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1 Sequences of events and their limits

1.1 Monotone sequences of events

Sequences of events arise naturally when a probabilistic experiment is repeated
many times. For example, if a coin is flipped consecutively, the “event” 3

A =
{

‘heads’ never seen
}

is just the intersection, A = ∩n≥1An, of the events

An =
{

‘heads’ not seen in the first n tosses
}
.

This simple remark leads to the following important observations: 1) taking
countable operations is not that exotic in probabilistic models, and thus any
reasonable theory should deal with σ-fields; b) the event A is in some sense
the limit of the sequence (An)n≥1, so understanding limits of sequences of sets
(events) might be useful.

In general, finding a limit of a sequence of sets is not easy and we will not
do this here. 4 Instead, we will mostly consider monotone sequences of events.

Definition 1.1.b A sequence (An)n≥1 of events is increasing if An ⊂ An+1 for all
n ≥ 1. It is decreasing if An ⊃ An+1 for all n ≥ 1.

Example 1.2. If (An)n≥1 is a sequence of arbitrary events, then the sequence
(Bn)n≥1 with Bn = ∪nk=1Ak is increasing, whereas the sequence (Cn)n≥1 with
Cn = ∩nk=1Ak is decreasing.

The following result shows that the probability measure is continuous along
monotone sequences of events.

Lemma 1.3.b If (An)n≥1 is increasing with A = limnAn = ∪n≥1An, then

P(A) = P
(

lim
n→∞

An
)

= lim
n→∞

P(An) .

If (An)n≥1 is a decreasing sequence with A = limnAn = ∩n≥1An, then

P(A) = P
(

lim
n→∞

An
)

= lim
n→∞

P(An) .

Remark 1.3.1. If (An)n≥1 is not a monotone sequence of events, the claim of
the lemma is not necessarily true (find a counterexample!).

Proof. Let (An)n≥1 be increasing with A = ∪n≥1An. Denote C1 = A1 and, for n ≥ 2,
put Cn = An \An−1 = An ∩Ac

n−1. We then have (why?) 5

An =
n⋃

k=1

Ak =
n⋃

k=1

Ck ,
∞⋃

k=1

Ak =
∞⋃

k=1

Ck .

3Apriori we do not know that A is an event, ie, can be assigned probability to!
4 The corresponding theory is the subject of ‘pure’ courses such as set theory or (real)

analysis/measure theory; if interested, have a look at problems E26–E28 and/or get in touch!
5Decompositions in the form An =

⋃n
k=1

(
Ak \(∪k−1

m=1Am)
)

are often called telescopic; they
are analogous to those in sequential Bayes formulae.
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Since the events in (Ck)k≥1 are mutually incompatible, the σ-additivity property P3
of the probability measure gives

P(A) = P
(⋃

k≥1

Ak
)

= P
(⋃

k≥1

Ck
)

=
∑

k≥1

P
(
Ck
)
≤ 1

and therefore

0 ≤ P(A)− P(An) = P
(
A \An

)
= P

(⋃

k>n

Ck
)

=
∑

k>n

P(Ck)→ 0

as n→∞, as a tail sum of a convergent series
∑
k≥1 P

(
Ck
)
.

A similar argument holds for decreasing sequences (do this!).

Example 1.4. A standard six-sided die is tossed repeatedly. Let N1 denote
the total number of ones observed. Assuming that the individual outcomes are
independent, show that P(N1 =∞) = 1.

Solution. We show that P(N1 < ∞) = 0. First, notice that {N1 < ∞} = ∪n≥1Bn
with Bn =

{
no ‘ones’ after nth toss

}
, so it is enough to show that P(Bn) = 0 for all n.

However, Bn = ∩m>0Cn,m with Cn,m =
{

no ‘one’ on tosses n+ 1, . . .n+m
}

being a
decreasing sequence, Cn,m ⊃ Cn,m+1 for all m ≥ 1. Since P(Cn,m) = (5/6)m → 0 as
m→∞, Lemma 1.3.1 implies P(Bn) = limm→∞ P(Cn,m) = 0, as requested.

Example 1.5. Let X be a positive random variable with P(X <∞) = 1. For
k ≥ 1, denote Xk = 1

kX. Show that the event A(ε) ≡
{
|Xk| > ε finitely often

}

satisfies P
(
A(ε)

)
= 1 for every ε > 0.

Solution. Let Ω0 = {ω ∈ Ω : X(ω) < ∞} be the event ‘X is finite’; by assumption,
P(Ω0) = 1. Consider the events Bk = {|Xk| > ε} = {ω : |X(ω)| > kε}. Since the
random variables Xk form a pointwise decreasing sequence, namely

∀ω ∈ Ω , Xk(ω) ≥ Xk+1(ω) for all k ≥ 1 ,

the events Bk are decreasing (ie., Bk ⊃ Bk+1 for all k ≥ 1) towards {X = ∞}, we
deduce that A(ε) =

{
Bk finitely often

}
≡ Ω0.

Remark 1.5.1. The previous argument shows that the event {ω : Xk(ω)→ 0}
coincides with ∩ε>0A(ε) ≡ Ω0; in other words, the sequence of random variables
Xk converges (to zero) with probability one (or almost surely), P(Xk → 0) = 1.

1.2 Borel-Cantelli lemma

Let (Ak)k≥1 be an infinite sequence of events from some probability space(
Ω,F ,P

)
. One is often interested in finding out how many of the events An oc-

cur. 6 The event that infinitely many of the events An occur, written
{
An i.o.

}

or
{
An infinitely often

}
, is

{
An i.o.

}
=
⋂

n≥1

∞⋃

k=n

Ak . (1.1)

6 Eg., some results in Number Theory about rational approximations of irrational numbers
are formulated in a form similar to Lemma 1.6!
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The next result is very important for applications. Its proof uses the intrinsic
monotonicity structure of the definition (1.1).

Lemma 1.6 (Borel-Cantelli lemma).b Let A = ∩n≥1 ∪∞k=n Ak be the event that
infinitely many of the An occur. Then:

a) If
∑
k P(Ak) < ∞, then P(A) = 0, ie., with probability one only finitely

many of the Ak occur.

b) If
∑
k P(Ak) =∞ and A1, A2, . . . are independent events, then P(A) = 1.

Remark 1.6.1. The independence condition in part b) above cannot be relaxed.
Otherwise, let An ≡ E for all n ≥ 1, where E ∈ F satisfies 0 < P(E) < 1 (and
thus the events Ak are not independent). Then A = E and P(A) = P(E) 6= 1.

Remark 1.6.2. An even more interesting counterexample to part b) without
the independence property can be constructed as follows (do this!):

Z Let X be a uniform random variable on (0, 1), write X ∼ U(0, 1). For n ≥ 1,

consider the event An =
{
X < 1/n

}
. It is easy to see that A =

{
An i.o.

}
= ∅,

so that one can have
∑
n P(An) =∞ together with P(A) = P(An i.o.) = 0.

Example 1.7 (Infinite monkey theorem). By the second Borel-Cantelli
lemma, Lemma 1.6b), a monkey hitting keys at random on a typewriter key-
board for an infinite amount of time will almost surely (ie., with probability one)
type any particular chosen text, such as the complete works of William Shake-
speare (and, in fact, infinitely many copies of the chosen text).
Idea of the argument. Suppose that the typewriter has 50 keys, and the word to be

typed is ‘banana’. The chance that the first letter typed is b is 1/50, as is the chance

that the second letter is a, and so on. These events are independent, so the chance of

the first six letters matching ‘banana’ is 1/506. For the same reason the chance that

the next six letters match ‘banana’ is also 1/506, and so on.

Now, the chance of not typing ‘banana’ in each block of six letters is 1−1/506. Because

each block is typed independently, the chance of not typing ‘banana’ in any of the first

n blocks of six letters 7 is p = (1− 1/506)n. If we were to count occurences of ‘banana’

that crossed blocks, p would approach zero even more quickly. 8 Finally, once the first

copy of the word ‘banana’ appears, the process starts afresh independently of the past,

so that the probability of obtaining the second copy of the word ‘banana’ within the

same number of blocks is still p etc.; the result now follows from Lemma 1.6.

Of course, the same argument applies if the monkey were typing any other string of

characters of finite length, eg., your favourite novel. 9

7 As n grows, p gets smaller. For n = 106, p is more than 99.99%, but for n = 1010 the
probability p is about 52.73% and for an n = 1011 it is about 0.17%. As n goes to infinity,
the probability p can be made as small as one likes.

8 Using the theory of Markov chains, discussed later in the course, you should be able to
show that the expected hitting time of the word ‘banana’ is exactly 506 ≈ 1.5625 · 1010.

9 You can use the R script available from the course webpage to explore sequences of
different length and/or different typewriters.
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Remark 1.7.1.Z By using an appropriate monotone approximation, one can de-
duce the result as in Example 1.4, without explicitly using the Borel-Cantelli
lemma. Moreover, the same argument can be extended to the situations, when
the probability pn of typing ‘banana’ in the nth block of six letters varies with
n, but remains uniformly positive, ie., pn ≥ δ > 0 for all n ≥ 1. The true power
of the lemma is seen in the situations when pn → 0 slowly enough to have∑
n pn =∞ (provided the events in different blocks are independent).

Proof of Lemma 1.6. a) For every n ≥ 1, let Bn
def
= ∪∞k=nAk be the event that at least

one of Ak with k ≥ n occurs. Since A ⊂ Bn for all n ≥ 1, we have

P(A) ≤ P(Bn) ≤
∞∑

k=n

P(Ak)→ 0

as n→∞, whenever
∑
k P(Ak) <∞.

b) The event Ac =
{
An occur finitely often

}
is related to the sequence

Bc
n = ∩∞k=nAc

k ≡
{

none of Ak, k ≥ n, occurs
}

via

Ac =
⋃

n

∞⋂

k=n

Ac
k =

⋃

n

Bc
n ,

so it is sufficient to show that P(Bc
n) = 0 for all n ≥ 1. By independence and the

elementary inequality 1− x ≤ e−x with x ≥ 0, we get

P
( m⋂

k=n

Ac
k

)
=

m∏

k=n

P
(
Ac
k

)
=

m∏

k=n

(
1− P

(
Ak
))
≤ exp

{
−

m∑

k=n

P(Ak)
}

so that

P
(
Bc
n

)
= lim
m→∞

P
( m⋂

k=n

Ac
k

)
≤ exp

{
−
∞∑

k=n

P(Ak)
}

= 0 ,

as the sum diverges.

Example 1.8. A standard six-sided die is tossed repeatedly. Let Nk denote the
total number of tosses when face k was observed. Assuming that the individual
outcomes are independent, show that

P(N1 =∞) = P(N2 =∞) = P(N1 =∞, N2 =∞) = 1 .

Solution. Equalities P(N1 =∞) = P(N2 =∞) = 1 can be derived as in Example 1.4,
so that the intersection event {N1 =∞, N2 =∞} has probability one.

Alternatively, we derive the first equality from the Borel-Cantelli lemma. To this
end, fix k ∈ {1, 2, . . . , 6} and denote Akn =

{
nth toss shows k

}
. For different n, the

events Akn are independent and have the same probability 1/6. Since
∑
n P(Akn) =∞,

the Borel-Cantelli lemma implies that the event
{
Nk = ∞

}
≡
{
Akn infinitely often

}

has probability one. The remaining claims now follow as indicated above.

Example 1.9. A coin showing ‘heads’ with probability p is tossed repeatedly.
With Xn denoting the result of the nth toss, let Cn = {Xn = T, Xn−1 = H}.
Show that P(Cn i.o. ) = 1.
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Solution. We have
{
C2n i.o.

}
⊂
{
Cn i.o.

}
, where P(C2n) ≡ pq and C2n are indepen-

dent. The result follows from Lemma 1.6b) (or via monotone approximation).

The Borel-Cantelli lemma is often used, when one needs to describe long-
term behaviour of sequences of random variables.

Example 1.10. Let (Xk)k≥1 be i.i.d. random variables with common exponen-
tial distribution of mean 1/λ, i.e., P

(
X1 > x

)
= e−λx for all x ≥ 0. One can

show that Xn grows like 1
λ log n, more precisely, that 10

P
(
lim sup
n→∞

Xn
logn = 1

λ

)
= 1 .

Solution. For ε > 0, denote

Aεn
def
=
{
ω : Xn(ω) > 1+ε

λ
logn

}
, Bεn

def
=
{
ω : Xn(ω) > 1−ε

λ
logn

}
.

We clearly have P
(
Aεn
)

= n−(1+ε) and P
(
Bεn
)

= n−(1−ε). Since
∑
n P(Aεn) < ∞,

by Lemma 1.6a) the event
{
Aεn infinitely often

}
has probability zero. Similarly, the

events Bεn are independent and
∑
n P(Bεn) = ∞, thus, by Lemma 1.6b), the event{

Bεn infinitely often
}

has probability one.

Remark 1.10.1. (Records) A slightly more general version of the argument
from Example 1.10 helps to control the limiting behaviour of records: 11

Let (Xk)k≥1 be i.i.d. exponential r.v. with distribution P(Xk > x) = e−x, and

let Mn
def
= max1≤k≤nXk. Then P(Mn/(log n) → 1) = 1, ie., the normalized

maximum Mn/(log n) converges to one almost surely (as n→∞).

Example 1.11. Let random variables (Xn)n≥1 be i.i.d. with X1 ∼ U [0, 1]. For
α > 0, we have P

(
Xn > 1− n−α

)
= n−α, so that P

(
Xn > 1− n−α i.o.

)
= 1 iff

α ≤ 1. A similar analysis shows that

P
(
Xn > 1− 1

n(log n)β
i.o.

)
=

{
1 , β ≤ 1 ,

0 , β > 1 .

Lemma 1.6 is one of the main methods of proving almost sure convergence:

Example 1.12. If (Xk)k≥1 is a sequence of random variables such that for
every ε > 0 the event A(ε) ≡

{
|Xk| > ε finitely often

}
has probability one,

then Xk is said to converge to zero with probability one, recall Remark 1.5.1.
A simple example is with Xk = 1

kX for a variable X ≥ 0 of finite mean,
EX <∞. One then can show that

∑
k≥1 P(|Xk| > ε) =

∑
k≥1 P(X > kε) <∞,

and thus the result follows from Lemma 1.6, see also Lemma 2.15 below.

10 Recall that for a real sequence (an)n≥1 one defines lim sup
n→∞

an as the largest limiting

point of the sequence (an)n≥1, equivalently, lim sup
n→∞

an ≡ lim
n→∞

supk≥n ak, see App. A below.

11 Similar results hold for other distributions, see page E6 in the Problems Sheets.
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