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5 Markov Chains

In various applications one considers collections of random variables which
evolve in time in some random but prescribed manner (think, eg., about con-
secutive flips of a coin combined with counting the number of heads observed).
Such collections are called random (or stochastic) processes. A typical random
process X is a family {Xt : t ∈ T} of random variables indexed by elements of
some set T . When T = {0, 1, 2, . . . } one speaks about a ‘discrete-time’ process,
alternatively, for T = R or T = [0,∞) one has a ‘continuous-time’ process. In
what follows we shall only consider discrete-time processes.

5.1 Markov property

Let (Ω,F ,P) be a probability space and let {X0, X1, . . . } be a sequence of
random variables39 which take values in some countable set S, called the state
space. We assume that each Xn is a discrete40 random variable which takes one
of N possible values, where N = |S| (N may equal +∞).

Definition 5.1.b The process X is a Markov chain if it satisfies the Markov
property:

P(Xn+1 = xn+1 |X0 = x0, X1 = x1, . . . , Xn = xn)

= P(Xn+1 = xn+1 |Xn = xn)
(5.1)

for all n ≥ 1 and all x0, x1, . . . , xn+1 ∈ S.

Interpreting n as the ‘present’ and n+1 as a ‘future’ moment of time, we can
re-phrase the Markov property (5.1) as “given the present value of a Markov
chain, its future behaviour does not depend on the past”.

Remark 5.1.1. It is straightforward to check that the Markov property (5.1)
is equivalent to the following statement:
for each s ∈ S and every sequence {xk : k ≥ 0} in S,

P(Xn+m = s |X0 = x0, X1 = x1, . . . , Xn = xn) = P(Xn+m = s |Xn = xn)

for any m,n ≥ 0.

The evolution of a chain is described by its ‘initial distribution’

µ0
k

def
= P(X0 = k)

and its ‘transition probabilities’

P(Xn+1 = j |Xn = i) ;

it can be quite complicated in general since these probabilities depend upon the
three quantities n, i, and j.

39 ie, each Xn is a F-measurable mapping from Ω into S.
40 without loss of generality, we can and shall assume that S is a subset of integers.
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Definition 5.2. A Markov chain X is called homogeneous if

P(Xn+1 = j |Xn = i) ≡ P(X1 = j |X0 = i)

for all n, i, j. The transition matrix P = (pij) is the |S|× |S| matrix of transition
probabilities

pij = P(Xn+1 = j |Xn = i) .

In what follows we shall only consider homogeneous Markov chains.
The next claim characterizes transition matrices.

Theorem 5.3.b P is a stochastic matrix, which is to say that

a) every entry of P is non-negative, pij ≥ 0;

b) each row sum of P equals one, ie., for every i ∈ S we have
∑
j pij = 1.

Example 5.4. [Bernoulli process] Let S = {0, 1, 2, . . . } and define the Markov
chain Y by Y0 = 0 and

P(Yn+1 = s+ 1 |Yn = s) = p , P(Yn+1 = s |Yn = s) = 1− p ,

for all n ≥ 0, where 0 < p < 1. You may think of Yn as the number of heads
thrown in n tosses of a coin.

Example 5.5. [Simple random walk] Let S = {0,±1,±2, . . . } and define the
Markov chain X by X0 = 0 and

pij =





p, if j = i+ 1,

q = 1− p, if j = i− 1,

0, otherwise.

Example 5.6. [Ehrenfest chain] Let S = {0, 1, . . . , r} and put

pk,k+1 =
r − k
r

, pk,k−1 =
k

r
, pij = 0 otherwise .

In words, there is a total of r balls in two urns; k in the first and r − k in the
second. We pick one of the r balls at random and move it to the other urn.
Ehrenfest used this to model the division of air molecules between two chambers
(of equal size and shape) which are connected by a small hole.

Example 5.7. [Birth and death chains] Let S = {0, 1, 2, . . . , }. These chains are
defined by the restriction pij = 0 when |i− j| > 1 and, say,

pk,k+1 = pk , pk,k−1 = qk , pkk = rk

with q0 = 0. The fact that these processes cannot jump over any integer makes
the computations particularly simple.
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Definition 5.8. The n-step transition matrix Pn =
(
pij(n)

)
is the matrix of

n-step transition probabilities

pij(n) ≡ p(n)ij
def
= P(Xm+n = j |Xm = i) .

Of course, P1 = P.

Theorem 5.9 (Chapman-Kolmogorov equations).b We have

pij(m+ n) =
∑

k

pik(m) pkj(n) . (5.2)

Hence Pm+n = Pm Pn, and so Pn = Pn ≡ (P)n, the n-th power of P.

Proof. In view of the tower property P(A ∩ B |C) = P(A |B ∩ C) P(B |C) and the
Markov property, we get

pij(m+ n) = P(Xm+n = j |X0 = i)

=
∑

k

P(Xm+n = j,Xm = k |X0 = i)

=
∑

k

P(Xm+n = j |Xm = k,X0 = i) P(Xm = k |X0 = i)

=
∑

k

P(Xm+n = j |Xm = k) P(Xm = k |X0 = i)

=
∑

k

pkj(n) pik(m) =
∑

k

pik(m) pkj(n) .

Let µ
(n)
i

def
= P(Xn = i), i ∈ S, be the mass function of Xn; we write µ(n) for

the row vector with entries (µ
(n)
i : i ∈ S).

Lemma 5.10. We have µ(m+n) = µ(m) Pn, and hence µ(n) = µ(0) Pn.

Proof. We have

µ
(m+n)
j = P(Xm+n = j) =

∑

i

P(Xm+n = j |Xm = i) P(Xm = i)

=
∑

i

pij(n)µ
(m)
i =

∑

i

µ
(m)
i pij(n) =

(
µ(m) Pn

)
j

and the result follows from Theorem 5.9.

Example 5.11. Consider a three-state Markov chain with the transition matrix

P =




0 1 0
0 2/3 1/3

1/16 15/16 0


 .

Find a general formula for p
(n)
11 .Z
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Solution. First we compute the eigenvalues of P by writing down the characteristic
equation

0 = det
(
x−P

)
=

1

3
(x− 1)(3x2 + x+ 1/16) =

1

3
(x− 1)(3x+ 1/4)(x+ 1/4)

The eigenvalues are 1, −1/4, −1/12 and from this we deduce41 that

p
(n)
11 = a+ b

(
−1

4

)n
+ c

(
− 1

12

)n

with some constants a, b, c. The first few values of p
(n)
11 are easy to write down, so we

get equations to solve for a, b, and c:

1 = p
(0)
11 = a+ b+ c

0 = p
(1)
11 = a− b/4− c/12

0 = p
(2)
11 = a+ b/16 + c/144 .

From this we get a = 1/65, b = −26/65, c = 90/65 so that

p
(n)
11 =

1

65
− 2

5

(
−1

4

)n
+

18

13

(
− 1

12

)n
.

5.2 Class structure

It is sometimes possible to break a Markov chain into smaller pieces, each of
which is relatively easy to understand, and which together give an understanding
of the whole. This is done by identifying the communicating classes of the chain.

Definition 5.12.b We say that state i leads to state j and write i→ j if

Pi(Xn = j for some n ≥ 0) ≡ P
(
Xn = j for some n ≥ 0 |X0 = i) > 0 .

State i communicates with state j (write i↔ j) if both i→ j and j → i.

Theorem 5.13. For distinct states i and j the following are equivalent:

a) i→ j;

b) pi0i1pi1i2 . . . pin−1in > 0 for some states i0 ≡ i, i1, i2, . . . , in−1, in ≡ j;

c) p
(n)
ij > 0 for some n ≥ 0.

41 The justification comes from linear algebra: having distinct eigenvalues, P is diagonaliz-
able, that is for some invertible matrix U we have

P = U




1 0 0
0 −1/4 0
0 0 −1/12


U−1

and hence

Pn = U




1 0 0
0 (−1/4)n 0
0 0 (−1/12)n


U−1

which forces p
(n)
11 = a+ b(−1/4)n + c(−1/12)n with some constants a, b, c.
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Remark 5.13.1.Z It is clear from b) that i ↔ j and j ↔ k imply i ↔ k. Also,
i ↔ i for any state i. So ↔ satisfies the conditions for an equivalence relation
on S and thus partitions S into communicating classes.

Definition 5.14.b We say that a class C is closed if

i ∈ C , i→ j =⇒ j ∈ C .

In other words, a closed class is one from which there is no escape. A state i is
absorbing if {i} is a closed class.

Exercise 5.15. Show that every transition matrix on a finite state space has at
least one closed communicating class. Find an example of a transition matrix with
no closed communicating classes.

Definition 5.16.b A Markov chain or its transition matrix P is called irreducible
if its state space S forms a single communicating class.

Example 5.17. Find the communicating classes associated with the stochastic
matrix

P =




1/2 1/2 0 0 0 0
0 0 1 0 0 0

1/3 0 0 1/3 1/3 0
0 0 0 1/2 1/2 0
0 0 0 0 0 1
0 0 0 0 1 0



.

Solution. The classes are {1, 2, 3}, {4}, {5, 6}, with only {5, 6} being closed. (Draw
the diagram!)

Proof of Theorem 5.13. In view of the inequality

max p
(n)
ij ≤ Pi(Xn = j for some n ≥ 0) ≤

∞∑

n=0

p
(n)
ij

one immediately deduces a) ⇐⇒ c). On the other hand,

p
(n)
ij =

∑

i1,i2,...,in−1

pii1pi1i2 . . . pin−1j

so that b) ⇐⇒ c).

Definition 5.18.b The period d(i) of a state i is defined by

d(i) = gcd
{
n > 0 : p

(n)
ii > 0

}
,

the greatest common divisor of the epochs at which return is possible (ie., p
(n)
ii = 0

unless n is a multiple of d(i)). We call i periodic if d(i) > 1 and aperiodic
if d(i) = 1.
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Lemma 5.19. If states i and j are communicating, then i and j have the same
period.

Example 5.20. It is easy to see that both the simple random walk (Exam-
ple 5.5) and the Ehrenfest chain (Example 5.6) have period 2. On the other
hand, the birth and death process (Example 5.7) with all pk ≡ pk,k+1 > 0, all
qk ≡ pk,k−1 > 0 and at least one rk ≡ pkk positive is aperiodic (however, if all
rkk vanish, the birth and death chain has period 2).

Proof of Lemma 5.19. Since i ↔ j, there exist m, n > 0 such that p
(m)
ij p

(n)
ji > 0. By

the Chapman-Kolmogorov equations,

p
(m+r+n)
ii ≥ p(m)

ij p
(r)
jj p

(n)
ji > 0

so that d(i) divides d(j). In a similar way one deduces that d(j) divides d(i).

5.3 Hitting times and absorption probabilities

Consider the following problem.

Example 5.21. A man is saving up to buy a new car at a cost of N units of
money. He starts with k (0 < k < N) units and tries to win the remainder by
the following gamble with his bank manager. He tosses a coin repeatedly; if the
coin comes up heads then the manager pays him one unit, but if it comes up
tails then he pays the manager one unit. The man plays this game repeatedly
until one of two events occurs: either he runs out of money and is bankrupted
or he wins enough to buy the car. What is the probability that he is ultimately
bankrupted?

The example above motivates the following definition.

Definition 5.22.b Let (Xn)n≥0 be a Markov chain with transition matrix P. The

hitting time of a set A ⊂ S is the random variable HA : Ω→ {0, 1, 2, . . . } ∪ {∞}
given by

HA(ω)
def
= inf

{
n ≥ 0 : Xn(ω) ∈ A

}
(5.3)

where we agree that the infimum over the empty set ∅ is ∞. The probability
starting from i that (Xn)n≥0 ever hits A is

hAi
def
= Pi(H

A <∞) ≡ P
(
HA <∞|X0 = i

)
. (5.4)

When A is a closed class, hAi is called the absorption probability.

Remarkably, the hitting probabilities hAi can be calculated explicitly through
certain linear equations associated with the transition matrix P.

Example 5.23. Consider the chain on {1, 2, 3, 4} with the following transition
matrix:

P =




1 0 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 0 1


 .
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Starting from 2, what is the probability of absorption in 4?

Solution. Put hi = Pi(H
{4} <∞). Clearly, h1 = 0, h4 = 1, and thanks to the Markov

property, we have

h2 =
1

2

(
h1 + h3

)
, h3 =

1

2

(
h2 + h4

)
.

As a result, h2 = 1
2
h3 = 1

2
( 1
2
h2 + 1

2
), that is h2 = 1/3.

Theorem 5.24.b Fix A ⊂ S. The vector of hitting probabilities hA ≡ (hAi )i∈S
solves the following system of linear equations:

{
hAi = 1 , for i ∈ A,

hAi =
∑
j∈S pij h

A
j , for i ∈ Ac.

(5.5)

Example 5.23 (continued) Answer the same question by solving Eqns. (5.5)

Solution. Strictly speaking, the system (5.5) reads

h4 = 1 , h3 =
1

2
(h4 + h2) , h2 =

1

2
(h3 + h1) , h1 = h1

so that

h2 =
1

3
+

2

3
h1 , h3 =

2

3
+

1

3
h1 .

The value of h1 is not determined by the system, but the minimality condition requires
h1 = 0, so we recover h2 = 1/3 as before. Of course, the extra boundary condition
h1 = 0 was obvious from the beginning so we built it into our system of equations and
did not have to worry about minimal non-negative solutions.

Proof of Theorem 5.24. We consider two cases separately. If X0 = i ∈ A, then HA = 0
so that hAi = 1.
On the other hand, if X0 = i /∈ A, then HA ≥ 1, so by the Markov property

Pi(H
A <∞|X1 = j) = Pj(H

A <∞) = hAj ;

the formula of total probability now implies

hAi = Pi(H
A <∞) =

∑

j∈S
Pi(H

A <∞|X1 = j) Pi(X1 = j) =
∑

j∈S
pij h

A
j .

Remark 5.24.1. Actually, one can show42 that hA = (hAi : i ∈ S) is the
smallest non-negative solution to (5.5) in that if x = (xi : i ∈ S) is another
solution to (5.5) with xi ≥ 0 for all i ∈ S, then xi ≥ hAi for all i ∈ S. This
property is especially useful if the state space S is infinite.

42Indeed, if x = (xi : i ∈ S) ≥ 0 solves (5.5), then xi = hAi = 1 for all i ∈ A. On the other
hand, if i ∈ Ac, then the second line of (5.5) gives

xi =
∑

j∈A
pij +

∑

j /∈A
pijxj ≡ Pi(H

A = 1) +
∑

j /∈A
pijxj .

By iterating this identity, we get

xi = Pi(H
A ≤ n) +

∑

j1 /∈A
· · ·

∑

jn /∈A
pij1 pj1j2 . . . pjn−1jnxjn ≥ Pi(H

A ≤ n)

and thus xi ≥ lim
n→∞

Pi(HA ≤ n) = Pi(HA <∞) = hAi .
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Example 5.25. (Gamblers’ ruin) Imagine the you enter a casino with a
fortune of £i and gamble, £1 at a time, with probability p of doubling your
stake and probability q of losing it. The resources of the casino are regarded as
infinite, so there is no upper limit to your fortune. What is the probability that
you leave broke?
In other words, consider a Markov chain on {0, 1, 2, . . . } with transition proba-
bilities

p00 = 1 , pk,k+1 = p , pk,k−1 = q (k ≥ 1)

where 0 < p = 1− q < 1. Find hi = Pi(H
{0} <∞).

Solution. The vector (hi : i ≥ 0) is the minimal non-negative solution to the system

h0 = 1 , hi = p hi+1 + q hi−1 , (i ≥ 1) .

As we shall see below, a general solution to this system is given by (check that the
following expressions solve this system!)

hi =

{
A+B

(
q/p
)i
, p 6= q

A+B i , p = q ,

where A and B are some real numbers. If p ≤ q, the restriction 0 ≤ hi ≤ 1 forces
B = 0 so that hi ≡ A = 1 for all i ≥ 0. If p > q, we get (recall that h0 = A+B = 1)

hi = A+ (1−A)
( q
p

)i
=
( q
p

)i
+A

(
1−

( q
p

)i)
.

As for the non-negative solution we must have A ≥ 0, the minimal solution now reads
hi = (q/p)i.

It is often useful to know the expected time before absorption,b

kAi
def
= Ei

(
HA
)
≡ E

(
HA |X0 = i

)

=
∑

n<∞
nPi(H

A = n) +∞ · Pi(HA =∞) .
(5.6)

Example 5.23 (continued) Assuming that X0 = 2, find the mean time until
the chain is absorbed in states 1 or 4.

Solution. Put ki = Ei(H
{1,4}). Clearly, k1 = k4 = 0, and thanks to the Markov

property, we have

k2 = 1 +
1

2

(
k1 + k3

)
, k3 = 1 +

1

2

(
k2 + k4

)

(The 1 appears in the formulae above because we count the time for the first step).
As a result, k2 = 1 + 1

2
k3 = 1 + 1

2
(1 + 1

2
k2), that is k2 = 2.

Theorem 5.26.b Fix A ⊂ S. The vector of mean hitting times kA ≡ (kAi , i ∈ S)
is the minimal non-negative solution to the following system of linear equations:

{
kAi = 0 , for i ∈ A,

kAi = 1 +
∑
j∈S pij k

A
j , for i ∈ Ac.

(5.7)
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Proof. First we check that kA satisfies (5.7). If i ∈ A, then HA = 0, so kAi = 0. On
the other hand, if X0 = i /∈ A, then HA ≥ 1 and by the Markov property,

Ei
(
HA |X1 = j

)
= 1 + Ej(H

A) ;

consequently, by the partition theorem for the expectations,

kAi = Ei(H
A) =

∑

j∈S
Ei
(
HA |X1 = j

)
Pi(X1 = j) = 1 +

∑

j∈S
pij k

A
j .

Let y = (yi : i ∈ S) be a non-negative solution to (5.7). We then have kAi = yi = 0 for
i ∈ A, and for i /∈ A,

yi = 1 +
∑

j /∈A
pij yj = 1 +

∑

j /∈A
pij
(

1 +
∑

k/∈A
pjk yk

)

= Pi(H
A ≥ 1) + Pi(H

A ≥ 2) +
∑

j /∈A

∑

k/∈A
pij pjk yk .

By induction, yi ≥ Pi(H
A ≥ 1) + . . .+ Pi(H

A ≥ n) for all n ≥ 1 so that

yi ≥
∞∑

n=1

Pi(H
A ≥ n) ≡ Ei

(
HA) = kAi .

5.4 Recurrence and transience

Let Xn, n ≥ 0, be a Markov chain with a discrete state space S.

Definition 5.27.b State i is called recurrent if, starting from i the chain eventually
returns to i with probability 1, ie.,

P
(
Xn = i for some n ≥ 1 |X0 = i

)
= 1 .

State i is called transient if this probability is smaller than 1.

It is convenient to introduce the so-called first passage times of the Markov
chain Xn: if j ∈ S is a fixed state, then the first passage time Tj to state j is

Tj = inf
{
n ≥ 1 : Xn = j

}
, (5.8)

ie., the moment of the first future visit to j; of course, Tj = +∞ if Xn never
visits state j. Let

f
(n)
ij

def
= Pi

(
Tj = n

)
≡ P

(
X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j |X0 = i

)

be the probability of the event “the first future visit to state j, starting from i,
takes place at nth step”. Then

fij =
∞∑

n=1

f
(n)
ij ≡ Pi

(
Tj <∞

)
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is the probability that the chain ever visits j, starting from i. Of course, state j
is recurrent iff

fjj =
∞∑

n=1

f
(n)
jj = Pj

(
Tj <∞

)
= 1 . (5.9)

In this case

Pj
(
Xn = j for some n ≥ 1

)
≡ Pj

(
Xn returns to state j at least once

)
= 1 ,

so that for every m ≥ 1 we have 43

Pj
(
Xn returns to state j at least m times

)
= 1 .

Consequently, with probability one the Markov chain Xn returns to recurrent
state j infinitely many times.

On the other hand, if fjj < 1, then the number of returns to state j is a
geometric random variable with parameter 1 − fjj > 0, and thus is finite (and
has a finite expectation) with probability one. As a result, for every state j,

Pj
(
Xn returns to state j infinitely many times

)
∈
{

0, 1
}
,

depending on whether state j is transient or recurrent.

Remark 5.27.1.Z Clearly, for i 6= j we have

fij = Pi
(
Tj <∞

)
= Pi(H

{j} <∞) = h
{j}
i ,

the probability that starting from i the Markov chain ever hits j.

Remark 5.27.2. By (5.9), state j is recurrent if and only if Tj is a proper
random variable w.r.t. the probability distribution Pj( · ), ie., P(Tj < ∞) = 1.
A recurrent state j is positive recurrent if the expectation

Ej
(
Tj
)
≡ E

(
Tj | X0 = j

)
=

∞∑

n=1

nf
(n)
jj

is finite; otherwise state j is null recurrent.

We now express recurrent/transient properties of states in terms of p
(n)
jj .

Lemma 5.28. Let i, j be two states. Then for all n ≥ 1,

p
(n)
ij =

n∑

k=1

f
(k)
ij p

(n−k)
jj . (5.10)

43 indeed, if random variables X and Y are such that P(X < ∞) = 1 and P(X < ∞) = 1,
then the sum X + Y has the same property, P(X + Y < ∞) = 1; if X is the moment of the
first return, and Y is the time between the first and the second return to a fixed state, the
condition P(Y <∞ | X = k) = 1 implies that

P(X + Y <∞) =
∑

k≥1

P(k + Y <∞ | X = k)P(X = k) = 1.
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Of course, (5.10) is nothing else than the first passage decomposition: every
trajectory leading from i to j in n steps, visits j for the first time in k steps
(1 ≤ k ≤ n) and then comes back to j in the remaining n− k steps.

Corollary 5.29.b The following dichotomy holds:

a) if
∑
n p

(n)
jj = ∞, then the state j is recurrent; in this case

∑
n p

(n)
ij = ∞

for all i such that fij > 0.

b) if
∑
n p

(n)
jj < ∞, then the state j is transient; in this case

∑
n p

(n)
ij < ∞

for all i.

Remark 5.29.1. Notice that
∑
n p

(n)
jj is just the expected number of visits to

state j starting from j.

Example 5.30. Let
(
Xn

)
n≥0 be a Markov chain in S with X0 = k ∈ S.

Consider the event An =
{
ω : Xn(ω) = k

}
that the chain returns to state

k after n steps. Clearly, P(An) = p
(n)
kk , the n-step transition probability. By

Corollary 5.29, state k is transient iff
∑
n p

(n)
kk < ∞. On the other hand, by

the first Borel-Cantelli lemma, Lemma 1.6a), finiteness of the sum
∑
n P(An) ≡∑

n p
(n)
kk < ∞ implies P

(
An i.o.

)
= 0, so that, with probability one, the chain

visits state k only a finite number of times.

Corollary 5.31.Z If j ∈ S is transient, then p
(n)
ij → 0 as n→∞ for all i ∈ S.

Example 5.32. Determine recurrent and transient states for a Markov chain
on {1, 2, 3} with the following transition matrix:

P =




1/3 2/3 0
0 0 1
0 1 0


 .

Solution. We obviously have p
(n)
11 = (1/3)n with

∑
n p

(n)
11 <∞, so state 1 is transient.

On the other hand, for i ∈ {2, 3}, we have p
(n)
ii = 1 for even n and p

(n)
ii = 0 otherwise.

As
∑
n p

(n)
ii =∞ for i ∈ {2, 3}, both states 2 and 3 are recurrent.

Alternatively, f11 ≡ f
(1)
11 = 1/3, f22 ≡ f

(2)
22 = 1, and f33 ≡ f

(2)
33 = 1, so that state 1 is

transient and states 2, 3 are recurrent.

Proof of Lemma 5.28. The event An = {Xn = j} can be decomposed into a disjoint
union of “the first visit to j events”

Bk = {Xl 6= j for 1 ≤ l < k,Xk = j} , 1 ≤ k ≤ n ,

ie., An = ∪nk=1Bk, so that

Pi(An) =
n∑

k=1

Pi(An ∩Bk) .
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On the other hand, by the “tower property” and the Markov property

Pi(An ∩Bk) ≡ P(An ∩Bk |X0 = i) = P(An |Bk, X0 = i) P(Bk |X0 = i)

= P(An |Xk = j) P(Bk |X0 = i) ≡ p(n−k)jj f
(k)
ij .

The result follows.

Let Pij(s) and Fij(s) be the generating functions of p
(n)
ij and f

(n)
ij ,

Pij(s) def
=
∑

n

p
(n)
ij sn , Fij(s) def

=
∑

n

f
(n)
ij sn

with the convention that p
(0)
ij = δij , the Kronecker delta, and f

(0)
ij = 0 for all i

and j. By Lemma 5.28, we obviously have

Pij(s) = δij + Fij(s)Pjj(s) . (5.11)

Notice that this equation allow us to derive Fij(s), the generating function of
the first passage time from i to j.

Proof of Corollary 5.29. To show that j is recurrent iff
∑
n p

(n)
jj =∞, we first observe

that (5.11) with i = j is equivalent to Pjj(s) =
(
1−Fjj(s)

)−1
for all |s| < 1 and thus,

as s↗ 1,
Pjj(s)→∞ ⇐⇒ Fjj(s)→ Fjj(1) ≡ fjj = 1 .

It remains to observe that the Abel theorem implies Pjj(s)→
∑
n p

(n)
jj as s↗ 1. The

rest follows directly from (5.11) with i 6= j.

Using Corollary 5.29, we can easily classify states of finite state Markov
chains into transient and recurrent. Notice that transience and recurrence are
class properties:

Lemma 5.33.b Let C be a communicating class. Then either all states in C are
transient or all are recurrent.

Thus it is natural to speak of recurrent and transient classes.

Proof. Fix i, j ∈ C and suppose that state i is transient, so that
∑∞
l=0 p

(l)
ii < ∞.

There exist k, m ≥ 0 with p
(k)
ij > 0 and p

(m)
ji > 0, so that for all l ≥ 0, by Chapman-

Kolmogorov equations,
p
(k+l+m)
ii ≥ p(k)ij p

(l)
jj p

(m)
ji

and thus

∞∑

l=0

p
(l)
jj ≤

1

p
(k)
ij p

(m)
ji

∞∑

l=0

p
(k+l+m)
ii ≡ 1

p
(k)
ij p

(m)
ji

∞∑

l=k+m

p
(l)
ii <∞ ,

so that j is also transient by Corollary 5.29.

Lemma 5.34.Z Every recurrent class is closed.
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Proof. Let C be a recurrent class which is not closed. Then there exist i ∈ C, j /∈ C
and m ≥ 1 such that the event Am

def
= {Xm = j} satisfies Pi(Am) > 0. Denote

B
def
=
{
Xn = i for infinitely many n

}
.

By assumption, events Am and B are incompatible, so that Pi(Am ∩ B) = 0, and
therefore Pi(B) ≤ Pi(A

c
m) < 1, ie., state i is not recurrent, and so neither is C.

Remark 5.34.1. In fact, one can prove that Every finite closed class is recurrent.

Sketch of the proof. Let class C be closed and finite. Start Xn in C and consider the

event Bi = {Xn = i for infinitely many n}. By finiteness of C, for some i ∈ C

and all j ∈ C, we have 0 < Pj(Bi) ≡ fjiPi(Bi), and therefore Pi(Bi) > 0. Since

Pi(Bi) ∈ {0, 1}, we deduce Pi(Bi) = 1, i.e., state i (and the whole class C) is recurrent.

5.5 The strong Markov property

A convenient way of reformulating the Markov property (5.1) is that, conditional
on the event {Xn = x}, the Markov chain (Xm)m≥n has the same distribution as
(Xm)m≥0 with initial state X0 = x; in other words, the Markov chain (Xm)m≥n
starts afresh from the state Xn = x.

For practical purposes it is often desirable to extend the validity of this
property from deterministic times n to random44 times T . In particular, the
fact that the Markov chain starts afresh upon first hitting state j at a random
moment Tj resulted in a very useful convolution property (5.10) in Lemma 5.28.
Notice howeverZ that the random time T ∗ = Tj−1 is not a good choice, as given
XT∗ = i 6= j the chain is forced to jump to XT∗+1 = XTj = j, thus discarding
any other possible transition from state i.

A random time T is calledb a stopping time for the Markov chain
(
Xn)n≥0, if

for any n ≥ 0 the event
{
T ≤ n

}
is only determined by

(
Xk

)
k≤n (and thus does

not depend on the future evolution of the chain). Typical examples of stopping
times include the hitting times HA from (5.3) and the first passage times Tj
from (5.8). NoticeZ that the example T ∗ = Tj − 1 above, predetermines the first
future jump of the Markov chain and thus is not a stopping time.

Lemma 5.35 (Strong Markov property).Z Let T be a stopping time for a Markov
chain (Xn)n≥0 with state space S. Then, given {T <∞} and XT = i ∈ S, the
process (Yn)n≥0 defined via Yn = XT+n has the same distribution as (Xn)n≥0
started from X0 = i.

One can verify45 the strong Markov property by following the ideas in the
proof of Lemma 5.28; namely, by partitioning Ω with the events Bk = {T = k}
and applying the formula of total probability. Since the conditions T = k and
XT = Xk = i are completely determined by the values (Xm)m≤k, the usual
Markov property (5.1) can now be applied with the condition {Xk = i} at the
deterministic time T = k.

44recall the argument in Lemma 5.28 or Problem GF17
45an optional but instructive exercise!
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5.6 Stationary distributions and the Ergodic theorem

For various practical reasons it is important to know how does a Markov chain
behave after a long time n has elapsed. Eg., consider a Markov chain Xn on
S = {1, 2} with transition matrix

P =

(
1− a a
b 1− b

)
, 0 < a < 1 , 0 < b < 1 ,

and the initial distribution µ(0) = (µ
(0)
1 , µ

(0)
2 ). Since for any n ≥ 0,

Pn =
1

a+ b

(
b a
b a

)
+

(1− a− b)n
a+ b

(
a −a
−b b

)
,

the distribution µ(n) of Xn satisfies

µ(n) = µ(0) Pn → π , where π
def
=
( b

a+ b
,

a

a+ b

)
;

Notice that πP = π, ie., the distribution π is ‘invariant’ for P.
In general, existence of a limiting distribution for Xn as n → ∞ is closely

related to existence of the so-called ‘stationary distributions’.

Definition 5.36.b The vector π = (πj : j ∈ S) is called a stationary distribu-
tion of a Markov chain on S with the transition matrix P, if:

a) π is a distribution, ie., πj ≥ 0 for all j ∈ S, and
∑
j πj = 1;

b) π is stationary, ie., π = πP, which is to say that πj =
∑
i πipij for all j ∈ S.

Remark 5.36.1. Property b) implies that πPn = π for all n ≥ 0, that is if X0

has distribution π then so does Xn, ie., the distribution of Xn does not change.

Example 5.37. Find a stationary distribution for the Markov chain with the
transition matrix

P =




0 1 0
0 2/3 1/3
p 1− p 0


 .

Solution. Let π = (π1, π2, π3) be a probability vector. By a direct computation,

πP =
(
pπ3, π1 +

2

3
π2 + (1− p)π3,

1

3
π2

)
,

so that for π to be a stationary distribution, we need π3 = 1
3
π2, π1 = pπ3 = p

3
π2, thus

implying 1 =
∑
j πj = 4+p

3
π2. As a result, π =

(
p/(4 + p), 3/(4 + p), 1/(4 + p)

)
.

Recall that in Example 5.11 we had p = 1
16

so that π1 = 1
65

, consistent with the

limiting value of p
(n)
11 as n→∞.

Lemma 5.38.b Let S be finite. Assume for some i ∈ S that p
(n)
ij → πj as n→∞

for all j ∈ S. Then the vector π = (πj : j ∈ S) is a stationary distribution.
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Proof. Since S is finite, we obviously have
∑

j

πj =
∑

j

lim
n→∞

p
(n)
ij = lim

n→∞

∑

j

p
(n)
ij = 1 ,

πj = lim
n→∞

p
(n+1)
ij = lim

n→∞

∑

k

p
(n)
ik pkj =

∑

k

lim
n→∞

p
(n)
ik pkj =

∑

k

πkpkj .

Theorem 5.39 (Convergence to equilibrium).b Let Xn, n ≥ 0, be an irreducible
aperiodic Markov chain with transition matrix P on a finite state space S. Then
there exists a unique probability distribution π such that for all i, j ∈ S

lim
n→∞

p
(n)
ij = πj .

In particular, π is stationary for P, and for every initial distribution

P(Xn = j)→ πj as n→∞.

The following two examples illustrate importance of our assumptions.

Example 5.40. For a periodic Markov chain on S = {1, 2} with transition
probabilities p12 = p21 = 1 and p11 = p22 = 0 we obviously have

P2k+1 =

(
0 1
1 0

)
, P2k =

(
1 0
0 1

)

for all k ≥ 0, so that there is no convergence.

Example 5.41. For a reducible Markov chain on S = {1, 2, 3} with transition
matrix (with strictly positive a, b, c such that a+ b+ c = 1)

P =



a b c
0 1 0
0 0 1




every stationary distribution π satisfies the equations

π1 = a π1 π2 = b π1 + π2 , π3 = c π1 + π3 ,

ie., π1 = 0, π2 = π2, π3 = π3, so that there is a whole family of solutions: every

vector µρ
def
= (0, ρ, 1− ρ) with 0 ≤ ρ ≤ 1 is a stationary distribution for P.

For a Markov chain Xn, let Tj be its first passage time to state j.

Lemma 5.42.Z If the transition matrix P of a Markov chain Xn is γ-positive,
min
j,k

qjk ≥ γ > 0, then there exist positive constants C and α such that

P(Tj > n) ≤ C exp
{
−αn

}
for all n ≥ 0 .

Proof. By the positivity assumption,

P(Tj > n) ≤ P
(
X1 6= j,X2 6= j, . . . , Xn 6= j

)
≤ (1− γ)n .
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By Lemma 5.42, the exponential moments E
(
ecTj

)
exist for all c > 0 small

enough, in particular, all polynomial moments E
(
(Tj)

p
)

with p > 0 are finite.

Lemma 5.43.b Let Xn be an irreducible recurrent Markov chain with stationary
distribution π. Then for all states j, the expected return time Ej(Tj) satisfies

πj Ej(Tj) = 1 .

If Vk(n) =
n−1∑
l=1

1{Xl=k} denotes the number of visits 46 to k before time n,

then Vk(n)/n is the proportion of time before n spent in state k.
The following consequence of Theorem 5.39 and Lemma 5.43 gives the long-

run proportion of time spent by a Markov chain in each state. It is often referred
to as the Ergodic theorem.

Theorem 5.44.b If (Xn)n≥0 is an irreducible Markov chain, then

P
(Vk(n)

n
→ 1

Ek(Tk)
as n→∞

)
= 1 ,

where Ek(Tk) is the expected return time to state k.
Moreover, if Ek(Tk) <∞, then for any bounded function f : S → R we have

P
( 1

n

n−1∑

k=0

f(Xk)→ f̄ as n→∞
)

= 1 ,

where f̄
def
=
∑
k∈S πk f(k) and π = (πk : k ∈ S) is the unique stationary

distribution.

In other words, the second claim implies that if a real function f on S is
bounded, then the average of f along every typical trajectory of a “nice” Markov
chain (Xk)k≥0 is close to the space average of f w.r.t. the stationary distribution
of this Markov chain.

Proof of Lemma 5.43. Let X0 have the distribution π so that P(X0 = j) = πj . Then,

πj Ej(Tj) ≡
∞∑

n=1

P
(
Tj ≥ n | X0 = j

)
P(X0 = j) =

∞∑

n=1

P
(
Tj ≥ n,X0 = j

)

Denote an
def
= P(Xm 6= j for 0 ≤ m ≤ n). We then have

P
(
Tj ≥ 1, X0 = j

)
≡ P(X0 = j) = 1− a0

and for n ≥ 2

P
(
Tj ≥ n,X0 = j

)
= P

(
X0 = j,Xm 6= j for 1 ≤ m ≤ n− 1

)

= P
(
Xm 6= j for 1 ≤ m ≤ n− 1

)

− P
(
Xm 6= j for 0 ≤ m ≤ n− 1

)
= an−2 − an−1 .

46 Notice that Ej
(
Vk(n)

)
≡ E

(
Vk(n) | X0 = j

)
=
n−1∑
l=1

p
(l)
jk .
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Consequently,

πj Ej(Tj) = P(X0 = j) +
∞∑

n=2

(an−2 − an−1)

= P(X0 = j) + P(X0 6= j)− lim
n→∞

an = 1− lim
n→∞

an = 1 ,

since
lim
n
an = P(Xm 6= j for all m) = P(Tj =∞) = 0 ,

by the recurrence assumption.

Remark 5.43.1. Observe that the argument above shows that even in the
countable state space the stationary distribution is unique, provided it exists.

5.6.1 Proof of Theorem 5.39

The material of this section is optional and thus for fun, not for exam!

Our argument shall rely upon the following important fact: for m ≥ 1, let

d(x,y) ≡ dm(x,y)
def
=

1

2

m∑

j=1

|xj − yj | (5.12)

denote the distance between x = (x1, . . . , xm) ∈ Rm and y = (y1, . . . , ym) ∈ Rm.
Z Recall that a sequence x(n) ∈ Rm is called Cauchy if for every ε > 0 there is N > 0

such that the inequality
d
(
x(n),x(n+k)) ≤ ε (5.13)

holds for all n > N and k ≥ 0. The fundamental property of Cauchy sequences in Rm
reads:

Property 5.45.Z Every Cauchy sequence in Rm has a unique limit.

Recall that a matrix Q = (qjk)mj,k=1 is called γ-positive, if

min
j,k

qjk ≥ γ > 0 . (5.14)

In what follows we shall rely upon the following property of γ-positive matrices.

Lemma 5.46.Z a) If Q = (qjk)mj,k=1 is a stochastic matrix and µ is a probability vector
in Rm, then µQ is a probability distribution in Rm.

b) Let Q = (qjk)mj,k=1 be a γ-positive m × m stochastic matrix. Then for all
probability vectors µ′, µ′′ in Rm we have

d
(
µ′Q, µ′′Q

)
≤ (1− γ) d(µ′, µ′′) . (5.15)

The estimate (5.15) means that the mapping µ 7→ µQ from the “probability sim-
plex”

{
x ∈ Rm : xj ≥ 0,

∑
j xj = 1

}
to itself is a contraction; therefore, it has a unique

fixed point x = xQ in this simplex. Results of this type are central to various areas
of mathematics.

We postpone the proof of Lemma 5.46 and verify a particular case Theorem 5.39
first.
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Proof of Theorem 5.39 for γ-positive matrices. Let µ(0) be a fixed initial distribution,
P be a γ-positive stochastic matrix, and let µ(n) = µ(0) P denote the distribution at
time n. By (5.15),

d
(
µ(n), µ(n+k)) = d

(
µ(0) Pn, µ(0) Pn+k)

≤ (1− γ)n d
(
µ(0), µ(0) Pk) ≤ (1− γ)n ,

so that µ(n) is a Cauchy sequence in Rm. As a result, the limit

π
def
= lim

n→∞
µ(n) = lim

n→∞
µ(0) Pn

exists, and (by Lemma 5.46a)) is a stationary probability distribution for P:

πP =
(

lim
n→∞

µ(n))P = lim
n→∞

(
µ(0) Pn)P = lim

n→∞
µ(0) Pn+1 = π .

Moreover, this limit is unique: indeed, assuming the contrary, let π′ and π′′ be two
distinct stationary probability distributions for P; then, by (5.15),

0 < d(π′, π′′) ≡ d(π′P, π′′P) ≤ (1− γ) d(π′, π′′) < d(π′, π′′) ;

this contradiction implies that d(π′, π′′) = 0, ie., π′ = π′′.
We finally observe that the limit π = limn→∞ µ

(0)Pn does not depend on the
initial distribution µ(0); therefore, for the initial distribution

µ
(0)
k =

{
1, k = i ,

0, k 6= i ,

we have p
(n)
ij ≡

(
µ(0)P

)
j
→ πj for all j = 1, 2, . . . ,m. The proof is finished.

Corollary 5.47.Z If P is a γ-positive transition matrix with stationary distribution π,

then for any initial distribution µ(0),

d
(
µ(0)Pn, π

)
≤ (1− γ)n ,

ie., the convergence in Theorem 5.39 is exponentially fast.

Proof of Lemma 5.46. a). If µ is a probability vector and Q is a stochastic matrix,
then µQ ≥ 0 and

∑

j

(
µQ)j =

∑

j

(∑

i

µiqij
)

=
∑

i

µi
(∑

j

qij
)

=
∑

i

µi = 1 .

b). For two probability vectors µ′ and µ′′ in Rm, denote

A0
def
=
{
j : µ′ − µ′′ > 0

}
, A1

def
=
{
j : µ′Q− µ′′Q > 0

}
;

clearly, both A0 and A1 are proper subsets of {1, 2, . . . ,m} so that
∑
j∈A1

qij ≤ 1− γ
for all i = 1, . . . ,m. Moreover, the definition (5.12) can be rewritten as

d(µ′, µ′′) ≡ 1

2

m∑

j=1

|xj − yj | =
∑

j∈A0

(µ′j − µ′′j )
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and thus we get

d(µ′Q, µ′′Q) =
∑

j∈A1

∑

i

(
µ′i − µ′′i

)
qij ≤

∑

j∈A1

∑

i∈A0

(
µ′i − µ′′i

)
qij

≤ (1− γ)
∑

i∈A0

(
µ′i − µ′′i

)
≡ (1− γ) d(µ′, µ′′) .

This finishes the proof.

Exercise 5.48.Z Let P =
(
pij
)m
i,j=1

be an irreducible aperiodic stochastic matrix. Show

that there exists an integer l ≥ 1 such that Pl is γ-positive with some γ ∈ (0, 1).

Hint: show first that if state k is aperiodic, then the set Ak
def
= {n > 0 : p

(n)
kk > 0}

contains all large enough natural numbers, ie., for some natural n0 ≥ 0, Ak contains
{n0, n0 + 1, . . . }.

5.7 Reversibility and detailed balance condition

The symmetric version of the Markov property says that given the present value
of the process, its past and future are independent, and thus suggests looking at
Markov chains with time running backwards. It is easy to see, that if we want
complete time-symmetry, the Markov chain must begin in equilibrium. In fact,
Exercise 5.53 below shows that a Markov chain in equilibrium, run backwards,
is again a Markov chain; the transition matrix may however be different.

Definition 5.49.b A stochastic matrix P and a measure λ are said to be in detailed
balance if

λipij = λjpji for all i, j. (5.16)

Equations (5.16) are called the detailed balance equations.

If a Markov chain has initial distribution λ and transition matrix P, which
satisfy DBE, then (5.16) implies that the amount of mass λipij flowing from
state i to state j concides with that of λjpji flowing in the opposite direction.
In particular, the mass distribution λ does not change with time:

Lemma 5.50.Z If P and λ are in detailed balance, then λ is invariant for P,
ie., λ = λP.

Proof. We have (λP)j =
∑
k λkpkj =

∑
k λjpjk = λj .

Definition 5.51.b Let (Xn)n≥0 be an irreducible Markov chain with state space S
and transition matrix P. A probability measure π on S is said to be reversible for
the chain (or for the matrix P) if π and P are in detailed balance, ie.,

πipij = πjpji for all i, j ∈ S.

An irreducible Markov chain is said to be reversible if it has a reversible distribution.
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Example 5.52. A Markov chain with transition matrix




0 p q
q 0 p
p q 0


 , 0 < p = 1− q < 1 ,

has stationary distribution π = (1/3, 1/3, 1/3). For the latter to be reversible
for this Markov chain, we need π1 p12 = π2 p21, i.e., p = q. If p = q = 1

2 , then
DBE (5.16) hold for all pairs of states, ie., the chain is reversible. Otherwise
the chain is not reversible.

Exercise 5.53. Let P be irreducible and have an invariant distribution π. Sup-
pose that (Xn)0≤n≤N is a Markov chain with transition matrix P and the initial

distribution π, and set Yn
def
= XN−n. Show that (Yn)0≤n≤N is a Markov chain

with the same initial distribution π and with transition matrix P̂ = (p̂ij) given
by πj p̂ji = πipij for all i, j. The chain (Yn)0≤n≤N is called the time-reversal of
(Xn)0≤n≤N .

Exercise 5.54. Find the transition matrix P̂ of the time-reversal for the Markov
chain from Example 5.52.

Example 5.55. [Random walk on a graph]Z A graph G is a countable collection
of states, usually called vertices, some of which are joined by edges. The valency
vj of vertex j is the number of edges at j, and we assume that every vertex in
G has finite valency. The random walk on G is a Markov chain with transition
probabilities

pjk =

{
1/vj , if (j, k) is an edge

0 , otherwise.

We assume that G is connected, so that P is irreducible. It is easy to see
that P is in detailed balance with v = (vj : j ∈ G). As a result, if the total

valency V =
∑
j vj is finite, then π

def
= v/V is a stationary distribution and P

is reversible.

5.8 Some applications of Markov chains

The material of this section is optional and thus for fun, not for exam!

The ideas behind Example 5.55 help to analyse many interesting Markov chains on
graphs. Indeed, this approach is central for many algorithmic applications, including
Markov chain Monte Carlo (MCMC).

Example 5.56. (Independent sets) Let G = (V,E) be a graph with vertices in V =
{v1, . . . , vk} and edges in E = {e1, . . . , e`}. A collection of vertices A ⊂ V is called an
independent set in G, if no two vertices in A are adjacent in G. The following Markov

chain randomly selects independent sets in SG
def
=
{

all independent sets in G
}

:

Let A ∈ SG be given (eg., A = ∅).

1. Pick v ∈ V uniformly at random;
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2. Flip a fair coin;

3. If the result is ‘heads’ and no neighbour of v is in A, add v to A:
A 7→ A ∪ {v}; otherwise, remove v from A: A 7→ A \ {v}.

This irreducible and aperiodic Markov chain jumps between independent sets which
differ in at most one vertex. Moreover, if A 6= A′ are two such independent sets,
then pAA′ = 1/(2k) = pA′A and thus the detailed balance equations imply that the
unique stationary distribution for this chain is uniform in SG. By Theorem 5.39, after
sufficiently many steps the distribution of this chain will be almost uniform in SG.

Notice that the cardinality |SG| of SG is enormous: indeed, if G is an m×m subset

in Z2, then k = m2 and a simple chessboard estimate gives |GS | ≥ 2m
2/2 ≥ 103m2/20;

eg., for m = 10 this lower bound gives 1015.

Example 5.57. (Graph colouring) Let G = (V,E) be a graph and q ≥ 2 be an
integer. A q-colouring of G is an assignment

V 3 v 7→ ξv ∈ S def
= {1, 2, . . . , q}

such that if v1 and v2 are adjacent in G, then ξv1 6= ξv2 . The following Markov chain
in SV randomly selects q-colourings of G:

Let a colouring C ∈ SV be given.

1. Pick v ∈ V uniformly at random;

2. Re-colour v in any admissible colour (ie., not in use by any of the
neighbours of v) uniformly at random.

It is easy to see that for q large enough, this Markov chain is irreducible, aperiodic,
and thus has a unique stationary distribution. Consequently, after sufficiently many
steps, the distribution of this Markov chain will be almost uniform in the collection
of admissible colourings of G. The smallest possible value of q for which the theory
works depends on the structure of G; in many cases this optimal value is unknown.

Example 5.58. (Gibbs sampler)Z More generally, if one needs to sample a random
element from a set S according to a probability distribution π, one attempts to con-
struct an irreducible aperiodic Markov chain in S, which is reversible w.r.t. π. Many
such examples can be found in the literature.

Z For various applications, it is essential to construct Markov chains with fast conver-
gence to equilibrium. This is an area of active research with a lot of interesting open
problems.
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