Lebesgue construction 000000 Limiting results 000 000 FINAL REMARKS

Integration of functions

(Taking expectations of random variables)

Want: an integral (expectation operator) $f \mapsto \int f \in \mathbb{R}$ which is

A) linear: for $a, b \in \mathbb{R}$, $\int (af + bg) = a \int f + b \int g$; B) monotone: if $f \leq g$, then $\int f \leq \int g$; C) respects limits: if $f_n \to f$ "nicely", then $\int f_n \to \int f$.

Riemann integral satisfies a) and b) only!

E.g. the *Dirichlet* function.

LIMITING RESULTS

This is possible for functions on $\mathbb{N}!$

recall the following facts à la Core B1:

Claim 1:

Let $S = (s_{m,n})_{m,n \ge 1}$ be a collection of numbers in $\overline{\mathbb{R}} \equiv [-\infty, +\infty]$, which is increasing in both m and n,

$$j \leq m, \quad k \leq n \implies s_{j,k} \leq s_{m,n}.$$

Then

$$\lim_{m\to\infty}\lim_{n\to\infty}s_{m,n}=\lim_{n\to\infty}\lim_{m\to\infty}s_{m,n}=\sup\mathcal{S}\,,$$

ie., interchanging the order of limits does not change the result!

LEBESGUE CONSTRUCTION

LIMITING RESULTS

FINAL REMARKS

Useful facts à la Core B1 [cont'd]

Claim 2:

Let $\mathcal{A} = (a_{m,n})_{m,n \ge 1}$ be a collection of numbers in $\overline{\mathbb{R}}^+ \equiv [0, +\infty]$. Then $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m,n} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} = \sup \mathcal{S},$

where S is the set of **all** sums of **finitely** many elements of A.

le., iterated sums of non-negative numbers can be summed in any order.

Remark : You had a similar statement for multiple integrals in Core A!

LEBESGUE CONSTRUCTION

LIMITING RESULTS

FINAL REMARKS

Useful facts à la Core B1 [cont'd]

Claim 3:

Let $(a_{m,n})_{m,n\geq 1}$ be a collection of numbers in $\overline{\mathbb{R}}^+ \equiv [0, +\infty]$, which is *increasing* in *n*,

$$k \leq n \implies (^{orall} m \geq 1) \quad a_{m,k} \leq a_{m,n}.$$

Then

$$\lim_{n\to\infty}\sum_{m=1}^{\infty}a_{m,n}=\sum_{m=1}^{\infty}\lim_{n\to\infty}a_{m,n}\,,$$

ie., the (monotone) limit of the sum equals the sum of the limits!

LEBESGUE CONSTRUCTION

LIMITING RESULTS

FINAL REMARKS

Useful facts à la Core B1 [cont'd]

Claim 4:

Let $(a_{m,n})_{m,n\geq 1}$, $(a_m)_{m\geq 1}$ and $(b_m)_{m\geq 1}$ be collections of numbers such that for every fixed $m \in \mathbb{N}$, we have

$$\lim_{n\to\infty}a_{m,n}=a_m\,,\qquad \left|a_{m,n}\right|\leq b_m\,,\qquad \text{and}\qquad \sum_m b_m<\infty\,.$$

Then

$$\lim_{n\to\infty}\sum_{m=1}^{\infty}a_{m,n}=\sum_{m=1}^{\infty}a_m=\sum_{m=1}^{\infty}\lim_{n\to\infty}a_{m,n}.$$

ie., the (bounded) limit of the sum equals the sum of the limits!

For *non-negative* functions on \mathbb{N} , the sum (ie., the integral) has all properties **A**)–**C**) above!

F

Lebesgue construction

We need: a measure space (E, A, μ) , where E is a set, A is a σ -field of subsets of E, and μ is a measure.

Recall: A collection \mathcal{A} of subsets of E is a σ -field if:

1.
$$\emptyset \in \mathcal{A}$$
;
2. if $A_1, A_2, \dots \in \mathcal{A}$, then $\bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$;
3. if $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.

A set function $\mu: A \to \overline{\mathbb{R}}_+ \equiv [0,\infty]$ is called σ -additive or a measure, if

- 1. $\mu(\varnothing) = 0;$
- 2. for every sequence $(A_k)_{k\geq 1}$, of disjoint sets in \mathcal{A} ,

$$\mu\Big(\bigcup_{k=1}^{\infty}A_k\Big)=\sum_{k=1}^{\infty}\mu(A_k).$$

LEBESGUE CONSTRUCTION 000000 LIMITING RESULTS

Simple non-negative functions

Let $SF^+ = SF^+(E, A, \mu)$ be the collection of **finite** sums

$$\sum_{j=1}^k a_j \mathbb{1}_{A_j}(x) \,, \qquad x \in E \,, \qquad k \in \mathbb{N} \,,$$

with $a_j \in [0, \infty]$ pairwise different (ie., $a_i = a_j$ iff i = j), and $\{A_1, \ldots, A_k\} \subseteq A$ being a **finite** partition of *E*.

Clearly, if $f, g \in SF^+$ and $a, b \ge 0$, then the functions

$$af + bg$$
, $f \wedge g \equiv \min(f,g)$, $f \vee g \equiv \max(f,g)$

also belong to SF⁺.

LEBESGUE CONSTRUCTION 000000 LIMITING RESULTS

FINAL REMARKS

Integration of simple functions

Def.: If $f = \sum_{j=1}^{k} a_j \mathbb{1}_{A_j} \in SF^+$, define

$$\mu_0(f) = \sum_{j=1}^k a_j \mu_0(\mathbb{1}_{A_j}) \equiv \int f \, d\mu = \sum_{j=1}^k a_j \mu(A_j),$$

where we shall always assume that $0 \cdot \infty = \infty \cdot 0 = 0$.

Lemma : Let $f, g \in SF^+(E, A, \mu)$. Then:

A) For
$$a, b \ge 0$$
, $\mu_0(af + bg) = a\mu_0(f) + b\mu_0(g)$;

B) If
$$f \leq g$$
, then $\mu_0(f) \leq \mu_0(g)$;

C) If
$$\mu(f \neq g) = 0$$
, then $\mu_0(f) = \mu_0(g)$.

LEBESGUE CONSTRUCTION 000000

LIMITING RESULTS 000 000 FINAL REMARKS

Take the limit:

If: $f_k \in SF^+$, $k \ge 1$, and for every $x \in E$ and all $k \in \mathbb{N}$,

$$f_k(x) \leq f_{k+1}(x)$$
 and $f_k(x) o f(x) \in [0,\infty]$,

define

$$\mu(f) = \lim_{n \to \infty} \mu_0(f_n) \, .$$

We have: additivity, monotonicity, and uniqueness.

Need:

- independence of the sequence f_n;
- characterise all possible limits f.
- \rightsquigarrow Borel functions $f \ge 0$.

Integration of non-negative Borel functions

Equivalently, if $f: E \to [0,\infty]$ is a Borel function, put

$$\mu(f) = \sup\left\{\mu_0(h) : h \in \mathsf{SF}^+(E, \mathcal{A}, \mu), h \leq f\right\}.$$

Lemma : If $f \ge 0$ and $g \ge 0$ are Borel functions on (E, A, μ) , then:

A) For a,
$$b \ge 0$$
, $\mu(af + bg) = a\mu(f) + b\mu(g)$;

B) If
$$f \leq g$$
, then $\mu(f) \leq \mu(g)$;

C) If
$$\mu(f \neq g) = 0$$
, then $\mu(f) = \mu(g)$.

In addition, $\mu(f)$ behaves properly when taking limits!

Integration of Borel functions

If f is a general Borel function on (E, A, μ) , can write

$$f=f^+-f^-\,,$$

where

$$f^+ \stackrel{\mathrm{def}}{=} \max\{f, 0\}, \qquad f^- \stackrel{\mathrm{def}}{=} \max\{-f, 0\}.$$

Then $f^+ \ge 0$ and $f^- \ge 0$ are Borel functions with $|f| = f^+ + f^-$.

Def.: A Borel function f on (E, A, μ) is called *integrable* if

$$\mu(|f|) \equiv \mu(f^+) + \mu(f^-) < \infty$$

and then we define

$$\mu(f) \stackrel{\mathsf{def}}{=} \mu(f^+) - \mu(f^-) \,.$$

Of course, if f is integrable, then $|\mu(f)| \le \mu(|f|)$.

Lebesgue integral and limits

Monotone Convergence Theorem (MON)

Let f and a sequence f_1, f_2, \ldots be Borel functions on (E, \mathcal{A}, μ) such that $0 \leq f_n \nearrow f$. Then, as $n \to \infty$,

 $\mu(f_n) \nearrow \mu(f) \leq \infty$.

Monotone Convergence Theorem (MON) If random variables $X_n \ge 0$ are such that $X_n \nearrow X$ as $n \to \infty$, then $E(X_n) \nearrow E(X) \le \infty$ as $n \to \infty$.

monotone sequences always converge!

This is analogous to Claim 3 above!

Monotone Convergence: applications

Example : If $(Z_k)_{k\geq 1}$ are non-negative random variables, then

$$\mathsf{E}\Big(\sum_{k=1}^{\infty} Z_k\Big) = \sum_{k=1}^{\infty} \mathsf{E}(Z_k) \,.$$

Example : As $n \to \infty$, we have

$$\int_0^1 \frac{\log(1+x)}{1+x^2/n} \, dx \nearrow \int_0^1 \log(1+x) \, dx = \log(4/e) \, .$$

Monotone Convergence: applications

Example : Let $X \ge 0$ be a r.v. with $E[X^2] < \infty$; for $k \ge 1$, define

$$Y_k \stackrel{\mathrm{def}}{=} X^2 \mathbbm{1}_{X \leq k} \equiv egin{cases} X^2 \,, & \mathrm{if} \ X \leq k \,, \ 0 \,, & \mathrm{otherwise} \,. \end{cases}$$

Then
$$\mathsf{E}(Y_k) \nearrow \mathsf{E}(X^2)$$
 as $k \to \infty$.

Similarly, for the variables

$$Z_k \stackrel{\text{def}}{=} X^2 \wedge k^{2013} \equiv \min(X^2, k^{2013})$$

we have $\mathsf{E}(Z_k) \nearrow \mathsf{E}(X^2)$ as $k \to \infty$.

Lebesgue integral and limits (contd.)

Dominated Convergence Theorem (DOM) Let f and $(f_n)_{n\geq 1}$, be Borel functions on (E, \mathcal{A}, μ) such that for all $x \in E$, we have $f_n(x) \to f(x)$ as $n \to \infty$. If there exists a Borel function $g \ge 0$ such that $\mu(g) < \infty$, and $|f_n(x)| \le g(x)$ for all $x \in E$, then $\mu(f_n) \to \mu(f)$ as $n \to \infty$.

Dominated Convergence Theorem (DOM)

Let X and $(X_n)_{n\geq 1}$ be random variables such that for all $\omega \in \Omega$, we have $X_n(\omega) \to X(\omega)$ as $n \to \infty$. If there is a random variable $Y \ge 0$ such that $E(Y) < \infty$, and for all $\omega \in \Omega$, $|X_n(\omega)| \le Y(\omega)$, then $E(X_n) \to E(X)$ as $n \to \infty$.

the point-wise convergence everywhere can be replaced with the almost sure convergence!

This is analogous to Claim 4 above!

٠

LIMITING RESULTS

Dominated Convergence: applications

Example : (Q1, 2008)

Show that, as $n \to \infty$,

$$\int_0^\infty \frac{\sin(e^x)}{1+nx^2}\,dx\to 0\,.$$

In your answer you should give a clear statement of any result you use.

Example : Let $X \ge 0$ be a r.v. with $E[X^4] < \infty$; for $k \ge 1$, define $Y_k \stackrel{\text{def}}{=} X^4 \mathbb{1}_{X \le k}$ and $Y = X^4$. Then

$$Y_k \stackrel{\text{a.s.}}{\to} X^4$$
, $|Y_k| \le Y$, $\mathsf{E}[Y] < \infty$,

so that (DOM) implies $E(Y_k) \rightarrow E(X^4)$.

Dominated Convergence: applications

Example : If X is a r.v. with $E[X^2] < \infty$, then the variables

$$Y_k \stackrel{\text{def}}{=} X^2 \mathbb{1}_{X > k} \equiv \begin{cases} X^2, & \text{if } X > k, \\ 0, & \text{otherwise}. \end{cases}$$

satisfy $\mathsf{E}(Y_k) = \mathsf{E}(X^2\mathbb{1}_{X>k}) \to 0$ as $k \to \infty$.

Example : If a r.v. X is such that $E(X^2) < \infty$, then by the (generalized) Markov inequality, for every k > 0

$$\mathsf{P}(X > k) \leq \mathsf{E}(X^2)/k^2$$

ie., $\mathsf{P}(X > k)$ decays *not slower* than $1/k^2$ as $k o \infty$. Actually,

$$k^2 \mathsf{P}(X > k) \leq \mathsf{E}(X^2 \mathbb{1}_{X > k}) \to 0$$
,

ie., in fact P(X > k) decays to zero *faster* than $1/k^2$.

LEBESGUE CONSTRUCTION

LIMITING RESULTS

FINAL REMARKS

ELEMENTS OF INTEGRATION

By the end of this section you should be able to:

- describe the main steps in the construction of the Lebesgue integral and compare it to the Riemann integral;
- state the main properties of the Lebesgue integral;
- state and apply the Monotone Convergence theorem;
- state and apply the Dominated Convergence theorem.