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4 Order statistics

Given a sample, its kth order statistic is defined as the kth smallest value of
the sample. Order statistics have lots of important applications: indeed, record
values (historical maxima or minima) are used in sport, economics (especially
insurance) and finance; they help to determine strength of some materials (the
weakest link) as well as to model and study extreme climate events (a low river
level can lead to drought, while a high level brings flood risk); order statistics
are also useful in allocation of prize money in tournaments etc.

Z In this section we study properties of individual order statistics, that of gaps
between consecutive order statistics, and of the range of the sample. We ex-
plore properties of extreme statistics of large samples from various distributions,
including uniform and exponential. You might find [1, Section 4] useful.

4.1 Definition and extreme order variables

If
{
X1, X2, . . . , Xn

}
is a (random) n-sample from a particular distribution, it

is often important to know the values of the largest observation, the smallest
observation or the centermost observation (the median). More generally, the
variable 1

X(k)
def
= “the kth smallest of X1, X2, . . . , Xn” , k = 1, 2, . . . , n , (4.1)

is called the kth order variable and the (ordered) collection of observed values
(X(1), X(2), . . . , X(n)) is called the order statistic.

In general we have X(1) ≤ X(2) ≤ · · · ≤ X(n), ie., some of the order values

can coincide. If the common distribution of the n-sample
{
X1, X2, . . . , Xn

}
is

continuous (having a non-negative density), the probability of such a coincidence
vanishes. As in the following we will only consider samples from continuous
distributions, we can (and will) assume that all of the observed values are distinct,
ie., the following strict inequalities hold:

X(1) < X(2) < · · · < X(n) . (4.2)

It is straightforward to describe the distributions of the extreme order variables
X(1) and X(n). Let FX(·) be the common cdf 2 of the X variables; by indepen-
dence, we have

FX(n)
(x) = P

(
X(n) ≤ x

)
=

n∏

k=1

P(Xk ≤ x) =
(
FX(x)

)n
,

FX(1)
(x) = P(X(1) ≤ x) = 1−

n∏

k=1

P(Xk > x) = 1−
(
1− FX(x)

)n
.

(4.3)

1it is important to always remember that the distribution of the kth order variable depends
on the total number n of observations; in the literature one sometimes specifies this dependence
explicitly and uses Xk:n to denote the kth order variable.

2cumulative distribution function; in what follows, if the reference distribution is clear we
will write F (x) instead of FX(x).
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In particular, if Xk have a common density fX(x), then

fX(1)
(x) = n

(
1− FX(x)

)n−1
fX(x) , fX(n)

(x) = n
(
FX(x)

)n−1
fX(x) . (4.4)

Example 4.1 Suppose that the times of eight sprinters are independent ran-
dom variables with common U(9.6, 10.0) distribution. Find P(X(1) < 9.69), the
probability that the winning result is smaller than 9.69.

Solution. Since the density of X is fX(x) = 2.5 · 1(9.6,10.0)(x), we get, with x = 9.69,

P(X(1) < x) = 1−
(
1− FX(x)

)8 ≡ 1−
(
25− 2.5 · 9.69

)8 ≈ 0.86986 . �

Exercise 4.1 (*). Let independent variables X1, . . . , Xn have U(0, 1) dis-
tribution. Show that for every x ∈ (0, 1), we have P

(
X(1) < x

)
→ 1 and

P
(
X(n) > x

)
→ 1 as n→∞.

4.2 Intermediate order variables

We now describe the distribution of the kth order variable X(k):

Theorem 4.2 For k = 1, 2, . . . , n,

FX(k)
(x) ≡ P(X(k) ≤ x

)
=

n∑

`=k

(
n

`

)(
FX(x)

)`(
1− FX(x)

)n−`
. (4.5)

Proof. In a sample of n independent values, the number of observations not bigger
than x has Bin(n, FX(x)) distribution. Further, the events

Am(x)
def
=
{

exactly m of X1, X2, . . . , Xn are not bigger than x
}

are disjoint for different m, and P
(
Am(x)

)
=
(
n
m

)(
FX(x)

)m(
1 − FX(x)

)n−m
. The

result now follows from

P
(
X(k) ≤ x

)
≡ P

( ⋃

m≥k
Am(x)

)
=
∑

m≥k
P(Am(x)) .

�

Remark 4.2.1 One can show that

P(X(k) ≤ x) =
n!

(k − 1)!(n− k)!

∫ F (x)

0

yk−1(1− y)n−k dy . (4.6)

We shall derive it below using a different approach.

Exercise 4.2 (**). By using induction or otherwise, prove (4.6).

Corollary 4.3 If X has density f(x), then

fX(k)
(x) =

n!

(k − 1)!(n− k)!

(
FX(x)

)k−1(
1− FX(x)

)n−k
f(x) . (4.7)
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Exercise 4.3 (*). Derive (4.7) by differentiating (4.6).

Remark 4.3.1 If X has continuous cdf F (·), then Y
def
= F (X) ∼ U(0, 1), see

Exercise 4.4. Consequently, the diagramm
{
X1, . . . , Xn

}
−→

(
X(1), . . . , X(n)

)

↓ ↓{
Y1, . . . , Yn

}
−→

(
Y(1), . . . , Y(n)

)

is commutative with Y(k) ≡ F
(
X(k)

)
. Notice, that if F (·) is strictly increasing

on its support, the maps corresponding to ↓ are one-to-one, ie., one can invert
them by writing Xk = F−1(Yk) and X(k) = F−1(Y(k)). We use this fact to give
an alternative proof of Corollary 4.3.

Exercise 4.4 (*). If X has continuous cdf F ( · ), show that Y
def
= F (X) ∼ U(0, 1).

Proof of Corollary 4.3. Let (Yj)
n
j=1 be a n-sample from U(0, 1), and let Y(k) be the kth

order variable. Fix y ∈ (0, 1) and h > 0 such that y+h < 1, and consider the following

events: C
(y,h)
k

def
= {Y(k) ∈ (y, y + h]}, B1

def
=
{

exactly one Yj in (y, y + h]
}

, and B2
def
={

at least two Yj in (y, y + h]
}

; clearly, P(C
(y,h)
k ) = P(C

(y,h)
k ∩ B1

)
+ P(C

(y,h)
k ∩ B2

)
.

We obviously have

P
(
C

(y,h)
k ∩B2

)
≤ P(B2) ≤

∑

m≥2

(
n
m

)
hm = O(h2) as h→ 0 .

On the other hand, on the event C
(y,h)
k ∩ B1, there are exactly k − 1 of Yj ’s in (0, y],

exactly one Yj in (y, y + h], and exactly n − k of Yj ’s in (y + h, 1). By independence,
this implies that 3

P
(
C

(y,h)
k ∩B1

)
=

n!

(k − 1)! · 1! · (n− k)!
yk−1 · h · (1− y − h)n−k

thus implying (4.7) for the uniform distribution. The general case now follows as
indicated in Remark 4.3.1. �

Remark 4.3.2 In what follows, we will often use provide proofs for the U(0, 1)
case, and refer to Remark 4.3.1 for the appropriate generalizations.
Alternatively, an argument similar to the proof above works directly for X(k)

variables, see, eg., [1, Theorem 4.1.2].

4.3 Distribution of the range

For an n-sample {X1, . . . , Xn} with continuous density, let (X(1), . . . , X(n)) be
the corresponding order statistic. Our aim here is to describe the definition of
the range 4 Rn, defined via

Rn
def
= X(n) −X(1) .

We start with the following simple observation.

3recall multinomial distributions!
4it characterises the spread of the sample.

3
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Lemma 4.4 The joint density of X(1) and X(n) is given by

fX(1),X(n)
(x, y) =

{
n(n− 1)

(
F (y)− F (x)

)n−2
f(x)f(y) , x < y ,

0 else .
(4.8)

Proof. Since P(X(n) ≤ y) =
(
F (y)

)n
, and for x < y we have

P(X(1) > x,X(n) ≤ y) =
n∏

k=1

P(x < Xk ≤ y) =
(
F (y)− F (x)

)n
,

it follows that

P(X(1) ≤ x,X(n) ≤ y) =
(
F (y)

)n − P(X(1) > x,X(n) ≤ y) .

Now, differentiate w.r.t. x and y. �

Exercise 4.5 (**). In the case of an n-sample from U(0, 1) distribution, derive
(4.8) directly from combinatorics (cf. the second proof of Corollary 4.3), and then
use the approach in Remark 4.3.1 to extend your result to the general case.

Theorem 4.5 The density of Rn is given by

fRn
(r) = n(n− 1)

∫ (
F (z + r)− F (z)

)n−2
f(z)f(z + r) dz . (4.9)

Exercise 4.6 (*). Prove the density fRn
(r) formula (4.9).

Example 4.6 If X ∼ U(0, 1), the density (4.9) becomes

fRn(r) = n(n− 1)

∫ 1−r

0

(
z + r − z

)n−2
dz = n(n− 1) rn−2(1− r) (4.10)

for 0 < r < 1 and fRn
(r) = 0 otherwise, so that 5 ERn = n−1

n+1 .

Alternatively, observe that for X ∼ U(0, 1), the variables X(1) and 1−X(n) have

the same distribution with EX(n) =
∫ 1

0
y dFX(n)

(y) = n
∫ 1

0
yn dy = n

n+1 .

Solution. See Exercise 4.7. �

Remark 4.6.1 Recal that the beta distribution β(k,m) has density

f(x) =
Γ(k +m)

Γ(k)Γ(m)
xk−1(1− x)m−1 ≡ (k +m− 1)!

(k − 1)!(m− 1)!
xk−1(1− x)m−1 , (4.11)

where 0 < x < 1 and f(x) = 0 otherwise.

Exercise 4.7 (*). Let X ∼ β(k,m), ie., X has beta distribution with parameters
k and m. Show that EX = k

k+m and VarX = km
(k+m)2(k+m+1) .

5in particular, Rn ∼ β(n− 1, 2), where the beta distribution is defined in (4.11).
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Example 4.7 Let X1, X2 be a sample from U(0, 1), and let X(1), X(2) be the
corresponding order statistics. Find the pdf for each of the random variables:
X(1), R2 = X(2) −X(1) and 1−X(2).

Solution. By (4.10), fR2(x) = 2(1 − x) for 0 < x < 1 and fR2(x) = 0 otherwise. On
the other hand, by (4.4), fX(1)

(x) is given by the same expression and, by symmetry
(or again by (4.4)), 1−X(2) has the same density as well. �

Example 4.8 Let X1, X2, X3 be a sample from U(0, 1), and let X(1), X(2),
X(3) be the corresponding order statistics. Find the pdf for each of the random
variables: X(2), R3 = X(3) −X(1) and 1−X(2).

Solution. By (4.10), fR2(x) = 6x(1 − x) for 0 < x < 1 and fR2(x) = 0 otherwise. On
the other hand, by (4.7), fX(2)

(x) is given by the same expression and, by symmetry,
1−X(2) has the same density as well. Can you explain these findings? �

4.4 Gaps distribution

There are many interesting (and important for applications) questions about
order statistics. For example, given an n-sample from U(0, 1) with the order
statistic

0 ≡ X(0) < X(1) < X(2) < · · · < X(n) < X(n+1) ≡ 1 ,

one is often interested in distribution of the extreme order variables X(1) and
X(n), as well as in distribution of the kth gap

∆(k)X
def
= X(k) −X(k−1) ,

of the maximal gap max ∆(k)X = max
(
X(k) − X(k−1)

)
, of the minimal gap

min ∆(k)X = min
(
X(k) − X(k−1)

)
(where k ranges from 1 to n + 1) among

others.

Example 4.9 Given an n-sample from U(0, 1), we have, for every a ≥ 0,

P
(
nX(1) > a

)
= P

(
X(1) > a/n

)
= P(X > a/n)n =

(
1− a/n

)n ≈ e−a ,

in other words, the distribution of nX(1) for n large enough is approximately
Exp(1), ie., the exponential distribution with parameter one. 6

Remark 4.9.1 Notice that the previous example describes the distribution of
the first gap, X(1)−X(0) ≡ X(1), namely, P(X(1) > r) = (1−r)n. By symmetry,
the last gap X(n+1) −X(n) has the same distribution.

Exercise 4.8 (**). Let X(1) be the first order variable from an n-sample with
density f( · ), which is positive and continuous on [0, 1], and vanishes otherwise.
Let, further, f(0) = c > 0. For fixed y > 0, show that P

(
X(1) >

y
n

)
≈ e−cy for

large n. Deduce that the distribution of Yn ≡ nX(1) is approximately Exp(c) for
large enough n.

6recall that X ∼ Exp(λ) if for every x ≥ 0 we have P(X > x) = e−λx.

5
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Exercise 4.9 (**). Let X1, . . . , Xn be independent positive random variables
whose joint probability density function f( · ) is right-continuous at the origin and
satisfies f(0) = c > 0. For fixed y > 0, show that

P
(
X(1) >

y
n

)
≈ e−cy

for large n. Deduce that the distribution of Yn
def
= nX(1) is approximately Exp(c)

for large enough n.

Lemma 4.10 For a given n-sample from U(0, 1), all gaps

∆(k)X
def
= X(k) −X(k−1) , k = 1, . . . , n+ 1 ,

have the same distribution with P(∆(k)X > r) = (1− r)n for all r ∈ [0, 1].

Proof. As in the second proof of Corollary 4.3, we deduce that

fX(k−1),X(k)
(x, y) =

n!

(k − 2)!(n− k)!
xk−2(1− y)n−k ;

this implies that

f∆(k)X(r) =

∫ 1−r

0

fX(k−1),X(k)
(x, x+ r) dx .

Changing the variables x 7→ y using x = y(1− r) and comparing the result to the beta
distribution (4.11), we deduce that f∆(k)X(r) = n(1− r)n−1

10<r<1, equivalently, that
P(∆(k)X ≥ r) = (1− r)n for all r ∈ [0, 1]. �

Remark 4.10.1 By symmetry, E∆(k)X = 1
n+1 for all k. The value of ERn

derived in Example 4.6 is now immediate.

Remark 4.10.2 By the previous example, for every k and n large, the distri-
bution of n∆(k)X is approximately 7 Exp(1).

Remark 4.10.3 As we will see below, for every fixed n, the joint distribution
of the vector of gaps (

∆(1)X, . . . ,∆(n+1)X
)

is symmetric with respect to permutations of individual segments, 8 however,
the individual gaps are not independent.

Lemma 4.11 Let an n-sample from U(0, 1) be fixed. Then for all m, k, satis-
fying 1 ≤ m < k ≤ n+ 1 we have

P
(
∆(m)X ≥ rm,∆(k)X ≥ rk

)
= (1− rm − rk)n , (4.12)

for all positive rm, rk satisfying rm + rk ≤ 1.

7more precisely, for every sequence (kn)n≥1 with kn ∈ {1, 2, . . . , n}, the distribution of the
rescaled gap n∆(kn)X converges to Exp(1) as n→∞.

8ie., the gaps ∆(1)X, . . . , ∆(n+1) are exchangeable random variables;

6
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Proof. We fix the value of X(m), and use the formula of total probability with in-
tegration over the value of X(m) ∈ (rm, 1 − rk). Notice, that given X(m) = x, the
distributions of (X(1), . . . , X(m−1)) and (X(m+1), . . . , X(n)) are conditionally indepen-
dent. Using the scaled version of Lemma 4.10 we deduce that 9

Pn
(
∆(m)X ≥ rm | X(m) = x

)
≡ Pm−1

(
∆(m)Y ≥

rm
x

)
=
(

1− rm
x

)m−1

,

Pn
(
∆(k)X ≥ rk | X(m) = x

)
≡ Pn−m

(
∆(k−m)Y ≥

rk
1− x

)
=
(

1− rk
1− x

)n−m
.

By the formula of total probability,

P
(
∆(m)X ≥ rm,∆(k)X ≥ rk

)
=

∫ 1−rk

rm

(
1− rm

x

)m−1(
1− rk

1− x
)n−m

fX(m)
(x) dx ,

so that, using the explicit expression (4.7) for the density of X(m) and changing the
variables via x = rm + (1− rm − rk)y, we get

(
1− rm − rk

)n
∫ 1

0

n!

(m− 1)!(n−m)!
ym−1(1− y)n−m dy ≡ (1− rm − rk)n ,

where the last equality follows directly from (4.11). �

Remark 4.11.1 Notice that by (4.12), the gaps ∆(m)X and ∆(k)X are not
independent. However, for n large enough, we have

P
(

∆(m)X ≥
rm
n
,∆(k)X ≥

rk
n

)
≈ e−rm−rk

= e−rme−rk ≈ P
(

∆(m)X ≥
rm
n

)
P
(

∆(k)X ≥
rk
n

)
,

ie., the rescaled gaps n∆(m)X and n∆(k)X are asymptotically independent (and
asymptotically Exp(1)-distributed).

Exercise 4.10 (**). Let X1, X2, X3, X4 be a sample from U(0, 1), and let
X(1), X(2), X(3), X(4) be the corresponding order statistics. Find the pdf for each
of the random variables: X(2), X(3) −X(1), X(4) −X(2), and 1−X(3).

Corollary 4.12 Let (Xk)nk=1 be a fixed n-sample from U(0, 1). Then for all

positive rk satisfying
∑n+1
k=1 rk ≤ 1 we have

P
(
∆(1)X ≥ r1, . . . ,∆(n+1)X ≥ rn+1

)
=
(

1−
n+1∑

k=1

rk

)n
. (4.13)

In particular, the distribution of the vector of gaps
(
∆(1)X, . . . ,∆(n+1)X

)
is

exchangeable for every n ≥ 1.

9with Y denoting a sample from U(0, 1);

7
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Remark 4.12.1 Similarly to Remark 4.11.1, one can use (4.13) to deduce that
any finite collection10 of rescaled gaps, say (n∆(k1)X, . . . , n∆(km)X), becomes
asymptotically independent (with individual components Exp(1)-distributed) in
the limit of large n.

Exercise 4.11 (***). Prove the asymptotic independence property of any finite
collection of gaps stated in Remark 4.12.1.

Exercise 4.12 (***). Using induction or otherwise, prove (4.13).

Example 4.13 For an n-sample from U(0, 1), let Dn
def
= mink ∆(k)X. Then

(4.13) implies that P(Dn ≥ r) =
(
1− (n+ 1)r

)n
. In particular, for every y ≥ 0,

Pn
(
n2Dn > y

)
=
(

1− n+ 1

n2
y
)n
≈ e−y , (4.14)

ie., for large n the distribution of Yn
def
= n2Dn is approximately Exp(1).

Remark 4.13.1 For an n-sample from U(0, 1), a typical gap is of order n−1

(recall Remark 4.10.2), whereas by (4.14) the minimal gap Dn is of order n−2.

4.5 Order statistic from exponential distributions

If X ∼ Exp(λ), ie., P(X > x) = e−λx for all x ≥ 0, then Y
def
= λX ∼ Exp(1). It

is thus enough to consider Exp(1) random variables.

Example 4.14 If (Xk)nk=1 is an n-sample from Exp(1), then X(1) ∼ Exp(n).

Solution. By independence, for every y ≥ 0, P(X(1) > y) =
n∏
k=1

P(Xk > y) = e−ny. �

Exercise 4.13 (*). Let Xk ∼ Exp(λk), k = 1, . . . , n, be independent with fixed
λk > 0. Denote X0 = min{X1, . . . , Xn} and λ0 =

∑n
k=1 λk. Show that for y ≥ 0

P
(
X0 > y,X0 = Xk

)
= e−λ0y λk

λ0
,

ie., the minimum X0 of the sample satisfies X0 ∼ Exp(λ0) and the probability that
it coincides with Xk is proportional to λk, independently of the value of X0.

Recall the following memoryless property of exponential distributions:

Exercise 4.14 (*). If X ∼ Exp(λ), show that for all positive a and b we have

P
(
X > a+ b | X > a

)
= P(X > b) .

10with a little bit of extra work, one can also allow m = mn →∞ slowly enough as n→∞.

8
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Lemma 4.15 If (Xk)nk=1 are independent with Xk ∼ Exp(λk), then for arbi-
trary fixed positive a and b1, . . . , bn,

P
( n⋂

k=1

{
Xk > a+ bk

} ∣∣ min(Xk) > a
)

= P
( n⋂

k=1

{
Xk > bk

})
. (4.15)

In addition,

P
( n⋂

k=1

{
a < Xk ≤ a+ bk

})
= P

(
min(Xk) > a

)
P
( n⋂

k=1

{
Xk ≤ bk

})
. (4.16)

Proof. The results follows from independence and the fact P(Xk > c) = e−λkc. �

Remark 4.15.1 By the uniformity in a ≥ 0 of the memoryless property (4.15),
the latter also holds for random thresholds; eg., if Y ≥ 0 is a random variable
with density fY (y) independent of {X1, . . . , Xn}, then conditioning on the value
of Y and using the formula of total probability, we get

P
( n⋂

k=1

{
Xk > Y + bk

} ∣∣ min(Xk) > Y
)

=

∫
fY (a)P

( n⋂

k=1

{
Xk > a+ bk

} ∣∣ min(Xk) > a
)
da = P

( n⋂

k=1

{
Xk > bk

})
.

Exercise 4.15 (**). If X ∼ Exp(λ), Y ∼ Exp(µ) and Z ∼ Exp(ν) are indepen-
dent, show that for every constant a ≥ 0 we have P(a+X < Y | a < Y ) = λ

λ+µ ;

deduce that P
(
a+X < min(Y, Z) | a < min(Y,Z)

)
= λ

λ+µ+ν .

Corollary 4.16 Let (Xk)nk=1 be an n-sample from Exp(1). Denote

Zn = X1 + 1
2X2 + · · ·+ 1

nXn .

Then X(n) and Zn have the same distribution.11

Proof. Write Ym for the maximum X(m) of an m-sample (Xk)mk=1 from Exp(1). We
obviously have P(Z1 ≤ a) = 1− e−a and P(Ym ≤ a) = (1− e−a)m for all m ≥ 1. Since
Zm has the same distribution as the (independent) sum Zm−1+Um with Um ∼ Exp(m),

P
(
Zm ≤ a

)
= P

(
Zm−1 + Um ≤ a

)
=

∫ a

0

P(Zm−1 ≤ a− x)me−mx dx ,

for all m ≥ 1. Next, by symmetry,

P
(
Ym ≤ a

)
= mP

(
Xm < min(X1, . . . , Xm−1) < Ym−1 ≤ a

)
,

so that, using (4.16), this becomes

m

∫ a

0

fXm(x) P
(m−1⋂

k=1

{
x < Xk ≤ a

})
dx =

∫ a

0

me−mx
(
1− e−(a−x))m−1

dx .

11One can also show that X(k) has the same distribution as 1
n+1−kVn+1−k + · · · + 1

n
Vn

with jointly independent Vk ∼ Exp(1).

9
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The result now follows by straightforward induction.12 �

Exercise 4.16 (**). Carefully prove Corollary 4.16 and compute EYn and VarYn.

Exercise 4.17 (**). Let X(n) be the maximum of an n-sample from Exp(1)

distribution. For x ∈ R, find the value of P
(
X(n) ≤ log n+x

)
in the limit n→∞.

4.6 Additional problems

Exercise 4.18 (*). Let X1, X2 be a sample from a uniform distribution on
{1, 2, 3, 4, 5}. Find the distribution of X(1), the minimum of the sample.

Exercise 4.19 (*). Let independent variables X1, . . . , Xn be Exp(1) distributed.
Show that for every x > 0, we have P

(
X(1) ≤ x

)
→ 1 and P

(
X(n) ≥ x

)
→ 1 as

n→∞. Generalise the result to arbitrary distributions on R.

Exercise 4.20 (*). Let {X1, X2, X3, X4} be a sample from a distribution with
density f(x) = e7−x

1x>7. Find the pdf of the second order variable X(2).

Exercise 4.21 (*). Let X1 and X2 be independent Exp(λ) random variables.

a) Show that X(1) and X(2) −X(1) are independent and find their distributions.

b) Compute E(X(2) | X(1) = x1) and E(X(1) | X(2) = x2).

Exercise 4.22 (**). Let (Xk)nk=1 be an n-sample from Exp(λ) distribution.

a) Show that the gaps
(
∆(k)X

)n
k=1

as defined in Lemma 4.10 are independent and
find their distribution.

b) For fixed 1 ≤ k ≤ m ≤ n, compute the expectation E(X(m) | X(k) = xk).

Exercise 4.23 (**). If Y ∼ Exp(µ) and an arbitrary random variable X ≥ 0 are
independent, show that for every a > 0, P(a+X < Y | a < Y ) = Ee−µX .

4.6.1 Optional material13

Exercise 4.24 (**). In the context of Exercise 4.18, let {X1, X2} be a sample without
replacement from {1, 2, 3, 4, 5}. Find the distribution of X(1), the minimum of the sample.

Exercise 4.25 (*). Let {X1, X2} be an independent sample from Geom(p) distribution,
P(X > k) = (1 − p)k for integer k ≥ 0. Find the distribution of X(1), the minimum of
the sample.

Exercise 4.26 (**). Let {X1, X2, . . . , Xn} be an n-sample from a distribution with
density f( · ). Show that the joint density of the order variables X(1), . . . , X(n) is

fX(1),...,X(n)
(x1, . . . , xn) = n!

n∏

k=1

f(xk)1x1<···<xn .

12You might wish to check that the RHS above equals (1− e−a)m; to this end, change the
variables x 7→ y = a− x, rearrange, then change again y 7→ z = ey and integrate the result.

13This section contains advanced material for students who wish to dig a little deeper.
Problems marked with (****) are strictly optional.
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Exercise 4.27 (**). Let {X1, X2, X3} be a sample from U(0, 1). Find the conditional
density fX(1),X(3)|X(2)

(x, z|y) of X(1) and X(3) given that X(2) = y. Explain your findings.

Exercise 4.28 (**). Let {X1, X2, . . . , X100} be a sample from U(0, 1). Approximate
the value of P(X(75) ≤ 0.8).

Exercise 4.29 (**). Let X1, X2, . . . be independent random variables with cdf F ( · ),
and let N > 0 be an integer-valued variable with probability generating function g( · ), inde-
pendent of the sequence (Xk)k≥1. Find the cdf of max

{
X1, X2, . . . , XN}, the maximum

of the first N terms in that sequence.

Exercise 4.30 (***). Let X(1) be the first order variable from an n-sample with
density f( · ), which is positive and continuous on [0, 1], and vanishes otherwise. Let,
further, f(x) ≈ cxα for small x > 0 and positive c and α. For y > 0 and β = 1

α+1
, show

that the probability P(X(1) > yn−β) has a well defined limit for large n. What can you

deduce about the distribution of the rescaled variable Yn
def
= nβX(1) for large enough n?

Exercise 4.31 (***). Let X1, . . . , Xn be independent β(k,m)-distributed random
variables whose joint distribution is given in (4.11) (with k ≥ 1 and m ≥ 1). Find δ > 0

such that the distribution of the rescaled variable Yn
def
= nδX(1) converges to a well-defined

limit as n→∞. Describe the limiting distribution.

Exercise 4.32 (****). In the situation of Exercise 4.30, let α < 0. What can
you say about possible limiting distribution of the suitably rescaled fisrt order variable,
Yn = nδX(1), with some δ ∈ R?

Exercise 4.33 (****). Denote Y ∗n = Yn − logn; show that the corresponding cdf,

P(Y ∗n ≤ x), approaches e−e
−x

, as n → ∞. Deduce that the expectation of the limiting

distribution equals γ, the Euler constant,14 and its variance is
∑
k≥1

1
k2

= π2

6
.

A distribution with cdf exp
{
−e−(x−µ)/β

}
is known as Gumbel distribution (with scale

and locations parameters β and µ, resp.). It can be shown that its average is 14 µ+βγ,
its variance is π2β2/6, and its moment generating function equals Γ(1− βt)eµt.
Exercise 4.34 (****). By using the Weierstrass formula,

∞∏

k=1

(
1 +

z

k

)−1

ez/k = eγzΓ(z + 1) ,

(where γ is the Euler constant 14 and Γ(·) is the classical gamma function, Γ(n) = (n−1)!
for integer n > 0) or otherwise, show that the moment generating function EetZ

∗
n of

Z∗n = Zn − EZn approaches e−γtΓ(1− t) as n→∞ (eg., for all |t| < 1). Deduce that in
that limit Z∗n + γ is asymptotically Gumbel distributed (with β = 1 and µ = 0).

Exercise 4.35 (***). Let X1, X2, . . . be independent Exp(λ) random variables;
further, let N ∼ Poi(ν), independent of the sequence (Xk)k≥1, and let X0 ≡ 0. Find the

distribution of Y
def
= max{X0, X1, X2, . . . , XN}, the maximum of the first N terms of this

sequence, where for N = 0 we set Y = 0.

14the Euler constant γ is limn→∞
(∑n

k=1
1
k
− logn

)
≈ 0.5772156649...;

11
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5 Coupling

Two random variables, say X and Y , are coupled, if they are defined on the same
probablity space. To couple two given variables X and Y , one usually defines a
random vector

(
X̃, Ỹ ) with joint probability P̃( · , · ) on some probability space15

so that the marginal distribution of X̃ coincides with the distribution of X and
the marginal distribution of Ỹ coincides with the distribution of Y .

Example 5.1 Fix p1, p2 ∈ [0, 1] such that p1 ≤ p2 and consider the following
joint distributions (we write qi = 1− pi):

T1 0 1 X̃

0 q1q2 q1p2 q1

1 p1q2 p1p2 p1

Ỹ q2 p2

T2 0 1 X̃

0 q2 p2 − p1 q1

1 0 p1 p1

Ỹ q2 p2

It is easy to see that in both cases X̃ ∼ Ber(p1), Ỹ ∼ Ber(p2), though in the

first case X̃ and Ỹ are independent (and the joint distribution is known as an

“independent coupling”), whereas in the second case we have P̃(X̃ ≤ Ỹ ) = 1
(and the joint distribution is called a “monotone coupling”).

Exercise 5.1 (*). In the setting of Example 5.1 show that every convex linear
combination of tables T1 and T2, ie., each table of the form Tα = αT1 + (1−α)T2

with α ∈ [0, 1], gives an example of a coupling of X ∼ Ber(p1) and Y ∼ Ber(p2).
Can you find all possible couplings for these variables?

5.1 Stochastic order

If X ∼ Ber(p), its tail probabilities P(X > a) satisfy

P(X > a) =





1, a < 0 ,

p, 0 ≤ a < 1 ,

0, a ≥ 1 .

Consequently, in the setup of Example 5.1, for the variable X ∼ Ber(p1) and
Y ∼ Ber(p2) with p1 ≤ p2 we have P(X > a) ≤ P(Y > a) for all a ∈ R. The
last inequality is useful enough to deserve a name:

Definition 5.2 [Stochastic domination]b A random variable X is stochastically
smaller than a random variable Y (write X 4 Y ) if the inequality

P
(
X > x

)
≤ P

(
Y > x

)
(5.1)

holds for all x ∈ R.

15Z A priori the original variables X and Y can be defined on arbitrary probability spaces, so
that one has no reason to expect that these spaces can be “joined” in any way!

12
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Exercise 5.2 (*). Let X ≥ 0 be a random variable, and let a ≥ 0 be a fixed
constant. If Y = a+X, is it true that X 4 Y ? If Z = aX, is it true that X 4 Z?
Justify your answer.

Exercise 5.3 (*). If X 4 Y and g( · ) is an arbitrary increasing function on R,
show that g(X) 4 g(Y ).

Example 5.3Z Let random variables X ≥ 0 and Y ≥ 0 be stochastically or-
dered, X 4 Y . If g( · ) ≥ 0 is a smooth increasing function on R with g(0) = 0,
then g(X) 4 g(Y ) and

Eg(X) ≡
∫ ∞

0

g′(z)P(X > z) dz ≤
∫ ∞

0

g′(z)P(Y > z) dz ≡ Eg(Y ) . (5.2)

Exercise 5.4 (*). Generalise the inequality in Example 5.3 to a broader class of
functions g( · ) and verify that if X 4 Y , then E(X2k+1) ≤ E(Y 2k+1), EetX ≤ EetY

with t > 0, EsX ≤ EsY with s > 1 etc.

Exercise 5.5 (*). Let ξ ∼ U(0, 1) be a standard uniform random variable. For
fixed p ∈ (0, 1), define X = 1ξ<p. Show that X ∼ Ber(p), a Bernoulli random
variable with parameter p. Now suppose that X = 1ξ<p1 and Y = 1ξ<p2 for some
0 < p1 ≤ p2 < 1 and ξ as above. Show that X 4 Y and that P(X ≤ Y ) = 1.
Compare your construction to the second table in Example 5.1.

Exercise 5.6 (**). In the setup of Example 5.1, show that X ∼ Ber(p1) is
stochastically smaller than Y ∼ Ber(p2) (ie., X 4 Y ) iff p1 ≤ p2. Further, show

that X 4 Y is equivalent to existence of a coupling
(
X̃, Ỹ ) of X and Y in which

these variables are ordered with probablity one, P̃(X̃ ≤ Ỹ ) = 1.

The next result shows that this connection between stochastic order and
existence of a monotone coupling is a rather generic feature:

Lemma 5.4b A random variable X is stochastically smaller than a random vari-

able Y if and only if there exists a coupling
(
X̃, Ỹ ) of X and Y such that

P̃(X̃ ≤ Ỹ ) = 1.

Remark 5.4.1 Notice that one claim of Lemma 5.4 is immediate from

P(x < X) ≡ P̃
(
x < X̃

)
= P̃

(
x < X̃ ≤ Ỹ

)
≤ P̃

(
x < Ỹ

)
≡ P

(
x < Y

)
;

the other claim requires a more advanced argument (we shall not do it here!).

Example 5.5 If X ∼ Bin(m, p) and Y ∼ Bin(n, p) with m ≤ n, then X 4 Y .

Solution. Let Z1 ∼ Bin(m, p) and Z2 ∼ Bin(n−m, p) be independent variables defined

on the same probability space. We then put X̃ = Z1 and Ỹ = Z1 + Z2 so that
Ỹ − X̃ = Z2 ≥ 0 with probability one, P̃(X̃ ≤ Ỹ ) = 1, and X ∼ X̃, Y ∼ Ỹ . �

Example 5.6 If X ∼ Poi(λ) and Y ∼ Poi(µ) with λ ≤ µ, then X 4 Y .

13
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Solution. Let Z1 ∼ Poi(λ) and Z2 ∼ Poi(µ − λ) be independent variables defined

on the same probability space. 16 We then put X̃ = Z1 and Ỹ = Z1 + Z2 so that
Ỹ − X̃ = Z2 ≥ 0 with probability one, P̃(X̃ ≤ Ỹ ) = 1, and X ∼ X̃, Y ∼ Ỹ . �

Exercise 5.7 (**). Let X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) be Gaussian

r.v.’s.

a) If µX ≤ µY but σ2
X = σ2

Y , is it true that X 4 Y ?

b) If µX = µY but σ2
X ≤ σ2

Y , is it true that X 4 Y ?

Exercise 5.8 (**). Let X ∼ Exp(λ) and Y ∼ Exp(µ) be two exponential
random variables. If 0 < λ ≤ µ < ∞, are the variables X and Y stochastically
ordered? Justify your answer by proving the result or giving a counter-example.

Exercise 5.9 (**). Let X ∼ Geom(p) and Y ∼ Geom(r) be two geometric
random variables, X ∼ Geom(p) and Y ∼ Geom(r). If 0 < p ≤ r < 1, are the
variables X and Y stochastically ordered? Justify your answer by proving the result
or giving a counter-example.

The gamma distribution Γ(a, λ) has density λa

Γ(a)x
a−1e−λx1x>0 (so that

Γ(1, λ) is just Exp(λ)). Gamma distributions have the following additive prop-
erty: if Z1 ∼ Γ(c1, λ) and Z2 ∼ Γ(c2, λ) are independent random variables (with
the same λ), then their sum is also gamma distributed: Z1 +Z2 ∼ Γ(c1 + c2, λ).

Exercise 5.10 (**). Let X ∼ Γ(a, λ) and Y ∼ Γ(b, λ) be two gamma random
variables. If 0 < a ≤ b < ∞, are the variables X and Y stochastically ordered?
Justify your answer by proving the result or giving a counter-example.

5.2 Total variation distance

Definition 5.7 [Total Variation Distance]b Let µ and ν be two probability mea-
sures on the same probability space. The total variation distance between µ
and ν is

dTV(µ, ν)
def
= max

A

∣∣µ(A)− ν(A)
∣∣ . (5.3)

If X, Y are two discrete random variables, we write dTV(X,Y ) for the total
variation distance between their distributions.

Example 5.8 If X ∼ Ber(p1) and Y ∼ Ber(p2) we have

dTV(X,Y ) = max
{
|p1 − p2|, |q1 − q2|

}
= |p1 − p2| = 1

2

(
|p1 − p2|+ |q1 − q2|

)
.

Exercise 5.11 (**). Let measure µ have p.m.f. {px}x∈X and let measure ν
have p.m.f. {qy}y∈Y . Show that

dTV(µ, ν) ≡ dTV

(
{p}, {q}

)
= 1

2

∑

z

∣∣pz − qz
∣∣ ,

where the sum runs over all z ∈ X ∪Y. Deduce that dTV(·, ·) is a distance between
probability measures17(ie., it is non-negative, symmetric, and satisfies the triangle

16here and below we assume that Z ∼ Poi(0) means that P(Z = 0) = 1.
17so that all probability measures form a metric space for this distance!
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inequality) such that dTV(µ, ν) ≤ 1 for all probability measures µ and ν.

Exercise 5.12 (**). In the setting of Exercise 5.11 show that

dTV

(
{p}, {q}

)
=
∑

z

(
pz −min(pz, qz)

)
=
∑

z

(
qz −min(pz, qz)

)
. (5.4)

An important relation between coupling and the total variation distance is
explained by the following fact.

Example 5.9 [Maximal Coupling]b Let random variables X and Y be such that

P(X = x) = px, x ∈ X , and P(Y = y) = qy, y ∈ Y, with dTV

(
{p}, {q}

)
> 0.

For each z ∈ Z = X ∪ Y, put rz = min
(
pz, qz

)
and define the joint distribution

P̂( · , · ) in Z × Z via

P̂
(
X̃ = Ỹ = z

)
= rz , P̂

(
X̃ = x, Ỹ = y

)
=

(
px − rx

) (
qy − ry

)

dTV

(
{p}, {q}

) , x 6= y .

Then P̂( · , · ) is a coupling of X and Y .

Solution. By using (5.4) we see that
∑
z P̂(X = x, Y = z) = rx+(px−rx) = P(X = x),

for all x ∈ X , ie., the first marginal is as expected. Checking correctness of the Y
marginal is similar. �

Remark 5.9.1 By (5.4), we have dTV

(
{p}, {q}

)
= 0 iff pz = qz for all z. In this

case it is natural to define the maximal coupling via P̂
(
X̃ = x, Ỹ = y

)
= rx1x=y

for all x ∈ X , y ∈ Y. Notice that in this case the coupling is concentrated on
the diagonal x = y and all its off-diagonal terms vanish.

Example 5.10Z Consider X ∼ Ber(p1) and Y ∼ Ber(p2) with p1 ≤ p2. It is a
straightforward exercise to check that the second table in Example 5.1 provides
the maximal coupling of X and Y . We notice also that in this case

P̂
(
X̃ 6= Ỹ

)
= p2 − p1 = dTV(X,Y ) .

Exercise 5.13 (**). If P̂( · , · ) is the maximal coupling of X and Y as defined

in Example 5.9 and Remark 5.9.1, show that P̂(X̃ 6= Ỹ ) = dTV

(
X,Y

)
.

Lemma 5.11 Let P̂( · , · ) be the maximal coupling of X and Y as defined in

Example 5.9. Then for every other coupling P̃( · , · ) of X and Y we have

P̃
(
X̃ 6= Ỹ

)
≥ P̂

(
X̃ 6= Ỹ

)
= dTV

(
X,Y

)
. (5.5)

Proof. Summing the inequalities P̃
(
X̃ = Ỹ = z

)
≤ min(pz, qz) we deduce

P̃
(
X̃ 6= Ỹ

)
≥ 1−

∑

z

min(pz, qz) =
∑

z

(
pz −min(pz, qz)

)
= dTV

(
{p}, {q}

)
,

where the last equality follows from (5.4). The claim follows from Exercise 5.13. �

15
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Remark 5.11.1 Notice that according to (5.5),

P̃
(
X̃ = Ỹ

)
≤ P̂

(
X̃ = Ỹ

)
= 1− dTV

(
X̃, Ỹ

)
,

ie., the probability that X̃ = Ỹ is maximised under the optimal coupling P̂( · , · ).
Example 5.12Z Fix p ∈ (0, 1). Then the maximal coupling of X ∼ Ber(p) and
Y ∼ Poi(p) satisfies

P̂
(
X̃ = Ỹ = 0

)
= 1− p , P̂

(
X̃ = Ỹ = 1

)
= pe−p ,

and P̂
(
X̃ = Ỹ = x

)
= 0 for all x > 1, so that

dTV

(
X̃, Ỹ

)
≡ P̂

(
X̃ 6= Ỹ

)
= 1− P̂

(
X̃ = Ỹ

)
= p
(
1− e−p

)
≤ p2 . (5.6)

Exercise 5.14 (**). For fixed p ∈ (0, 1), complete the construction of the
maximal coupling of X ∼ Ber(p) and Y ∼ Poi(p) as outlined in Example 5.12. Is
any of the variables X and Y stochastically dominated by another?

5.2.1 The Law of rare events

The following sub-additive property of total variation distance is important in
applications.

Example 5.13 Let X = X1 +X2 with independent X1 and X2. Similarly, let
Y = Y1 + Y2 with independent Y1 and Y2. Then

dTV(X,Y ) ≤ dTV(X1, Y1) + dTV(X2, Y2) . (5.7)

Solution. By (5.5), for any joint distribution P( · ) of {X1, X2, Y1, Y2} we have

dTV(X,Y ) ≤ P(X 6= Y ) ≤ P(X1 6= Y1) + P(X2 6= Y2) .

Now let P̂i( · , · ) be the maximal coupling for the pair (Xi, Yi), i = 1, 2, and let

P = P̂1× P̂2 be the (independent) product measure18of P̂1 and P̂2. Under such P, the
variables X1 and X2 (similarly, Y1 and Y2) are independent; moreover, the RHS of the
display above becomes just dTV(X1, Y1) + dTV(X2, Y2), so (5.7) follows. �

Remark 5.13.1 An alternativee proof of (5.7) can be obtained as follows.
Let Z be the independent sum Y1 + X2; by using the explicit formula for
dTV( · , · ) in Exercise 5.11 one can show that dTV(X,Z) = dTV(X1, Y1) and
dTV(Z, Y ) = dTV(X2, Y2); together with the triangle inequality for the total
variation distance, dTV(X,Y ) ≤ dTV(X,Z) + dTV(Z, Y ), this gives (5.7).

Theorem 5.14 Let X =
∑n
k=1Xk, where Xk ∼ Ber(pk) are independent ran-

dom variables. Let, further, Y ∼ Poi(λ), where λ =
∑n
k=1 pk. Then the maximal

coupling of X and Y satisfies

dTV

(
X,Y

)
≡ P̂

(
X̃ 6= Ỹ

)
≤

n∑

k=1

(pk)2 .

18ie., s.t. P
(
Xi = ai, Yj = bj

)
= P̂1(X1 = a1, Y1 = b1) · P̂1(X2 = a2, Y2 = b2) for all ai, bj .

16
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Proof. Write Y =
∑n
k=1 Yk, where Yk ∼ Poi(pk) are independent rv’s, and use the

approach of Example 5.13. Of course,

P
( n∑

k=1

Xk 6=
n∑

k=1

Yk
)
≤

n∑

k=1

P(Xk 6= Yk)

for every joint distribution of (Xk)nk=1 and (Yk)nk=1. Let P̂k be the maximal coupling

for the pair {Xk, Yk}, and let P̂0 be the maximal coupling for two sums. Notice that

the LHS above is not smaller than dTV(X,Y ) ≡ P̂0

(
X̃ 6= Ỹ

)
; on the other hand, using

the (independent) product measure P = P̂1 × · · · × P̂n on the right of the display

above we deduce that then the RHS becomes just
∑n
k=1 P̂k

(
X̃k 6= Ỹk

)
. The result

now follows from (5.6). �

Exercise 5.15 (**). Let X ∼ Bin(n, λn ) and Y ∼ Poi(λ) for some λ > 0. Show
that

1

2

∣∣P(X = k)− P(Y = k)
∣∣ ≤ dTV

(
X̃, Ỹ

)
≤ λ2

n
for every k ≥ 0. (5.8)

Deduce that for every fixed k ≥ 0, we have P(X = k)→ λk

k! e
−λ as n→∞.

Remark 5.14.1Z By (5.8), if X ∼ Bin(n, p) and Y ∼ Poi(np) then for every
k ≥ 0 the probabilities P(X = k) and P(Y = k) differ by at most 2np2. Eg., if
n = 10 and p = 0.01 the discrepancy between any pair of such probabilities is
bounded above by 0.002, ie., they coincide in the first two decimal places.

5.3 Additional problems

Exercise 5.16 (*). Let random variable X have density f( · ), and let g( · ) be a
smooth increasing function with g(x)→ 0 as x→ −∞. Show that

Eg(X) =

∫
dx

∫
1z<x g

′(z)f(x) dz

and deduce the integral representation of Eg(X) in (5.2).

Exercise 5.17 (**). Let X ∼ Bin(1, p1) and Y ∼ Bin(2, p2) with p1 ≤ p2. By
constructing an explicit coupling or otherwise, show that X 4 Y .

Exercise 5.18 (***). Let X ∼ Bin(2, p1) and Y ∼ Bin(2, p2) with p1 ≤ p2.
Construct an explicit coupling showing that X 4 Y .

Exercise 5.19 (***). Let X ∼ Bin(3, p1) and Y ∼ Bin(3, p2) with 0 < p1 ≤
p2 < 1. Construct an explicit coupling showing that X 4 Y .

Exercise 5.20 (***). Let X ∼ Bin(2, p) and Y ∼ Bin(4, p) with 0 < p < 1.
Construct an explicit coupling showing that X 4 Y .

17
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Exercise 5.21 (**). Let m ≤ n and 0 < p1 ≤ p2 < 1. Show that X ∼
Bin(m, p1) is stochastically smaller than Y ∼ Bin(n, p2).

Exercise 5.22 (**). Let X ∼ Ber(p) and Y ∼ Poi(ν). Characterise all pairs
(p, ν) such that X 4 Y . Is it true that X 4 Y if p = ν? Is it possible to have
Y 4 X?

Exercise 5.23 (**). Let X ∼ Bin(n, p) and Y ∼ Poi(ν). Characterise all pairs
(p, ν) such that X 4 Y . Is it true that X 4 Y if np = ν? Is it possible to have
Y 4 X?

Exercise 5.24 (**). Prove the additive property of dTV( · , · ) for independent
sums, (5.7), by following the approach in Remark 5.13.1.

Exercise 5.25 (***). Generalise your argument in Exercise 5.24 for general sums,
and derive an alternative proof of Theorem 5.14.

Exercise 5.26 (**). If X, Y are stochastically ordered, X 4 Y , and Z is
indepedentent of X and Y , show that (X + Z) 4 (Y + Z).

Exercise 5.27 (*). If random variables X, Y , Z satisfy X 4 Y and Y 4 Z,
show that X 4 Z.

Exercise 5.28 (**). Let X = X1 +X2 with independent X1 and X2, similarly,
Y = Y1 + Y2 with independent Y1 and Y2. If X1 4 Y1 and X2 4 Y2, deduce that
X 4 Y .

Exercise 5.29 (**). Let Xk ∼ Ber(p′) and Yk ∼ Ber(p′′) for fixed 0 < p′ <
p′′ < 1 and all k = 0,1, . . . , n. Show that X =

∑
kXk is stochastically smaller

than Y =
∑
k Yk.
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6 Some non-classical limits

6.1 Convergence to Poisson distribution

In Sec. 5.2.1 we used coupling to derive the “law of rare events” for sums of
independent Bernoulli random variables. An alternative approach is to use
generating functions:

Exercise 6.1 (*). Let Xn ∼ Bin(n, p), where p = p(n) is such that np →
λ ∈ (0,∞) as n → ∞. Show that for every fixed s ∈ R the generating function

Gn(s)
def
= E

(
sXn

)
=
(
1+p(s−1)

)n
converges, as n→∞, to GY (s) = eλ(s−1), the

generating function of Y ∼ Poi(λ). Deduce that the distribution of Xn approaches
that of Y in this limit.

A time non-homogeneous version of the previous result can be obtained
similarly:

Theorem 6.1 For n ≥ 1, let X
(n)
k , k = 1, . . . , n, be independent Bernoulli

r.v.’s, Xn ∼ Ber
(
p

(n)
k

)
. Assume that as n→∞

max
1≤k≤n

p
(n)
k → 0 and

n∑

k=1

p
(n)
k ≡ E

( n∑

k=1

X
(n)
k

)
→ λ ∈ (0,∞) .

Then the distribution of Xn
def
=
∑n
k=1X

(n)
k converges, as n→∞, to Poi(λ).

A straightforward proof can be derived in analogy with that in Exercise 6.1,
by using the following well-known uniform estimate for the logarithmic function:

Exercise 6.2 (*). Show that |x+ log(1− x)| ≤ x2 uniformly in |x| ≤ 1/2.

Exercise 6.3 (**). Use the estimate in Exercise 6.2 to prove Theorem 6.1.

We now consider a few examples of such convergence for dependent random
variables.

Example 6.2 For a random permutation π of the set {1, 2, . . . , n}, let Sn be
the number of fixed points of π. Then, as n → ∞, the distribution of Sn
converges to Poi(1).

Solution. If the events (Am)nm=1 are defined via Am =
{
m is a fixed point of π

}
, then

Sn =
∑n
m=1 1Am . Notice that for 1 ≤ m1 < m2 < · · · < mk ≤ n we have

P
(
Am1 ∩Am2 ∩ · · · ∩Amk

)
= (n−k)!

n!
,

since the number of permutations which do not move any k given points is (n − k)!.
By inclusion-exclusion,

P(Sn > 0) ≡ P
(
∪nm=1Am

)
=
∑

m

P(Am)−
∑

m1<m2

P
(
Am1 ∩Am2

)
+ . . .

=
(
n
1

) (n−1)!
n!
−
(
n
2

) (n−2)!
n!

+ · · · =
n∑

m=1

(−1)m−1

m!
,
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so that ∣∣P(Sn = 0)− e−1
∣∣ ≡

∣∣∣
∑

m>n

(−1)m

m!

∣∣∣ ≤ 1
(n+1)!

(
1− 1

n+2

)−1
,

ie., P(Sn = 0) converges to e−1 as n → ∞. By considering the locations of all fixed
points, we deduce that for every integer k ≥ 0, as n→∞,

P(Sn = k) =
(
n
k

) (n−k)!
n!

P(Sn−k = 0) = 1
k!

P(Sn−k = 0)→ 1
k!
e−1 . �

The next occupancy problem is very important for applications:

Example 6.3 (Balls and boxes) Let r (distinguishable) balls be placed ran-
domly into n boxes. Write Nk = Nk(r, n) for the number of boxes containing

exactly k balls. If r/n→ c as n→∞, then E
(

1
nNk

)
→ ck

k! e
−k and Var

(
1
nNk

)
→ 0

as n→∞.

Solution. We consider the case k = 0; for general k ≥ 0, see Exercise 6.4. Notice that
N0 =

∑n
j=1 1Ej , where Ej =

{
box j is empty

}
. We have E

(
1Ej
)

= P(Ej) =
(
1 − 1

n

)r

and E
(
1Ei1Ej

)
= P(Ei ∩ Ej) =

(
1− 2

n

)r
with i 6= j. Consequently, E(N0) = n

(
1− 1

n

)r
and E

(
(N0)2

)
= n

(
1− 1

n

)r
+ n(n− 1)

(
1− 2

n

)r
. This finally gives, as n→∞,

E
(

1
n
N0

)
→ e−c and Var

(
1
n
N0

)
=
(
1− 2

n

)r −
(
1− 1

n

)2r
+O

(
1
n

)
→ 0 . �

Remark 6.3.1 The argument implies that when r
n → c, a typical configuration

in the occupancy problem contains a positive proportion of empty boxes.

Exercise 6.4 (**). In the setting of Example 6.3, show that for each integer

k ≥ 0, we have E
(

1
nNk

)
→ ck

k! e
−k and Var

(
1
nNk

)
→ 0 as n→∞.

Exercise 6.5 (**). In the setup of Example 6.3, let Xj be the number of balls in

box j. Show that for each integer k ≥ 0, we have P
(
Xj = k

)
→ ck

k! e
−c as n→∞.

Further, show that for i 6= j, the variables Xi and Xj are not independent, but in
the limit n→∞ they become independent Poi(c) distributed random variables.

Exercise 6.6 (**). Generalise the result in Exercise 6.5 for occupancy numbers
of a finite number of boxes.

Lemma 6.4 In the occupancy problem, let ne−r/n → λ ∈ [0,∞) as n → ∞.
Then the distribution of the number N0 = N0(r, n) of empty boxes approaches
Poi(λ) as n→∞.

Remark 6.4.1 The probability that a given box is empty equals (1 − 1
n )r ≈

e−r/n ≈ λ
n . If the numbers of balls in different boxes were independent, the

result would follow as in the law of rare events. The following argument shows
that the actual dependence is rather weak, and the result still holds.

Remark 6.4.2 Notice that in Exercise 6.4 we considered r ≈ cn, ie., r was of
order n while here r is of order n log n.
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Proof of Lemma 6.4 The probability that k fixed boxes are empty is

P
({

boxes m1, . . . , mk are empty
})

=
(
1− k

n

)r
.

Denote pk(r, n)
def
= P

({
exactly k boxes are empty

})
; then, by fixing the positions of the

empty boxes, we can write

pk(r, n) =
(
n
k

)(
1− k

n

)r
p0(r, n− k) . (6.1)

It is obviously sufficient to show that under the conditions of the lemma,

(
n
k

)(
1− k

n

)r → λk

k!
, p0(r, n)→ e−λ . (6.2)

We start by checking the first relation in (6.2). To this end, notice that by the
well-known inequality |x + log(1 − x)| ≤ x2 with |x| ≤ 1/2, see Exercise 6.2, the
assumption of the lemma, logn− r

n
− log λ→ 0, implies that for all fixed k ≥ 0 with

2k ≤ n we have

log
[
nk
(
1− k

n

)r]− k log λ = k
[
logn− r

n
− log λ r] + r

[
log
(
1− k

n

)
+ k

n
r]→ 0 ;

equivalently, the first asymptotic relation in (6.2) holds.
On the other hand, by inclusion-exclusion,

p0(r, n) = 1− P
( n⋃

`=1

{
box ` is empty

})
=

n∑

k=0

(−1)k
(
n
k

)(
1− k

n

)r
,

so that by dominated convergence, 19 we get p0(r, n)→∑
k≥0

(−λ)k

k!
= e−λ. �

Exercise 6.7 (**). Suppose that each box of cereal contains one of n different
coupons. Assume that the coupon in each box is chosen independently and uniformly
at random from the n possibilities, and let Tn be the number of boxes of cereal
one needs to buy before there is at least one of every type of coupon. Show that
ETn = n

∑n
k=1 k

−1 ≈ n log n and VarTn ≤ n2
∑n
k=1 k

−2.

Exercise 6.8 (**). In the setup of Exercise 6.7, show that for all real a,

P(Tn ≤ n log n+ na)→ exp{−e−a} , as n→∞ .

[Hint: If Tn > k, then k balls are placed into n boxes so that at least one box is empty.]

Exercise 6.9 (**). In a village of 365k people, what is the probability that all
birthdays are represented? Find the answer for k = 6 and k = 5.
[Hint: In notations of Exercise 6.7, the problem is about evaluating P(T365 ≤ 365k).]

Further examples can be found in [2, Sect. 5].

19the domination follows from |p0(r, n)| ≤ ∑n
k=0

(n
k

)
e−rk/n = (1 + e−r/n)n ≤ ene

−r/n
,

which is bounded, uniformly in r and n under consideration; alternatively, one can follow the
approach in Example 6.2.
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6.2 Convergence to exponential distribution

Geometric distribution is often referred to as the ‘discrete exponential’ distribu-
tion. Indeed, if X ∼ Geom(p), equivalently, P(X > k) = (1− p)k for all integer

k ≥ 0, then the distribution of Y
def
= pX satisfies

P(Y > x) = P
(
X > x

p

)
= (1− p)x/p

for all x ≥ 0, which in the limit p → 0 approaches e−x, the tail probability of
Exp(1) distribution.

Exercise 6.10 (*). Show that the moment generating function (MGF) of
X ∼ Geom(p) is given by MX(t)≡ EetX = pet(1 − (1 − p)et)−1 and that of
Y ∼ Exp(λ) is MY (t) = λ

λ−t (defined for all t < λ). Let Z = pX and deduce that,
as p→ 0, the MGF MZ(t) converges to that of Y ∼ Exp(1) for each fixed t < 1.

Exercise 6.11 (**). The running cost of a car between two consecutive services is
given by a random variable C with moment generating function (MGF) MC(t) (and
expectation c), where the costs over non-overlapping time intervals are assumed
independent and identically distributed. The car is written off before the next service
with (small) probability p > 0. Show that the number T of services before the car
is written off follows the ‘truncated geometric’ distribution with MGF MT (t) =

p
(
1 − (1 − p)et

)−1
and deduce that the total running cost X of the car up to

and including the final service has MGF MX(t) = p
(
1 − (1 − p)MC(t)

)−1
. Find

the expectation EX of X and show that for small enough p the distribution of

X∗
def
= X/EX is close to Exp(1).

[Hint: Find the MGF of X∗ and follow the approach of Exercise 6.10.]

6.2.1 A hitting time problem

Let (X`)`≥0 be a Markov chain in Z+ =
{

0, 1, 2, . . . } with jump probabilities

p0,1 = 1 , pk,k+1 = p , pk,k−1 = q ∀k ≥ 1 ,

where 0 < p < q < 1 with p+ q = 1. Assume X0 = 0 and define

τk = inf
{
` ≥ 0 : X` = k

}
. (6.3)

One is interested in studying the moment generating function

ϕ0(ε) = E∗0e
ετn (6.4)

for fixed (large) n > 1 and ε > 0 small enough.

Lemma 6.5 We have E0τn = 2pq
(q−p)2

[(
q
p

)n − 1
]
− n

q−p .

Remark 6.5.1 Since q > p, Lemma 6.5 implies that the expected hitting time
E0τn is exponentially large in n ≥ 1.
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Our key result is as follows.

Theorem 6.6 Let, as before, ϕ0(ε) = E0e
ετn . Then for all |u| < 1, with

ε = u
E0τn

, we have

ϕ̄0(u)
def
= ϕ0

(
u

E0τn

)
≡ E0 exp

{
u τn

E0τn

}
→ 1

1−t

as n→∞. In particular, the distribution of the rescaled hitting time τ∗n ≡ τn
E0τn

is approximately Exp(1).

Remark 6.6.1 Notice that the distribution of the rescaled hitting time τ∗n is
supported on the whole half-line (0,∞), ie., for all fixed 0 < a < A < ∞, both
events {τn < a(q/p)n} and {τn > A(q/p)n} have uniformly positive probability.
In other words, despite the variable τn is of order (q/p)n, its distribution does
not concentrate in any way on this exponential scale, even as n→∞.

Proof of Lemma 6.5. Write rk = Ekτn; then rn = 0 while

r0 = 1 + r1 and rk = 1 + p rk+1 + q rk−1 for 0 < k < n .

In terms of the differences δk = rk−1 − rk these recurrence relations reduce to δ1 = 1
and δk+1 = 1

p
+ q

p
δk with 0 < k < n. By a straightforward induction,

δk =
(
δ1 + 1

q−p
)(
q
p

)k−1 − 1
q−p , 0 < k ≤ n ,

so that a direct summation gives

r0 = r0 − rn = δ1 + δ2 + · · ·+ δn = p
q−p
(
δ1 + 1

q−p
)[(

q
p

)n − 1
]
− n

q−p ,

which for δ1 = 1 coincides with the claim of the lemma. �

The rest of this section is devoted to the proof of Theorem 6.6. We start by
deriving a useful expression for the moment generating function of τn. Using
the renewal decomposition and the strong Markov property, we get, for |ε| small
enough,

E0e
ετn = eε E1

(
eετn1τn<τ0

)
+ eε E1

(
eετ01τ0<τn

)
E0e

ετn ,

so that

ϕ0(ε) = E0e
ετn =

eε
�
g1

1− eε�
g1

, (6.5)

where for 0 ≤ m ≤ n we write

�
gm = Em

(
eετn1τn<τ0

)
and

�
gm = Em

(
eετ01τ0<τn

)
(6.6)

for the restricted moment generating functions of the hitting times (6.3). The
renewal decomposition (6.5) together with appropriate asymptotics of

�
gm and

�
gm is key to the proof of Theorem 6.6.

For ε satisfying 4pqe2ε < 1, consider the functions

�
ϕ(x) = peε

(
1− qeεx

)−1
and

�
ϕ(x) = qeε

(
1− peεx

)−1
,
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define
�
x ,

�
x via

�
x = min

{
x > 0 :

�
ϕ(x) = x

}
=

1−
√

1−4pqe2ε

2qeε = 2peε

1+
√

1−4pqe2ε
,

�
x = min

{
x > 0 :

�
ϕ(x) = x

}
=

1−
√

1−4pqe2ε

2peε = 2qeε

1+
√

1−4pqe2ε
,

and write

ρ ≡ ρ(ε)
def
=

�
x

�
x =

1−
√

1−4pqe2ε

1+
√

1−4pqe2ε
.

Notice that ρ(ε) is a strictly increasing function of real ε, satisfying 0 < ρ(ε) < 1
iff 4pqe2ε < 1. Further, because of the expansion

√
1− 4pqe2ε = (q − p)

(
1− 4pq

1−4pq (e2ε − 1)
)1/2

= (q − p)− 4pqε
q−p +O(ε2) ,

valid for small ε, we have

ρ(ε) =
2p+ 4pqε

q−p +O(ε2)

2q − 4pqε
q−p +O(ε2)

=
p

q

(
1 + 2ε

q−p +O(ε2)
)
≈ p

q
exp
{

2ε
q−p
}
,

where the last equality holds up to an error of order O(ε2). We similarly obtain

�
x =

(p
q
ρ
)1/2

=
p

q
exp
{ ε

q − p
}(

1 +O(ε2)
)
,

�
x =

(q
p
ρ
)1/2

= exp
{ ε

q − p
}(

1 +O(ε2)
)
.

With the above notation we have the following result.

Lemma 6.7 For ε small enough, for all m, 0 < m < n, we have

�
gm =

1− ρm
1− ρn (

�
x )n−m , �

gm =
1− ρn−m

1− ρn (
�
x )m .

Remark 6.7.1 Actually,
�
x = E0e

ετn so that the first claim of the lemma can
be rewritten as

�
gm ≡ Em

(
eετn1τn<τ0

)
= 1−ρm

1−ρn E∗me
ετn ,

indicating the explicit probabilitic price of the ”finite interval constraint” τn < τ0,
where the expectation E∗m is taken over the trajectories of the simple random
walk on the whole lattice Z with right and left jumps having probabilities p and
q respectively. A similar conection holds between

�
gm and (

�
x )m ≡ E∗me

ετ0 .

We postpone the proof of the lemma and first deduce the claim of Theo-
rem 6.6. Using the last result, we rewrite the representation of the moment
generating function (6.5) via

ϕ0(ε) ≡ E0e
ετn =

eε
�
g1

1− eε�
g1

=
eε(1− ρ)

�
x
n−1

(1− ρn)− eε�
x (1− ρn−1)

, (6.7)
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and use the small ε expansion of ρ,
�
x and

�
x to derive its asymptotics.

First, it follows from expansions of ρ and
�
x that

1− ρ =
q − p
q

exp
{
− 2pε

(q − p)2

}(
1 +O(ε2)

)
,

(
�
x )n−1 =

(p
q

)n−1

exp
{ (n− 1)ε

q − p
}(

1 +O(nε2)
)

so that the numerator in (6.7) is
(

1− p

q

)(p
q

)n−1(
1 +O(nε)

)
.

Next, rewrite the denominator in (6.7) as ρn−1
(
eε

�
x − ρ

)
−
(
eε

�
x − 1

)
and

notice that

eε
�
x − 1 = eε+ε/(q−p)

(
1 +O(ε2)

)
− 1 =

2qε

q − p +O(ε2) ,

while ρn−1 =
(
p
q

)n−1(
1 +O(nε)

)
and eε

�
x − ρ = q−p

q

(
1 +O(ε)

)
. Consequently,

the denominator in (6.7) equals
(

1− p

q

)(p
q

)n−1(
1 +O(nε)

)
− 2qε

q − p +O(ε2) .

Letting ε = u/E0τn = O
(
u(p/q)n

)
, we get

ϕ̄n(u) =
1 +O(nε)

1− 2pq
(q−p)2

(
q
p

)n u
E0τn

+O(nε)
=

1 +O(nε)

1− u+O(nε)
,

and the result follows.

Proof of Lemma 6.7. We only prove the first equality,

�
gm ≡ Em

(
eετn1τn<τ0

)
=

1− ρm
1− ρn (

�
x )n−m ,

the other can be verified similarly. Let
�
gm be defined as in (6.6); then

�
g0 = 0,

�
gn = 1,

and the first step decomposition gives

�
gm = eε

(
p

�
gm+1 + q

�
gm−1

)
for 0 < m < n . (6.8)

Notice that these equations have a unique finite solution, specified in terms of
�
g1

(equivalently, in terms of
�
gn). Hence, if we show that 1−ρm

1−ρn (
�
x )n−m solve equations

(6.8), it must coincide with
�
gm.

This, however, is straightforward, since the definitions of
�
x ,

�
x , and ρ imply that

peε ρ�
x

+ qeε
�
x
ρ

= 1 , peε 1
�
x

+ qeε
�
x = 1 ,

and thus that 1−ρm
1−ρn (

�
x )n−m solve the equations (6.8). �

Remark 6.7.2 A suitable modification of the argument above can be used
to prove the result Theorem 6.6 for a different starting point and/or different
reflection mechanism at the origin, see Exercises 6.17–6.19.
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6.3 Additional problems

Exercise 6.12 (**). Let r (distinguishable) balls be placed randomly into n
boxes. Find a constant c > 0 such that with r = c

√
n the probability that no two

such balls are placed in the same box approaches 1/e as n→∞.

Find a constant b > 0 such that with r = b
√
n the probability that no two such balls

are placed in the same box approaches 1/2 as n → ∞. Notice that with n = 365
and r = 23 this is the famous ‘birthday paradox’.

Exercise 6.13 (***). In the setup of Example 6.3, let Xj be the number of balls
in box j. Show that for every integer kj ≥ 0, j = 1, . . . , n, satisfying

∑n
j=1 kj = r

we have

P
(
X1 = k1, . . . , Xn = kn

)
=

(
r

k1; k2; . . . ; kn

)
n−r =

r!

k1!k2! . . . kn!nr
.

Now suppose that Yj ∼ Poi
(
r
n

)
, j = 1, . . . , n, are independent. Show that the

conditional probability P
(
Y1 = kj , . . . , Yn = kn |

∑
j Yj = r

)
is given by the

expression in the last display.

Exercise 6.14 (***). Find the probability that in a class of 100 students at least
three of them have the same birthday.

Exercise 6.15 (****). There are 365 students registered for the first year prob-
ability class. Find k such that the probability of finding at least k students sharing
the same birthday is about 1/2.

Exercise 6.16 (***). Let Gn,N , N ≤
(
n
2

)
, be the collection of all graphs on n

vertices connected by N edges. For a fixed constant c ∈ R, if N = 1
2 (n log n+ cn),

show that the probability for a random graph in Gn,N to have isolated vertices
approaches exp{−e−c} as n→∞.

Exercise 6.17 (****). Generalise Theorem 6.6 to a general starting point, ie.,
find the limit of ϕm(ε) = Eme

ετn with ε = u/Emτn.

Exercise 6.18 (****). Generalise Theorem 6.6 to a general reflection mechanism
at the origin, ie., assuming that p0,1 = 1− p0,0 > 0.

Exercise 6.19 (****). Generalise Theorem 6.6 to a general reflection mechanism
at the origin and a general starting point, cf. Exercise 6.17 and Exercise 6.18.
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7 Introduction to percolation

Let G = (V,E) be an (infinite) graph. Suppose the state of each edge e ∈ E
is encoded by the value ωe ∈ {0, 1}, where ωe = 0 means ‘edge e is closed’
and ωe = 1 means ‘edge e is open’. Once the state ωe of each edge e ∈ E is

specified, the configuration ω = (ωe)e∈E ∈ Ω
def
= {0, 1}E describes the state of

the whole system. The classical Bernoulli bond percolation studies properties
of random configurations ω ∈ Ω under the assumption that ωe ∼ Ber(p) for
some fixed p ∈ [0, 1], independently for disjoint edges e ∈ E. Write Pp for the
corresponding (product) measure in Ω.

Example 7.1 Turn the integer lattice Zd, d ≥ 1, into a graph Ld = (Zd,Ed),
where Ed contains all edges connecting nearest neighbour vertices in Zd (ie.,
those at distance 1). The above construction introduces the Bernoulli bond
percolation model on Ld.

Given a configuration ω ∈ Ω, we say that vertices x and y ∈ V are connected
(written ‘x! y’) if ω contains a path of open edges connecting x and y. Then
the cluster Cx of x is Cx =

{
y ∈ V : y ! x

}
. Let |Cx| be the number of

vertices in the open cluster at x. Then
{
x!∞

}
≡
{
|Cx| =∞

}

is the event ‘vertex x is connected to infinity’, and the percolation probability is

θx(p) = Pp
(
|Cx| =∞

)
= Pp

(
x!∞

)
.

One of the key questions in percolation is whether θx(p) > 0 or θx(p) = 0.

7.1 Bond percolation in Zd

For the bond percolation in Ld = (Zd,Ed) the percolation probability θx(p) does
not depend on x ∈ Zd. One thus writes

θ(p) = Pp
(
|C0| =∞

)
= Pp

(
0!∞

)
; (7.1)

this is also known as the order parameter.

Lemma 7.2 The order parameter θ(p) of the bond percolation model is a non-
decreasing function θ : [0, 1]→ [0, 1] with θ(0) = 0 and θ(1) = 1.

Remark 7.2.1 As will be seen below, a similar monotonicity of the order pa-
rameter θ(p) holds for other percolation models.

By the monotonicity result of Lemma 7.2, the threshold (or critical) value

pcr = inf
{
p : θ(p) > 0

}
(7.2)

is well defined. Clearly, θ(p) = 0 for p < pcr while θ(p) > 0 for p > pcr; this
property is often referred to as the ‘phase transition’ for the percolation model
under consideration. Whether θ(pcr) = 0 is in general a (difficult) open problem.
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Proof of Lemma 7.2. The idea of the argument is due to Hammersley. Let
{
ξe
}
e∈E

be independent with ξe ∼ U [0, 1] for each e ∈ E. Fix p ∈ [0, 1]; then

ωe
def
= 1ξe≤p ∼ Ber(p)

are independent for different e ∈ E. We interpret ωe = ωpe as the indicator of the
event

{
edge e is open

}
.

For 0 ≤ p′ ≤ p′′ ≤ 1, this construction gives ωp
′
e ≤ ωp

′′
e for all e ∈ E, so that

θ(p′) ≡ Pp′
(
0!∞

)
≤ Pp′′

(
0!∞

)
≡ θ(p′′) .

Since obviously θ(0) = 0 and θ(1) = 1, this finishes the proof. �

Example 7.3 For bond percolation on L1 we have pcr = 1.

Solution. Indeed, {0 ! ∞} = A+ ∪ A−, where A± ≡
{
0 ! ±∞}. For p < 1 we

have Pp(0! +∞) ≤ Pp(0! n) ≤ pn → 0 as n → ∞, implying that Pp(A+) = 0.
Since similarly Pp(A−) = 0, we deduce that θ(p) = 0 for all p < 1. �

As the next result claims, the phase transition in the Bernoulli bond perco-
lation model on Ld is non-trivial in dimension d > 1.

Theorem 7.4 For d > 1, the critical probability pcr = p
(d)
cr of the bond perco-

lation on Ld = (Zd,Ed) satisfies 0 < pcr < 1.

Exercise 7.1 (*). In the setting of Theorem 7.4, show that p
(d)
cr ≤ p(d−1)

cr for all
integer d > 1.

Exercise 7.2 (*). Let G = (V,E) be a graph of uniformly bounded degree
deg(v) ≤ r, v ∈ V . Show that the number av(n) of self-avoiding paths of n jumps
starting at v is bounded above by r(r − 1)n−1.

Exercise 7.3 (**). For an infinite planar graph G = (V,E), its dual G∗ =
(V ∗, E∗) is defined by placing a vertex in each face of G, with vertices u∗ and
v∗ ∈ V ∗ connected by a dual edge if and only if the faces corresponding to u∗ and
v∗ share a common boundary edge in G. If G∗ has a uniformly bounded degree
r∗, show that the number cv(n) of dual self-avoiding contours of n jumps around
v ∈ V is bounded above by nr∗(r∗ − 1)n−1.

Exercise 7.4 (**). For fixed A > 0 and r ≥ 1 find x > 0 small enough so that
A
∑
n≥1 nr

nxn < 1.

By the result of Exercise 7.1, the claim of Theorem 7.4 follows immediately
from the following two observations.

Lemma 7.5 For each integer d > 1 we have p
(d)
cr ≥ 1

2d−1 > 0.

Lemma 7.6 There exists p < 1 such that p
(2)
cr ≤ p < 1.
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Proof of Lemma 7.5. For integer n ≥ 1, let An be the event ‘there is an open self-
avoiding path of n edges starting at 0’. Using the result of Exercise 7.2, we get

θ(p) ≤ Pp
(
An
)
≤ a0(n)pn ≤ 2d

2d−1

(
(2d− 1)p

)n → 0

as n→∞ if only (2d− 1)p < 1. Hence the result. �

Proof of Lemma 7.6. The idea of the argument is due to Peierls. We start by noticing
that by construction of Exercise 7.3 the square lattice is self-dual (where the bold
edges belong to L2 and the thin edges belong to its dual):

Figure 1: Left: self-duality of the square lattice Z2. Right: an open dual contour
(thin, red online) separating the open cluster at 0 (thick, blue online) from ∞.

If the event {0!∞} does not occur, there must be a dual contour separating 0 from
infinity, each (dual) edge of which is open (with probability 1−p). Let Cn be the event
‘there is an open dual contour of n edges around the origin’. By Exercise 7.3, we have
Pp
(
Cn
)
≤ c0(n) (1− p)n ≤ 4

3
n
(
3(1− p)

)n
for all n ≥ 1. Using the subadditive bound

in
{
0!∞}c ⊆ ∪n≥1Cn together with the estimate of Exercise 7.4, we deduce that

1− θ(p) ≡ Pp
({

0!∞}c) < 1

if only 3(1− p) > 0 is small enough. Hence, there is p′ < 1 such that θ(p) > 0 for all

p ∈ (p′, 1], implying that p
(2)
cr ≤ p′ < 1, as claimed. �

Further examples of dual graphs are in Fig. 2 below.

Figure 2: Left: triangular lattice (bold) and its dual hexagonal lattice (thin);
right: hexagonal lattice (bold) and its dual triangular lattice (thin).

Exercise 7.5 (**). For bond percolation on the triangular lattice (see Fig. 2,
left), show that its critical value pcr is non-trivial, 0 < pcr < 1.

Exercise 7.6 (**). For bond percolation on the hexagonal (or honeycomb) lattice
(see Fig. 2, right), show that its critical value pcr is non-trivial, 0 < pcr < 1.
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7.2 Bond percolation on trees

Percolation on regular trees is easier to understand due to their symmetries.
We start by considering bond percolation on a rooted tree Rd of index d > 2, in
which every vertex different from the root has exactly d neighbours; see Fig. 3
showing a finite part of the case d = 3.

root

r

level 1

level 2

level 3
level 4

Figure 3: A rooted tree R3 (left) and a homogeneous tree T3 (right) up to level 4.

Fix p ∈ (0, 1) and let every edge in Rd be open with probability p, indepen-
dently of states of all other edges. Further, write θr(p) = Pp(r ! ∞) for the
percolation probability of the bond model on Rd. We have

Lemma 7.7 The critical bond percolation probability on Rd is pcr = 1/(d− 1).

Exercise 7.7 (**). Consider the function f(x) = (1 − p) + pxd−1. Show that
f( · ) is increasing and convex for x ≥ 0 with f(1) = 1. Further, let 0 < x∗ ≤ 1
be the smallest positive solution to the fixed point equation x = f(x). Show that
x∗ < 1 if and only if (d− 1)p > 1.

Proof. Let ρn = Pp
(
{r ! level n}c

)
be the probability that there is no open path

connecting the root r to a vertex at level n. We obviously have ρ1 = 1 − p, and for
k > 1 the total probability formula gives

ρk = (1− p) + p
(
ρk−1

)d−1 ≡ f(ρk−1) ,

where f(x) = (1− p) + pxd−1 is the function from Exercise 7.7. Notice that

0 < ρ1 = 1− p < ρ2 = f(ρ1) < 1 ,

which by a straightforward induction implies that (ρn)n≥1 is an increasing sequence
of real numbers in (0, 1). Consequently, ρn converges to a limit ρ̄ ∈ (0, 1] such that
ρ̄ = f(ρ̄). Clearly, ρ̄ is the smallest positive solution to the fixed point equation
x = f(x). By Exercise 7.7,

ρ̄ = lim
n→∞

ρn ≡ 1− θr(p)

is smaller than 1 (equivalently, θr(p) > 0) iff (d− 1)p < 1. �

An infinite homogeneous tree Td of index d > 2 is a tree every vertex of
which has index d. One can think of Td as a union of d rooted trees with
common root, see Fig. 3 (right).

Exercise 7.8 (**). Show that the critical bond percolation probability on Td is
pcr = 1/(d− 1).
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7.3 Directed percolation

The directed (or oriented) percolation is defined on the graph
→
Ld which is the

restriction of Ld to the subgraph whose vertices have non-negative coordinates
while the inherited edges are oriented in the increasing direction of their coor-

dinates. In two dimensions
→
L2 thus becomes the ‘north-east’ graph, see Fig. 4.

Figure 4: Left: a finite directed percolation configuration in
→
L2. Right: its clus-

ter at the origin (thick, blue online) and the corresponding separating countour;
blocking dual edges are thick (red online).

For fixed p ∈ [0, 1] declare each edge in
→
Ld open with probability p (and

closed otherwise), independently for all edges in
→
Ld. Let

→
C0 be the collection of

all vertices that may be reached from the origin along paths of open bonds (the
blue cluster in Fig. 4). We define the percolation probability of the oriented
model by

→
θ (p) = Pp

(
|
→
C0 | =∞

)

and the corresponding critical value by

→
p cr (d) = inf

{
p :
→
θ (p) > 0

}
.

As for the bond percolation, one can show that
→
θ (p) is a non-decreasing function

of p ∈ [0, 1], see Exercise 7.9; hence,
→
p cr (d) is well defined.

Exercise 7.9 (**). Show that
→
θ : [0, 1]→ [0, 1] is a non-decreasing function with

→
θ (0) = 0 and

→
θ (1) = 1.

As for the bond percolation on Ld, the phase transition for the oriented

percolation on
→
Ld is non-trivial:

Theorem 7.8 For d > 1, we have 0 <
→
p cr (d) < 1.

Exercise 7.10 (**). Show that for all d ≥ 1, we have pcr(d) ≤→p cr (d).

Exercise 7.11 (**). Show that for all d > 1, we have
→
p cr (d) ≤→p cr (d− 1).
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Exercise 7.12 (**). Use the path counting idea of Lemma 7.5 to show that for

all d > 1 we have
→
p cr (d) > 0.

In view of Exsercies 7.10–7.12, we have 0 <
→
p cr (d) ≤→p cr (2) ≤ 1. To finish

the proof of Theorem 7.8, it remains to show that
→
p cr (2) < 1.

As in the (unoriented) bond case, if the cluster
→
C0 is finite, there exists a

dual contour separating it from infinity, see Fig. 4; we orient it in the anticlock-
wise direction. Notice that each (dual) bond of the separating contour going
northwards or westwards intersects a (closed) bond of the original model. Such
blocking dual edges are thick (red online) in Fig. 4; it is easy to see that each
closing contour of length 2n has exactly n such bonds (indeed, since the contour
is closed, it must have equal numbers of eastwards and westwards going bonds;
similarly, for vertical edges).

Let
→
Cn be the event that there is an open dual contour of length n separating

the origin from infinity. Notice that
{
|
→
C0 | <∞

}
⊂ ∪n≥1

→
Cn.

Exercise 7.13 (**). Let
�
c 0(k) be the number of dual contours of length k

around the origin separating the latter from infinity. Show that
�
c 0(k) ≤ k3k−1.

The standard subadditive bound now implies

1−
→
θ (p) = Pp

(
|
→
C0 | <∞

)
≤
∑

n≥1

�
c 0(2n) (1− p)n ,

as each separating dual contour has an even number of bonds and exactly half of
them are necessarily open (with probability 1−p). As in the proof of Lemma 7.6,
we deduce that the last sum is smaller than 1 for some p′ < 1. This implies that
→
p cr (2) ≤ p′ < 1, as claimed. This finishes the proof of Theorem 7.8.

7.4 Site percolation in Zd
In this section we generalise the previous ideas to site percolation in Zd; it is entirely

optional and will not be examined.
The site percolation in Zd can be defined similarly. Given p ∈ [0, 1], the vertices are

declared ‘open’ with probability p, independently of each other. Once all non-‘open’ vertices
are removed together with their edges, the configuration decomposes into clusters, similarly
to the bond model. As before, one is interested in

θsite(p) ≡ Pp
(
0

site!∞
)
,

the probability that the cluster at the origin is infinite. A similar global coupling shows that
the function θsite(p) is non-decreasing in p ∈ [0, 1], so it is natural to define the critical value
for the site percolation via

psite
cr = inf

{
p : θsite(p) > 0

}
. (7.3)

The phase transition is again non-trivial in dimension d > 1:

Theorem 7.9 Let pd,site
cr be the critical value of the site percolation in Zd as defined in (7.3).

We then have 0 < pd,site
cr < 1 for all d > 1.

The argument for the lower bound is easy:
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Exercise 7.14 (**). Show that pd,site
cr ≤ pd−1,site

cr for all d > 1, while pd,site
cr ≥ 1

2d−1
for fixed

d > 1, cf. Lemma 7.5.

To finish the proof of Theorem 7.9 we just need to show that p2,site
cr < 1. To this end,

notice that if an open cluster C0 ⊂ Z2 of the origin is finite, its external boundary,

∂extC0
def
=
{
y ∈ Z2 \ C0 : ∃x ∈ C0 with x ∼ y

}
,

where x, y ∈ Z2 are neigbours (denoted x ∼ y) if they are at Euclidean distance one (equiv-
alently, connected by an edge in L2).

Figure 5: Site cluster at the origin (thick, blue online) and its separating contour
(thin, red online).

Argueing as above, it is easy to see that the number c0(n) of contours of length n separat-
ing the origin from infinity is not bigger than 5n ·7n−1. Consequently, the event Cn that ‘there
is a separating contour of n sites around the origin’ has probability Pp(Cn) ≤ c0(n)(1 − p)n ≤
5n
7

(
7(1− p)

)n
, so that

1− θsite(p) ≡ Pp
({

0
site!∞

}c)
< 1

for all (1 − p) > 0 small enough. This implies that p2,site
cr < 1, and thus finishes the proof of

Theorem 7.9.

Exercise 7.15 (**). Carefully show that the number c0(n) of contours of length n separating
the origin from infinity is not bigger than 5n · 7n−1.

7.5 Additional problems

Exercise 7.16 (**). Show that the critical site percolation probability on Rd is pcr = 1/(d− 1).

Exercise 7.17 (**). Show that the critical site percolation probability on Td is pcr = 1/(d−1).

Exercise 7.18 (****). In the setting of Exercise 7.2, let bv(n) be the number of connected
subgraphs of G on exactly n vertices containing v ∈ V . Show that for some positive A and R,
bv(n) ≤ ARn.

Exercise 7.19 (****). Consider the Bernoulli bond percolation model on an infinite graph
G = (V,E) of uniformly bounded degree, cf. Exercise 7.2. If p > 0 is small enough, show that for
each v ∈ V the distribution of the cluster size |Cv | has exponential moments in a neighbourhood
of the origin.

For many percolation models, the property in Exercise 7.19 is known to hold for all p < pcr.
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