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Integration of functions
(Taking expectations of random variables)

Want: an integral (expectation operator) f 7→
∫
f ∈ R

which is

a) linear: for a, b ∈ R,
∫

(af + bg) = a
∫
f + b

∫
g ;

b) monotone: if f ≤ g , then
∫
f ≤

∫
g ;

c) respects limits: if fn → f “nicely”, then
∫
fn →

∫
f .

Riemann integral satisfies a) and b) only!

E.g. the Dirichlet function.

http://en.wikipedia.org/wiki/File:Riemann.gif
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This is possible for functions on N!
recall the following facts à la Core B1:

Claim 1:

Let S =
(
sm,n

)
m,n≥1 be a collection of numbers in R ≡ [−∞,+∞],

which is increasing in both m and n,

j ≤ m , k ≤ n =⇒ sj ,k ≤ sm,n .

Then
lim

m→∞
lim
n→∞

sm,n = lim
n→∞

lim
m→∞

sm,n = supS ,

ie., interchanging the order of limits does not change the result!
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Useful facts à la Core B1 [cont’d]

Claim 2:

Let A =
(
am,n

)
m,n≥1 be a collection of numbers in R+ ≡ [0,+∞].

Then
∞∑
n=1

∞∑
m=1

am,n =
∞∑

m=1

∞∑
n=1

am,n = supS ,

where S is the set of all sums of finitely many elements of A.

Ie., iterated sums of non-negative numbers can be summed in any
order.

Remark : You had a similar statement for multiple integrals in
Core A!
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Useful facts à la Core B1 [cont’d]

Claim 3:

Let
(
am,n

)
m,n≥1 be a collection of numbers in R+ ≡ [0,+∞],

which is increasing in n,

k ≤ n =⇒
(∀m ≥ 1

)
am,k ≤ am,n .

Then

lim
n→∞

∞∑
m=1

am,n =
∞∑

m=1

lim
n→∞

am,n ,

ie., the (monotone) limit of the sum equals the sum of the limits!
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Useful facts à la Core B1 [cont’d]

Claim 4:

Let
(
am,n

)
m,n≥1,

(
am
)
m≥1 and

(
bm
)
m≥1 be collections of numbers

such that for every fixed m ∈ N, we have

lim
n→∞

am,n = am ,
∣∣am,n

∣∣ ≤ bm , and
∑
m

bm <∞ .

Then

lim
n→∞

∞∑
m=1

am,n =
∞∑

m=1

am =
∞∑

m=1

lim
n→∞

am,n .

ie., the (bounded) limit of the sum equals the sum of the limits!

Z
For non-negative functions on N, the sum (ie., the integral)
has all properties A)–C) above!
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Lebesgue construction

We need: a measure space (E ,A, µ), where E is a set, A is a
σ-field of subsets of E , and µ is a measure.

Recall: A collection A of subsets of E is a σ-field if:

1. ∅ ∈ A;

2. if A1, A2, · · · ∈ A, then
⋃∞

k=1 Ak ∈ A;

3. if A ∈ A, then Ac ∈ A.

A set function µ : A → R+ ≡ [0,∞] is called σ-additive or a
measure, if

1. µ(∅) = 0;

2. for every sequence (Ak)k≥1, of disjoint sets in A,

µ
( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ
(
Ak

)
.
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Simple non-negative functions

Let SF+ = SF+(E ,A, µ) be the collection of finite sums

k∑
j=1

aj1Aj
(x) , x ∈ E , k ∈ N ,

with aj ∈ [0,∞] pairwise different (ie., ai = aj iff i = j), and{
A1, . . . ,Ak

}
⊆ A being a finite partition of E .

Clearly, if f , g ∈ SF+ and a, b ≥ 0, then the functions

af + bg , f ∧ g ≡ min(f , g) , f ∨ g ≡ max(f , g)

also belong to SF+.
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Integration of simple functions

Def.: If f =
∑k

j=1 aj1Aj
∈ SF+, define

µ0(f ) =
k∑

j=1

ajµ0
(
1Aj

)
≡
∫

f dµ =
k∑

j=1

ajµ(Aj) ,

where we shall always assume that 0 · ∞ =∞ · 0 = 0.

Lemma : Let f , g ∈ SF+(E ,A, µ). Then:

a) For a, b ≥ 0, µ0(af + bg) = aµ0(f ) + bµ0(g);

b) If f ≤ g, then µ0(f ) ≤ µ0(g);

c) If µ(f 6= g) = 0, then µ0(f ) = µ0(g).
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Take the limit:

If: fk ∈ SF+, k ≥ 1, and for every x ∈ E and all k ∈ N,

fk(x) ≤ fk+1(x) and fk(x)→ f (x) ∈ [0,∞] ,

define
µ(f ) = lim

n→∞
µ0(fn) .

We have: additivity, monotonicity, and uniqueness.

Need:

• independence of the sequence fn;
• characterise all possible limits f .

 Borel functions f ≥ 0.
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Integration of non-negative Borel functions

Equivalently, if f : E → [0,∞] is a Borel function, put

µ(f ) = sup
{
µ0(h) : h ∈ SF+(E ,A, µ), h ≤ f

}
.

Lemma : If f ≥ 0 and g ≥ 0 are Borel functions on (E ,A, µ),
then:

a) For a, b ≥ 0, µ(af + bg) = aµ(f ) + bµ(g);

b) If f ≤ g, then µ(f ) ≤ µ(g);

c) If µ(f 6= g) = 0, then µ(f ) = µ(g).

In addition, µ(f ) behaves properly when taking limits!
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Integration of Borel functions

If f is a general Borel function on (E ,A, µ), can write

f = f + − f − ,
where

f +
def
= max

{
f , 0
}
, f −

def
= max

{
−f , 0

}
.

Then f + ≥ 0 and f − ≥ 0 are Borel functions with |f | = f + + f −.

Def.: A Borel function f on (E ,A, µ) is called integrable if

µ(|f |) ≡ µ(f +) + µ(f −) <∞ ,

and then we define

µ(f )
def
= µ(f +)− µ(f −) .

Of course, if f is integrable, then
∣∣µ(f )∣∣ ≤ µ(|f |).
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Lebesgue integral and limits

Monotone Convergence Theorem (MON)
Let f and a sequence f1, f2, . . . be Borel functions on (E ,A, µ)
such that 0 ≤ fn ↗ f . Then, as n→∞,

µ
(
fn
)
↗ µ

(
f
)
≤ ∞ .

Monotone Convergence Theorem (MON)
If random variables Xn ≥ 0 are such that Xn ↗ X as n→∞, then
E(Xn)↗ E(X ) ≤ ∞ as n→∞.

monotone sequences always converge!

This is analogous to Claim 3 above!
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Monotone Convergence: applications

Example : If (Zk)k≥1 are non-negative random variables, then

E
( ∞∑
k=1

Zk

)
=
∞∑
k=1

E
(
Zk

)
.

Example : As n→∞, we have∫ 1

0

log(1 + x)

1 + x2/n
dx ↗

∫ 1

0
log(1 + x) dx = log(4/e) .
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Monotone Convergence: applications

Example : Let X ≥ 0 be a r.v. with E[X 2] <∞; for k ≥ 1, define

Yk
def
= X 2

1X≤k ≡

{
X 2 , if X ≤ k ,

0 , otherwise .

Then E
(
Yk

)
↗ E

(
X 2
)

as k →∞.

Similarly, for the variables

Zk
def
= X 2 ∧ k2013 ≡ min

(
X 2, k2013

)
we have E

(
Zk

)
↗ E

(
X 2
)

as k →∞.
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Lebesgue integral and limits (contd.)

Dominated Convergence Theorem (DOM)
Let f and (fn)n≥1, be Borel functions on (E ,A, µ) such that for all
x ∈ E, we have fn(x)→ f (x) as n→∞. If there exists a Borel
function g ≥ 0 such that µ(g) <∞, and

∣∣fn(x)
∣∣ ≤ g(x) for all

x ∈ E, then µ(fn)→ µ(f ) as n→∞.

Dominated Convergence Theorem (DOM)
Let X and (Xn)n≥1 be random variables such that for all ω ∈ Ω,
we have Xn(ω)→ X (ω) as n→∞. If there is a random variable
Y ≥ 0 such that E(Y ) <∞, and for all ω ∈ Ω,

∣∣Xn(ω)
∣∣ ≤ Y (ω),

then E(Xn)→ E(X ) as n→∞.

the point-wise convergence everywhere can be replaced with the almost sure convergence!

This is analogous to Claim 4 above!
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Dominated Convergence: applications

Example : (Q1, 2008)

Show that, as n→∞, ∫ ∞

0

sin(ex)

1 + nx2
dx → 0 .

In your answer you should give a clear statement of any result you use.

Example : Let X ≥ 0 be a r.v. with E[X 4] <∞; for k ≥ 1,

define Yk
def
= X 4

1X≤k and Y = X 4. Then

Yk
a.s.→ X 4 ,

∣∣Yk

∣∣ ≤ Y , E
[
Y
]
<∞ ,

so that (DOM) implies E
(
Yk

)
→ E

(
X 4
)
.
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Dominated Convergence: applications

Example : If X is a r.v. with E[X 2] <∞, then the variables

Yk
def
= X 2

1X>k ≡

{
X 2 , if X > k ,

0 , otherwise .

satisfy E
(
Yk

)
= E

(
X 2

1X>k

)
→ 0 as k →∞.

Example : If a r.v. X is such that E(X 2) <∞, then by the
(generalized) Markov inequality, for every k > 0

P
(
X > k

)
≤ E(X 2)/k2 ,

ie., P
(
X > k

)
decays not slower than 1/k2 as k →∞. Actually,

k2P
(
X > k

)
≤ E

(
X 2

1X>k

)
→ 0 ,

ie., in fact P
(
X > k

)
decays to zero faster than 1/k2.
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Elements of integration

By the end of this section you should be able to:

• describe the main steps in the construction of the Lebesgue
integral and compare it to the Riemann integral;

• state the main properties of the Lebesgue integral;

• state and apply the Monotone Convergence theorem;

• state and apply the Dominated Convergence theorem.
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