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Markov Chains

A random process X is a family {Xt : t ∈ T} of random variables
indexed by some set T . When T = {0, 1, 2, . . . } one speaks about
a ‘discrete-time’ process, for T = R or T = [0,∞) one has a
‘continuous-time’ process.

Let (Ω,F ,P) be a probability space and let {X0,X1, . . . } be a
sequence of random variables which take values in some countable
set S , called the state space. We assume that each Xn is a
discrete random variable which takes one of N possible values,
where N = |S | (N may equal +∞).
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Markov property

Def.5.1: The process X is a Markov chain if it has the Markov
property:

P(Xn+1 = xn+1 |X0 = x0,X1 = x1, . . . ,Xn = xn)

= P(Xn+1 = xn+1 |Xn = xn)
(5.1)

for all n ≥ 1 and all x0, x1, . . . , xn+1 ∈ S .

With n being the ‘present’ and n + 1 a ‘future’ moment of time,
the Markov property (5.1) says :

“given the present value of a Markov chain,
its future behaviour does not depend on the past”.
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Remark : It is straightforward to check that the Markov property
(5.1) is equivalent to the following statement:

for each s ∈ S and every sequence {xk : k ≥ 0} in S,

P(Xn+m = s |X0 = x0,X1 = x1, . . . ,Xn = xn)

= P(Xn+m = s |Xn = xn)

for any m, n ≥ 0.
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The evolution of a Markov chain is described by its ‘initial
distribution’

µ0
k

def
= P(X0 = k)

and its ‘transition probabilities’

P(Xn+1 = j |Xn = i) ;

it can be quite complicated in general since these probabilities
depend upon the three quantities n, i , and j .

We shall restrict our attention to the case when they do not
depend on n but only upon i and j .
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Def.5.2: A Markov chain X is called homogeneous if

P(Xn+1 = j |Xn = i) ≡ P(X1 = j |X0 = i)

for all n, i , j . The transition matrix P = (pij) is the |S | × |S |
matrix of transition probabilities

pij = P(Xn+1 = j |Xn = i) .

In what follows we shall only consider homogeneous Markov
chains.
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The next claim characterizes transition matrices.

Theorem 5.3: The transition matrix P is a stochastic matrix,
which is to say that

a) P has non-negative entries, pij ≥ 0;

b) P has row sums equal to one,
∑

j pij = 1.
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Bernoulli process

Example 5.4: Let S = {0, 1, 2, . . . } and define the Markov chain
Y by Y0 = 0 and

P(Yn+1 = s + 1 |Yn = s) = p , P(Yn+1 = s |Yn = s) = 1− p ,

for all n ≥ 0, where 0 < p < 1.

You may think of Yn as the number of heads thrown in n tosses of
a coin.
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Simple random walk

Example 5.5: Let S = {0,±1,±2, . . . } and define the Markov
chain X by X0 = 0 and

pij =


p, if j = i + 1,

q = 1− p, if j = i − 1,

0, otherwise.
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Ehrenfest chain

Example 5.6: Let S = {0, 1, . . . , r} and put

pk,k+1 =
r − k

r
, pk,k−1 =

k

r
, pij = 0 otherwise .

In words, there is a total of r balls in two urns; k in the first and
r − k in the second. We pick one of the r balls at random and
move it to the other urn.

Ehrenfest used this to model the division of air molecules between
two chambers (of equal size and shape) which are connected by a
small hole.
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Birth and death chains

Example 5.7: Let S = {0, 1, 2, . . . , }. These chains are defined
by the restriction pij = 0 when |i − j | > 1 and, say,

pk,k+1 = pk , pk,k−1 = qk , pkk = rk

with q0 = 0.

The fact that these processes cannot jump over any integers makes
their analysis particularly simple.
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Def.5.8: The n-step transition matrix Pn =
(
pij(n)

)
is the

matrix of n-step transition probabilities

pij(n) ≡ p
(n)
ij

def
= P(Xm+n = j |Xm = i) .

Of course, P1 = P.
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Chapman-Kolmogorov equations

Theorem 5.9: We have

pij(m + n) =
∑
k

pik(m) pkj(n) .

Hence Pm+n = Pm Pn, and so Pn = Pn ≡ (P)n, the n-th power of
the transition matrix P.
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Proof
Using the identity

P(A ∩ B |C ) = P(A |B ∩ C ) P(B |C )

and the Markov property, we get

pij(m + n) = P(Xm+n = j |X0 = i)

=
∑
k

P(Xm+n = j ,Xm = k |X0 = i)

=
∑
k

P(Xm+n = j |Xm = k ,X0 = i) P(Xm = k |X0 = i)

=
∑
k

P(Xm+n = j |Xm = k) P(Xm = k |X0 = i)

=
∑
k

pkj(n) pik(m) =
∑
k

pik(m) pkj(n) .



Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility *

Let µ
(n)
i

def
= P(Xn = i), i ∈ S , be the mass function of Xn; we write

µ(n) for the row vector with entries (µ
(n)
i : i ∈ S).

Lemma 5.10: We have

µ(m+n) = µ(m) Pn ,

and hence
µ(n) = µ(0) Pn .
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Example 5.11: Consider the three-state Markov chain with the
transition matrix

P =

 0 1 0
0 2/3 1/3

1/16 15/16 0

 .

Find a general formula for p
(n)
11 .
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General method

To find a formula for p
(n)
ij for any M-state chain and any states i , j :

a) Compute the eigenvalues λ1, λ2, . . . , λM of P by solving the
characteristic equation;

b1) If the eigenvalues are distinct then p
(n)
ij has the form

p
(n)
ij = a1

(
λ1

)n
+ · · ·+ aM

(
λM
)n

for some constants a1, . . . , aM (depending on i and j).

b2) If an eigenvalue λ is repeated (once, say) then the general form
includes the term (a1 + a2n)λn.

b3) As roots of a polynomial with real coefficients, complex eigenvalues
will come in conjugate pairs and these are best written using cosϕ
and sinϕ, ie., for the eigenvalues λ1,2 = r e±iϕ use
rn
(
a1 cos(nϕ) + a2 sin(nϕ)

)
.
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Class structure

Def.5.12: We say that state i leads to state j and write i → j if

Pi (Xn = j for some n ≥ 0)

≡ P
(
Xn = j for some n ≥ 0 |X0 = i) > 0 .

We say that state i communicates with state j and write i ↔ j if
both i → j and j → i .
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Theorem 5.13: For distinct states i and j the following are
equivalent:

a) i → j ;

b) pi0i1pi1i2 . . . pin−1in > 0 for some states i0 ≡ i , i1, i2, . . . , in−1,
in ≡ j ;

c) p
(n)
ij > 0 for some n ≥ 0.



Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility *

Remark : It is clear from b) that i → j and j → k imply i → k .
Also, i → i for any state i .

So the communication relation ↔ satisfies the conditions for an
equivalence relation on S and thus partitions S into
communicating classes.
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Def.5.14: We say that a class C is closed if

i ∈ C , i → j =⇒ j ∈ C .

In other words, a closed class is one from which there is no escape.
A state i is absorbing if {i} is a closed class.

Exercise 5.15: Show that every transition matrix on a finite
state space has at least one closed communicating class.

Find an example of a transition matrix with no closed
communicating classes.
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Def.5.16: A Markov chain or its transition matrix P is called
irreducible if its state space S forms a single communicating class.

Example 5.17: Find the communicating classes associated to the
stochastic matrix

P =



1/2 1/2 0 0 0 0
0 0 1 0 0 0

1/3 0 0 1/3 1/3 0
0 0 0 1/2 1/2 0
0 0 0 0 0 1
0 0 0 0 1 0

 .
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Def.5.18: The period d(i) of a state i is defined by

d(i) = gcd
{
n > 0 : p

(n)
ii > 0

}
,

the greatest common divisor of the epochs at which return is

possible (ie., p
(n)
ii = 0 unless n is a multiple of d(i)).

We call i periodic if d(i) > 1 and aperiodic if d(i) = 1.

Lemma 5.19: If states i and j are communicating, then i and j
have the same period.
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Example 5.20: It is easy to see that both the simple random
walk (Example 5.6) and the Ehrenfest chain (Example 5.7) have
period 2.

On the other hand, the birth and death process (Example 5.8) with
all pk ≡ pk,k+1 > 0, all qk ≡ pk,k−1 > 0 and at least one rk ≡ pkk
positive is aperiodic (however, if all rkk vanish, the birth and death
chain has period 2).
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Hitting times and absorption probabilities

Example 5.21: A man is saving up to buy a new car at a cost of
N units of money. He starts with k (0 < k < N) units and tries to
win the remainder by the following gamble with his bank manager.
He tosses a coin repeatedly; if the coin comes up heads then the
manager pays him one unit, but if it comes up tails then he pays
the manager one unit. The man plays this game repeatedly until
one of two events occurs: either he runs out of money and is
bankrupt or he wins enough to buy the car.

What is the probability that he is ultimately bankrupt?
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Def.5.22: Let (Xn)n≥0 be a Markov chain with transition
matrix P. The hitting time of a subset A ⊂ S is the random
variable HA : Ω→ {0, 1, 2, . . . } ∪ {∞} given by

HA(ω)
def
= inf

{
n ≥ 0 : Xn(ω) ∈ A

}
(5.3)

where we agree that the infimum over the empty set ∅ is ∞.

The probability starting from i that (Xn)n≥0 ever hits A is

hAi
def
= Pi (H

A <∞) ≡ P
(
HA <∞|X0 = i

)
.

When A is a closed class, hAi is called the absorption probability.
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Example 5.23: Consider the chain on {1, 2, 3, 4} with the
following transition matrix:

P =


1 0 0 0

1/2 0 1/2 0
0 1/2 0 1/2
0 0 0 1

 .

Starting from 2, what is the probability of absorption in 4?
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Theorem 5.24: Fix A ⊂ S. The vector of hitting probabilities
hA ≡ (hAi : i ∈ S) solves the following system of linear equations:{

hAi = 1 , for i ∈ A,

hAi =
∑

j∈S pij h
A
j , for i ∈ Ac.

(5.5)
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One can show that hA = (hAi : i ∈ S) is the smallest
non-negative solution to (5.5),{

hAi = 1 , for i ∈ A,

hAi =
∑

j∈S pij h
A
j , for i ∈ Ac.

in that if x = (xi : i ∈ S) is another solution to (5.5) with xi ≥ 0
for all i ∈ S , then xi ≥ hAi for all i ∈ S .

This property is especially useful if the state space S is infinite.
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Gambler’s ruin

Example 5.25: Imagine the you enter a casino with a fortune of
£i and gamble, £1 at a time, with probability p of doubling your
stake and probability q of losing it. The resources of the casino are
regarded as infinite, so there is no upper limit to your fortune.
What is the probability that you leave broke?

In other words, consider the Markov chain on {0, 1, 2, . . . } with the
transition probabilities

p00 = 1 , pk,k+1 = p , pk,k−1 = q (k ≥ 1)

where 0 < p = 1− q < 1. Find hi = Pi (H
{0} <∞).
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It is often useful to know the expected time before absorption,

kAi
def
= Ei

(
HA
)
≡ E

(
HA |X0 = i

)
=
∑
n<∞

nPi (H
A = n) +∞ · Pi (H

A =∞) .
(5.6)

Example 5.23 [cont’d]: Assuming that X0 = 2, find the mean
time until the chain is absorbed in states 1 or 4.
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Theorem 5.26: Fix A ⊂ S. The vector of mean hitting times
kA ≡ (kAi , i ∈ S) is the minimal non-negative solution to the
following system of linear equations:{

kAi = 0 , for i ∈ A,

kAi = 1 +
∑

j∈S pij k
A
j , for i ∈ Ac.
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Recurrence and transience

Let Xn, n ≥ 0, be a Markov chain with a discrete state space S .

Def.5.27: State i is called recurrent if, starting from i the chain
eventually returns to i with probability 1, ie.,

P
(
Xn = i for some n ≥ 1 |X0 = i

)
= 1 .

State i is called transient if this probability is smaller than 1.
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If j ∈ S , the first passage time to state j for Xn is

Tj = inf
{
n ≥ 1 : Xn = j

}
. (5.8)

Consider

f
(n)
ij

def
= P

(
X1 6= j ,X2 6= j , . . . ,Xn−1 6= j ,Xn = j |X0 = i

)
,

the probability of the event “the first visit to state j , starting from
i , takes place at nth step”, ie., Pi

(
Tj = n

)
. Then

fij =
∞∑
n=1

f
(n)
ij ≡ Pi

(
Tj <∞

)
is the probability that the chain ever visits j, starting from i .

Of course, state j is recurrent iff

fjj =
∞∑
n=1

f
(n)
jj = Pj

(
Tj <∞

)
= 1 .
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If fjj = 1, we have Pj(Xn returns to state j at least once) = 1.

By induction,
Pj(Xn returns to state j at least m times) = 1,

and therefore
Pj(Xn returns to state j infinitely many times) = 1.

If fjj < 1, the number of returns Rj to state j is geometrically
distributed with parameter 1− fjj > 0, and thus with probability
one Rj is finite (and has finite expectation).

In other words, for every state j
Pj(Xn returns to state j infinitely many times) ∈ {0, 1}.
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Remark 5.27.1: Clearly, for i 6= j we obviously have

fij = Pi

(
Tj <∞

)
= Pi (H

{j} <∞) = h
{j}
i ,

the probability that starting from i the chain ever hits j .

Remark 5.27.2: A recurrent state j is positive recurrent if

Ej

(
Tj

)
≡ E

(
Tj | X0 = j

)
=
∞∑
n=1

n f
(n)
jj +∞ · Pj

(
Tj =∞

)
<∞ .

Otherwise j is null recurrent.
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Lemma 5.28: Let i , j be two states. Then for all n ≥ 1,

p
(n)
ij =

n∑
k=1

f
(k)
ij p

(n−k)
jj . (5.10)

Eqn. (5.10) is often called the first passage decomposition.

Let Pij(s) and Fij(s) be the generating functions of the sequences

p
(n)
ij and f

(n)
ij respectively,

Pij(s)
def
=
∑
n

p
(n)
ij sn , Fij(s)

def
=
∑
n

f
(n)
ij sn .

Then (5.10) reads

Pij(s) = δij + Fij(s)Pjj(s) , (5.11)

where δij is the Kronecker delta-function.
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Corollary 5.29: The following dichotomy holds:

a) if
∑

n p
(n)
jj =∞, then the state j is recurrent;

in this case
∑

n p
(n)
ij =∞ for all i such that fij > 0.

b) if
∑

n p
(n)
jj <∞, then the state j is transient;

in this case
∑

n p
(n)
ij <∞ for all i .

Example 5.30: If j ∈ S is transient, then P
(
Xn = j i.o.

)
= 0, ie.,

with probability one there are only finitely many visits to state j .

Corollary 5.31: If j ∈ S is transient, then p
(n)
ij → 0 as n→∞ for

all i ∈ S.
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Example 5.32: Determine recurrent and transient states for the
Markov chain on {1, 2, 3} with the following transition matrix:

P =

1/3 2/3 0
0 0 1
0 1 0

 .
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Recurrence and transience are class properties:

Lemma 5.33: Let C be a communicating class. Then either all
states of C are transient or all are recurrent.

Lemma 5.34: Every recurrent class is closed.

Remark 5.34.1: Every finite closed class is recurrent.
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Strong Markov property

The usual Markov property states:

Let (Xn)n≥0 be a Markov chain with state space S.
Given Xn = x ∈ S, the Markov chain (Xm)m≥0 has the
same distribution as (Xm)m≥0 started at X0 = x.

In other words,

Markov chain (Xm)m≥n starts afresh from the state
Xn = x at deteministic time n.

It
Z

is often desirable to extend the validity of this property from
deterministic times n to random times T .
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Stopping times

b A random time T is called a stopping time for the Markov chain(
Xn)n≥0, if for any n ≥ 0 the event

{
T ≤ n

}
is only determined by(

Xk

)
k≤n (and thus does not depend on the future evolution of the

chain).

Typical examples of stopping times include the hitting times HA

from (5.3) and the first passage times Tj from (5.8).
Notice

Z
that the example T ∗ = Tj −1 above, predetermines the first

future jump of the Markov chain and thus is not a stopping time.
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Strong Markov property

Lemma 5.35: Let T be a stopping time for a Markov chain
(Xn)n≥0 with state space S. Then, given {T <∞} and
XT = i ∈ S, the process (Yn)n≥0 defined via Yn = XT+n has the
same distribution as (Xn)n≥0 started from X0 = i .

In other words,

Markov chain (Xm)m≥T starts afresh from the state
XT = i at random time T .
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Long time properties

Consider a Markov chain on S = {1, 2} with transition matrix

P =

(
1− a a
b 1− b

)
, 0 < a < 1 , 0 < b < 1 ,

and initial distribution µ(0) = (µ
(0)
1 , µ

(0)
2 ). Since

Pn =
1

a + b

(
b a
b a

)
+

(1− a− b)n

a + b

(
a −a
−b b

)
, n ≥ 0 ,

the distribution µ(n) of Xn satisfies, as n→∞,

µ(n) = µ(0) Pn → π , where π
def
=
( b

a + b
,

a

a + b

)
.

We see that π P = π, ie., the distribution π is ‘invariant’ for P.
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Stationary distributions

Def.5.36: A vector π = (πj : j ∈ S) is a stationary distribution
of a Markov chain on S with the transition matrix P, if:

a) π is a distribution, ie., πj ≥ 0 for all j ∈ S , and
∑

j πj = 1;

b) π is stationary, ie., π = π P, which is to say that
πj =

∑
i πipij for all j ∈ S .

Remark 5.36.1: Property b) implies that π Pn = π for all n ≥ 0,
that is if X0 has distribution π then Xn has distribution π for all
n ≥ 0, showing that the distribution of Xn is stationary in time.



Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility *

Example 5.37: Find a stationary distribution for the Markov
chain with the transition matrix

P =

0 1 0
0 2/3 1/3
p 1− p 0

 .
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Lemma 5.38: Let S be finite and i ∈ S be fixed. If for all j ∈ S,

p
(n)
ij → πj as n→∞,

then the vector π = (πj : j ∈ S) is a stationary distribution.

Theorem 5.39 [Convergence to equilibrium]: Let
(
Xn

)
n≥0

, be
an irreducible aperiodic Markov chain on a finite state space S
with transition matrix P. Then there exists a unique probability
distribution π such that for all i , j ∈ S

lim
n→∞

p
(n)
ij = πj .

In particular, π is stationary for P, and for every initial distribution

P(Xn = j)→ πj as n→∞.
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Example 5.40: For a periodic Markov chain on S = {1, 2} with
transition probabilities p12 = p21 = 1 and p11 = p22 = 0 we have

P2k+1 =

(
0 1
1 0

)
, P2k =

(
1 0
0 1

)
for all k ≥ 0, so that there is no convergence.

Example 5.41: For a reducible Markov chain on S = {1, 2, 3}
with transition matrix (with a > 0, b > 0, c > 0 s.t. a + b + c = 1)

P =

a b c
0 1 0
0 0 1


every stationary distribution π solves the equations

π1 = a π1 π2 = b π1 + π2 , π3 = c π1 + π3 ,

so every µρ
def
= (0, ρ, 1− ρ) with 0 ≤ ρ ≤ 1 is stationary for P.
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Random Walk on a cycle
(cf. MC-14,15)

A flea hops randomly on vertices of a regular k-gon, hopping to
the neighbouring vertex on the right with probability p and to the
neighbouring vertex on the left with probability 1− p.

• Describe the probability distribution of the flea position after
n jumps.

• Find the corresponding stationary distribution.

IR
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Let Tj be the first passage time of a Markov chain Xn,

Tj
def
= min

{
n ≥ 1 : Xn = j

}
.

Lemma 5.42: If the transition matrix P of a Markov chain Xn is
γ-positive,

min
j ,k

pjk ≥ γ > 0 ,

then there exist positive constants C and α such that for all n ≥ 0

P(Tj > n) ≤ C exp
{
−αn

}
.

In other words, the exponential moments E
(
ecTj

)
exist for all

c > 0 small enough, in particular, all polynomial moments
E
(
(Tj)

p
)

with p > 0 are finite.
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Lemma 5.43: Let Xn be an irreducible recurrent Markov chain
with stationary distribution π. Then for every state j, the expected
return time Ej(Tj) satisfies the identity

πj Ej(Tj) = 1 .

The argument applies even to the countable state space and
shows that the stationary distribution is unique, provided it exists.
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Let Vk(n) denote the number of visits to k before time n,

Vk(n) =
n−1∑
l=1

1{Xl=k} .

Theorem 5.44 [Ergodic theorem]: If (Xn)n≥0 is an irreducible
Markov chain, then

P
(Vk(n)

n
→ 1

Ek(Tk)
as n→∞

)
= 1 ,

where Ek(Tk) is the expected return time to state k.

Moreover, if Ek(Tk) <∞, then for any bounded fn f : S → R

P
(1

n

n−1∑
k=0

f (Xk)→ f̄ as n→∞
)

= 1 ,

where f̄
def
=
∑

k∈S πk f (k) and π = (πk)k∈S is the unique
stationary distribution.
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Example [2008, Q.3]
Like a good boy, Harry visits the dentist every six months. Because of his
sweet tooth, the condition of his teeth varies according to a Markov
chain on the states {0, 1, 2, 3}, where 0 means no work is required, 1
means a cleaning is required, 2 means a filling is required and 3 means
root canal work is needed. Charges for each visit to the dentist depend
on the work done. State 0 has a charge of £10, state 1 has a charge of
£20, state 2 has a charge of £30 and state 3 has the disastrous charge of
£150. Transitions from state to state are governed by the matrix

P =


0 1

3
1
3

1
3

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
3

1
3

1
3 0

 .

What is the percentage of visits that are disastrous?
What is Harry’s long run cost rate for maintaining his teeth?

In your answer you should give a clear statement of any result you use.
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Detailed balance equations

Def.5.49: A stochastic matrix P and a measure λ are said to be
in detailed balance if

λipij = λjpji for all i , j .

Lemma 5.50: If P and λ are in detailed balance, then λ is
invariant for P, ie., λP = λ.
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Reversibility

Def.5.51: Let (Xn)n≥0 be a Markov chain with state space S and
transition matrix P. A probability measure π on S is said to be
reversible for the chain (or for the matrix P) if π and P are in
detailed balance, ie.,

πipij = πjpji for all i , j ∈ S .

A Markov chain is said to be reversible if it has a reversible
distribution.
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Example 5.52: A Markov chain with the transition matrix0 p q
q 0 p
p q 0

 , 0 < p = 1− q < 1 ,

has stationary distribution π = (1/3, 1/3, 1/3). For the latter to
be reversible for this Markov chain we need

π1 p12 = π2 p21 , i.e. p = q .

If p = q = 1
2 , then DBE hold for all pairs of states, ie., the chain is

reversible. Otherwise, the chain is not reversible.
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Time-reversal

Exercise 5.53: Let P be irreducible and have an invariant
distribution π. Suppose that (Xn)0≤n≤N is a Markov chain with
transition matrix P and the initial distribution π, and set

Yn
def
= XN−n. Show that (Yn)0≤n≤N is a Markov chain with initial

distribution π and the transition matrix P̂ = (p̂ij) given by

πj p̂ji = πipij for all i , j .

The chain (Yn)0≤n≤N is called the time reversal of (Xn)0≤n≤N .

Clearly, a Markov chain is reversible if its distribution coincides
with that of its time reversal.
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Random walk on a graph

A graph G is a countable collection of states, usually called
vertices, some of which are joined by edges. The valency vj of
vertex j is the number of edges at j , and we assume that every
vertex in G has finite valency. The random walk on G is a Markov
chain with transition probabilities

pjk =

{
1/vj , if (j , k) is an edge

0 , otherwise.

We assume that G is connected, so that P is irreducible. It is easy
to see that P is in detailed balance with v = (vj : j ∈ G ). As a

result, if the total valency V =
∑

j vj is finite, then π
def
= v/V is a

stationary distribution and P is reversible.
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Problem MC-57

A random walker on the standard chessboard makes each
permissible move with equal probability. If it starts in a corner,
how long on average will it take to return, if:

a) only horizontal and vertical moves are allowed (ie, in the middle
of the chessboard there are four permissible moves)?

b) the diagonal moves are also allowed (ie, in the middle of the
chessboard there are eight permissible moves)?
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Markov chain Monte Carlo (MCMC)

Example Let G = (V ,E ) be a graph with V = {v1, . . . , vk} and
E = {e1, . . . , e`}. A set A ⊂ V is an independent set, if no two
vertices in A are adjacent in G . The following Markov chain

generates a random set in SG
def
=
{

all independent sets in G
}

:

Let A ∈ SG be given (eg., A = ∅).

1. Pick v ∈ V uniformly at random;
2. Flip a fair coin;
3. If ‘heads’ and no neighbour of v is in A, add v to A:

A 7→ A ∪ {v};
otherwise, remove v from A:

A 7→ A \ {v}.

Exercise: Check that this chain is irreducible, aperiodic, and has
the correct stationary distribution.
Estimate |SG |, if G is a 10× 10 subset in Z2.
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MCMC-2: random q-colourings

Let G = (V ,E ) be a graph and q ≥ 2 be an integer. A q-colouring
of G is an assignment

V 3 v 7→ ξv ∈ S
def
= {1, 2, . . . , q}

such that if v1 and v2 are adjacent, then ξv1 6= ξv2 . The following
Markov chain in SV generates a random q-colouring in G :

Let a colouring C ∈ SV be given.

1. Pick v ∈ V uniformly at random;
2. Re-colour v in an admissible colour (ie., not used by

any of the neighbours of v) uniformly at random.

Exercise: Check that this chain is irreducible, aperiodic, and has
the correct stationary distribution (provided q is large enough!).
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Question:

How would you generate a general distribution π on a finite set S?

 Consruct a Markov chain on S having π as its only stationary
distribution!

 Gibbs sampler.
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Markov chains

By the end of this section you should be able to:

• define a Markov chain, verify whether a given process is a Markov chain;

• compute the n-step transition probabilities p
(n)
ij for a given Markov chain;

• identify classes of communicating states, explain which classes are closed and
which are not; identify absorbing states;

• check whether a given Markov chain is irreducible;
• determine the period of every state for a given Markov chain;
• compute absorption probabilities and expected hitting times;
• define transient and (positive/null) recurrent states;
• compute the first passage probabilities fij and use them to classify states into

transient and recurrent;

• use the transition probabilities p
(n)
ij to classify states into transient and recurrent;

• find all stationary distributions for a given Markov chain;
• state and apply the convergence to equilibrium theorem for Markov chains;
• state and apply the Ergodic theorem;
• state and use the relation between the stationary distribution and the mean

return times;
• define reversible measures and state their main properties;
• check whether a given Markov chain is reversible;
• find stationary distributions for random walks on graphs.


	Markov Chains
	CK eqns
	Classes
	Hitting times
	Rec./trans.
	Strong Markov
	Stat. distr.
	Reversibility
	*

