

(

nx + ny −
ry
∑

i=1

di − ry

ny − ry

)

(

nx + ny

ny

) . (4.12)

Wilcoxon’s minimal rank-sum precedence test was introduced by Ng and Balakrishnan (2004), together

with Wilcoxon’s maximal and expected rank-sum precedence tests (see below). We introduce Sry
=

∑ry

i=1 Di and S∗
ry

=
∑ry

i=1 iDi, and we denote their realisations by sry
and s∗ry

. Let Wry
be the rank-sum

of the observed lifetimes of group X that occurred before the rth
y observed lifetime of group Y . When

all remaining (nx − sry
) observations of group X occur between the rth

y and (ry + 1)th observation of

group Y , then Wilcoxon’s test statistic will be minimal. The test statistic in this case, called the minimal

rank-sum statistic, is

Wmin,ry
=Wry

+(Sry
+ry+1)+(Sry

+ry+2)+. . .+(nx+ry) =
1

2
nx(nx+2ry+1)−(ry+1)Sry

+S∗
ry

. (4.13)

Alternatively, one can use Wilcoxon’s maximal rank-sum precedence test if all remaining (nx−sry
) obser-

vations of group X occur after the nth
y observation of group Y , Wilcoxon’s test statistic will be maximal.

The test statistic in this case, called the maximal rank-sum statistic, is

Wmax,ry
= Wry

+(Sry
+ny +1)+(Sry

+ny +2)+ . . .+(nx +ny) =
1

2
nx(nx +2ny +1)− (ny +1)Sry

+S∗
ry

.

(4.14)

Wilcoxon’s expected rank-sum precedence test uses the expected rank sums of the lifetimes from group

X between the rth
y and (ry +1)th, . . . , (ny − 1)th and nth

y and after the nth
y observation of group Y . This

leads to the expected rank-sum statistic WE,ry
. It can be shown that WE,ry

is the average of Wmin,ry

and Wmax,ry
, and hence the expected rank-sum statistic is given by

WE,ry
=

1

2
nx(nx + ny + ry + 1) − (

1

2
(ny + ry) + 1)Sry

+ S∗
ry

. (4.15)

Under the null hypothesis H0 that the lifetime distributions of groups X and Y are the same, the

distributions of Wmin,ry
, Wmax,ry

and WE,ry
are given by

P (Wa,ry
= w|H0) =

nx
∑

mi(i=1,...,ry)=0,sry ≤nx

B

(

nx + ny − sry
− ry

ny − ry

)

(

nx + ny

ny

) . (4.16)

where for each a, the condition B is given by

a B

min 1
2nx(nx + 2ry + 1) − (ry + 1)sry

+ s∗ry
= w

max 1
2nx(nx + 2ny + 1) − (ny + 1)sry

+ s∗ry
= w

E 1
2nx(nx + ny + ry + 1) − (1

2 (ny + ry) + 1)sry
+ s∗ry

= w.



4.2 Example

Via this example we compare our NPI precedence test approach with the nonparametric precedence tests

mentioned in Subsection 4.1, using a subset of Nelson’s dataset (1982) on breakdown times (in minutes)

of an insulating fluid that is subject to high voltage stress. The data are given in Table 4.1.

Table 4.1: Lifetimes of two samples of an insulating fluid

Group Lifetimes
X 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75
Y 1.34 1.49 1.56 2.10 2.12 3.83 3.97 5.13 7.21 8.71

We compare the lifetimes of units from groups X and Y , by calculating the lower and upper probabilities

for the event X11 < Y11, given the stopping time T0, the observed lifetimes of both groups before T0, and

assuming rc-A(10) for both groups. These lower and upper probabilities are given in Table 4.2 and Figure

4.1.

Table 4.2: Lower and upper probabilities for the event X11 < Y11

T0 rx ry P (X11<Y11) P (X11<Y11) T0 rx ry P (X11<Y11) P (X11<Y11)
[0, 0.49) 0 0 0 1 [2.10, 2.12) 7 4 0.5289 0.8512
[0.49, 0.64) 1 0 0.0826 1 [2.12, 2.15) 7 5 0.5289 0.8264
[0.64, 0.82) 2 0 0.1653 1 [2.15, 2.57) 8 5 0.5702 0.8264
[0.82, 0.93) 3 0 0.2479 1 [2.57, 3.83) 9 5 0.6116 0.8264
[0.93, 1.08) 4 0 0.3306 1 [3.83, 3.97) 9 6 0.6116 0.8182
[1.08, 1.34) 5 0 0.4132 1 [3.97, 4.75) 9 7 0.6116 0.8099
[1.34, 1.49) 5 1 0.4132 0.9587 [4.75, 5.13) 10 7 0.6364 0.8099
[1.49, 1.56) 5 2 0.4132 0.9174 [5.13, 7.21) 10 8 0.6364 0.8099
[1.56, 1.99) 5 3 0.4132 0.8760 [7.21, 8.71) 10 9 0.6364 0.8099
[1.99, 2.06) 6 3 0.4711 0.8760 [8.71,∞) 10 10 0.6364 0.8099
[2.06, 2.10) 7 3 0.5289 0.8760

Table 4.2 and Figure 4.1 show that the lower probability is increasing when rx is increasing and

remains constant when ry is increasing. The upper probability remains constant when rx is increasing and

is decreasing when ry is increasing, except for ry ≥ 7 when it remains constant as then xnx:nx
< yry+1:ny

.

This is in agreement with Theorem 3.2. The imprecision is decreasing when more lifetimes are observed.

However, if T0 ≥ 4.75, increasing ry while keeping rx constant does not lead to less imprecision due to

the fact that at that time we have observed already all lifetimes of group X (xnx:nx
< yry+1:ny

) and

consequently increasing ry will not give us more information about the lifetimes of group X in as far as

relevant for the nonparametric comparison with group Y .

One could interpret P (X11 < Y11) > 1
2 as quite strong evidence that indeed X11 < Y11. From Table

4.2 we see that if we had stopped the experiment at T0 = 2.06 or later, then indeed P (X11 < Y11) > 1
2 .

Had the experiment be stopped earlier, then the lower and upper probabilities would not suggest a strong

preference between the groups.

To compare this with the nonparametric precedence tests of the previous subsection, we test H0 :

FX = FY against the alternative hypothesis that FX(x) ≥ FY (x) for x ≥ 0, with strict inequality for

some x. For the classical precedence test, this implies that the p-value of the observed test statistic is

P (Q(ry) ≥
∑ry

i=1 di|H0) where the distribution of Q(ry) is given by (4.11). For the maximal precedence

test, the p-value of the observed test statistic is given by P (U(ry) ≥ d|H0) where d is the observed value

of U(ry) and the cumulative distribution of U(ry) is given by (4.12). For the Wilcoxon’s minimal, maximal
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Figure 4.1: Lower and upper probabilities for the event X11 < Y11

and expected rank-sum precedence test, the p-value of the test statistic is given by P (Wa,ry
≤ wa|H0)

(a = min, max, E) where wa is the observed value of the test statistic and where the distribution of the

test statistic under H0 is given by (4.16). Table 4.3 gives, for ry = 1, . . . , 6, the value of the test statistics

and the corresponding p-values.

Table 4.3: Several nonparametric precedence tests

ry Q(ry) p-value U(ry) p-value Wmin,ry
p-value Wmax,ry

p-value WE,ry
p-value

1 5 0.0163 5 0.0163 60 0.0163 105 0.0163 82.5 0.0163

2 5 0.0704 5 0.0325 65 0.0217 105 0.0356 85 0.0356

3 5 0.1749 5 0.0487 70 0.0332 105 0.0856 87.5 0.0671

4 7 0.0894 5 0.0650 73 0.0305 91 0.0406 82 0.0348

5 7 0.1849 5 0.0812 76 0.0352 91 0.0645 83.5 0.0484

6 9 0.0704 5 0.0974 77 0.0293 81 0.0235 79 0.0247

Table 4.3 shows that the classical precedence test will not reject the null hypothesis of equal distribu-

tions at 5% significance level except when the experiment is terminated after the first lifetime of group

Y . The maximal precedence test will reject the null hypothesis if the experiment is terminated after at

most 3 lifetimes of group Y . Intuitively, this is logical as we have first observed 5 lifetimes of group X

before the first observation of group Y and no observed lifetimes of group X between the first and third

observation of group Y . Wilcoxon’s minimal rank-sum precedence test always reject the null hypothesis

at 5% significance level. Wilcoxon’s maximal and expected rank-sum precedence tests reject the null

hypothesis when the experiment is terminated early or late in the process. So, we see that although

according to our nonparametric predictive precedence test there is evidence that X11 < Y11 when the

experiment is terminated after T0 = 2.06, that is, when at least 3 lifetimes of group Y are observed, this

is not supported by the classical and maximal (unless ry = 3) precedence tests but the Wilcoxon’s type

precedence tests will support this more or less. As the NPI approach is fundamentally different to these

hypothesis tests, studying the results of both might provide useful insights in practical problems.



5 Concluding remarks

The lower and upper probabilities for predictive precedence testing for two groups, presented in this

paper, fit in the NPI framework and as such they have strong consistency properties in theory of interval

probability (Augustin and Coolen 2004). This approach provides an attractive alternative to the more

established methods for nonparametric precedence testing (Balakrishnan and Ng 2006), as instead of

testing a null hypothesis the inference directly considers a comparison of the next observations from

the groups considered. In classical tests, the starting point is usually the hypothesis that units of both

groups have the same lifetime distributions, which is often unrealistic. So, our approach does not require

a particular alternative hypothesis to be formulated, but uses a direct approach involving only future

observations, enabling a natural manner of comparison that is particularly well suited if a decision must

be made about e.g. the best treatment for the next unit or individual.

When considering the lower and upper probability for the event Xnx+1 < Yny+1 as function of the

stopping time T0, we showed that these probabilities can only change at observed lifetimes for groups X

or Y . In particular, we showed that, except for one special case, the lower probability is strictly increasing

in rx while keeping ry constant, and the upper probability is strictly decreasing in ry while keeping rx

constant. As a consequence of this, the imprecision, that is, the difference between the lower and upper

probability, is decreasing as function of time and hence decreasing as function of the number of observed

lifetimes.

An important issue in statistics is guidance on required design of experiments, in this situation the

numbers of units to be used for both groups and choice of the stopping time for the experiment. Due

to the rather minimal assumptions underlying our NPI approach, with the inferences largely based on

observed data, it does not offer a satisfactory solution to this important question. However, once an

experiment is underway, one can monitor the lower and upper probabilities as presented in this paper,

and one can stop the experiment if one judges these to indicate strongly enough a preference between the

two groups considered. Of course, before any data become available, one can study some design issues,

e.g. the minimum required number of observations to possibly get a lower probability greater than a half,

but as these would be based on most or least favourable configurations of the not yet observed data,

indications from such studies might be of little practical value.

If the stopping time T0 in the precedence tests, as considered in this paper, does not affect the

experiment, in the sense that all units tested actually fail during the test, then the results in this paper

are identical to those in NPI for pairwise comparisons presented by Coolen (1996), and a special case

of the NPI results for multiple comparisons presented by Coolen and van der Laan (2001). This latter

work is the basis of precedence testing for multiple groups of data, methods for which are currently in

development. NPI has far more possible applications in reliability, see Coolen, Coolen-Schrijner and Yan

(2002) for an early overview, other applications have since been presented. For example, Coolen and

Coolen-Schrijner (2007) have recently presented NPI methods for multiple comparisons of proportions

data, which are particularly of interest in reliability studies with few or zero failures in one or more groups

(Coolen-Schrijner and Coolen 2007).
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