
Definition Applications Recurrences Convergence Final remarks

Generating functions

Def.4.1: Given a collection of real numbers (ak)k≥0, the function

G (s) = Ga(s)
def
=
∞∑
k=0

ak s
k

is called the generating function of (ak)k≥0.

If Ga(s) is analytic near the origin, then

ak =
1

k!

dk

dsk
Ga(s)

∣∣
s=0

.

This result is often referred to as the uniqueness property of
generating functions.
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Def.4.2: If X is a discrete random variable with values in
Z+ def

= {0, 1, . . . }, its (probability) generating function,

G (s) ≡ GX (s)
def
= E

(
sX
)

=
∞∑
k=0

skP(X = k) , (1.1)

is just the generating function of the pmf
{
pk
}
≡
{

P(X = k)
}

of X .

Recall that the moment generating function MX (t)
def
= E(etX ) of a

random variable X is just
∑
k≥0

E(X k )
k! tk .

Why do we introduce both GX (s) and MX (t)?
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Theorem 4.3: If X and Y are independent random variables with

values in {0, 1, 2, . . . } and Z
def
= X + Y , then their generating

functions satisfy

GZ (s) = GX+Y (s) = GX (s)GY (s) .

Recall: if X and Y are discrete random variables, and f , g : Z+ → R are

arbitrary functions, then f (X ) and g(Y ) are independent random

variables and E
[
f (X )g(Y )

]
= Ef (X ) · Eg(Y ).
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Example 4.4: If X1, X2, . . . , Xn are i.i.d.r.v. with values in
{0, 1, 2, . . . } and if Sn = X1 + · · ·+ Xn, then

GSn(s) = GX1(s) . . .GXn(s) ≡
[
GX (s)

]n
.

Example 4.5: Let X1, X2, . . . , Xn be i.i.d.r.v. with values in
{0, 1, 2, . . . } and let N ≥ 0 be an integer-valued random variable

independent of {Xk}k≥1. Then SN
def
= X1 + · · ·+ XN has

generating function

GSN (s) = GN

(
GX (s)

)
.
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Example 4.6: [Renewals] Imagine a diligent janitor who replaces a
light bulb the same day as it burns out. Suppose the first bulb is
put in on day 0 and let Xi be the lifetime of the ith light bulb. Let
the individual lifetimes Xi be i.i.d.r.v.’s with values in {1, 2, . . . }
and have a common distribution with generating function Gf (s).

Define rn
def
= P

(
a light bulb was replaced on day n

)
and

fk
def
= P

(
the first light bulb was replaced on day k

)
. Then r0 = 1,

f0 = 0, and for n ≥ 1,

rn = f1rn−1 + f2rn−2 + · · ·+ fnr0 =
n∑

k=1

fk rn−k .

A standard computation implies that Gr (s) = 1 + Gf (s)Gr (s) for
all |s| ≤ 1, so that Gr (s) = 1/(1− Gf (s)).
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In general, we say a sequence (cn)n≥0 is the convolution of (ak)k≥0
and (bm)m≥0 (write c = a ? b), if

cn =
n∑

k=0

ak bn−k , n ≥ 0 .

Theorem 4.7: [Convolution thm] If c = a ? b, then the generating
functions Gc(s), Ga(s), and Gb(s) satisfy

Gc(s) = Ga(s)Gb(s) .

Example 4.8: Let X ∼ Poi(λ) and Y ∼ Poi(µ) be independent.
Then Z = X + Y is Poi(λ+ µ).

Solution. A straightforward computation gives GX (s) = eλ(s−1), and

Theorem 4.3 implies GZ (s) = GX (s)GY (s) ≡ e(λ+µ)(s−1) , so that the

result follows by uniqueness.



Definition Applications Recurrences Convergence Final remarks

Notice: if X1, X2, . . . , Xn are independent Bernoulli rv’s with
parameter p ∈ [0, 1], each Xk has the generating function
G (s) = qs0 + ps1 = q + ps. If Sn =

∑n
k=1 Xk , then

GSn(s) = GX1(s)GX2(s) . . .GXn(s) =
(
G (s)

)n
= (q + ps)n .

By the Binomial theorem, this reads

GSn(s) =
n∑

k=0

(
n

k

)
pkqn−k sk ,

ie., Sn ∼ Bin(n, p).

Example 4.9: If X ∼ Bin(n, p) and Y ∼ Bin(m, p) are
independent, then X + Y ∼ Bin(n + m, p).
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Computation of moments

Theorem 4.10: If a rv X has generating function G (s), then

a) E(X ) = G ′(1),

b) more generally, E
[
X (X − 1) . . . (X − k + 1)

]
= G (k)(1);

here, G (k)(1) is the shorthand for lims↑1 G
(k)(s), the limiting value

of the kth left derivative of G (s) at s = 1.

The quantity E
[
X (X − 1) . . . (X − k + 1)

]
is known as the kth

factorial moment of X .

It is a straightforward exercise to show that

Var(X ) = G ′′X (1) + G ′X (1)−
(
G ′X (1)

)2
.
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Proof:
b) Fix s ∈ (0, 1) and differentiate G (s) k times to get

G (k)(s) = E
[
sX−kX (X − 1) . . . (X − k + 1)

]
.

Taking the limit s ↑ 1 and using the Abel theorem, we obtain

G (k)(s)→ E
[
X (X − 1) . . . (X − k + 1)

]
. �

Notice also that

lim
s↗1

GX (s) ≡ lim
s↗1

E[sX ] = P(X <∞) .

This allows us to check whether a variable is finite, if we do not
know this apriori.
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Recurrences
Generating functions are very useful in solving recurrences,
especially when combined with the following algebraic fact.

Lemma 4.12: Let f (x) = g(x)/h(x) be a ratio of two polynomials
without common roots. Let deg(g) < deg(h) = m and suppose
that the roots a1, . . . , am of h(x) are all distinct. Then f (x) can
be decomposed into a sum of partial fractions, ie., for some
constants b1, b2, . . . , bm,

f (x) =
b1

a1 − x
+

b2
a2 − x

+ · · ·+ bm
am − x

.

Since
b

a− x
=

b

a

∑
k≥0

(x
a

)k
=
∑
k≥0

b

ak+1
xk ,

a partial fraction sum can be easily written as a power series.
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Example 4.13: Let an be the probability that n independent
Bernoulli trials (with success probability p) result in an even
number of successes. Find the generating function of an.

Solution. The event under consideration occurs if an initial failure at
the first trial is followed by an even number of successes or if an initial
success is followed by an odd number of successes. Therefore, a0 = 1
and

an = (1− p) an−1 + p (1− an−1) , n ≥ 1 .

Multiplying these equalities by sn and adding we get (with q = 1− p)

Ga(s)− 1 = qs Ga(s) + p
∑
n≥1

sn − ps Ga(s) = (q − p)s Ga(s) +
ps

1− s
,

and after rearranging,

Ga(s) =
(

1 +
ps

1− s

)
/
(
1− (q − p)s

)
=

1

2

( 1

1− s
+

1

1− (q − p)s

)
.

As a result, an =
(
1 + (q − p)n

)
/2.
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Example 4.14: A biased coin is tossed repeatedly; on each toss, it
shows a “head” with probability p. Let rn be the probability that a
sequence of n tosses never has two “heads” in a row. Show that
r0 = 1, r1 = 1, and for all n > 1, rn = qrn−1 + pqrn−2, where
q = 1− p. Find the generating function of the sequence (rn)n≥0.

Solution. Every sequence of n tosses contributing to rn starts either with
T or with HT; therefore, for all n > 1, rn = qrn−1 + pqrn−2 (where
q = 1− p). Multiplying these equalities by sn and summing, we get

Gr (s) =
∑
n≥0

rns
n = 1 + s + qs

∑
n≥2

rn−1s
n−1 + pqs2

∑
n≥2

rn−2s
n−2

= (qs + pqs2)Gr (s) + 1 + ps ,

so that

Gr (s) =
1 + ps

1− qs − pqs2
.
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Continuity theorem

Theorem 4.15: Let for every fixed n the sequence a0,n, a1,n, . . .
be a probability distribution, ie., ak,n ≥ 0 and

∑
k≥0 ak,n = 1,

and let Gn(s) =
∑

k≥0 ak,ns
k be the corresponding generating

function. Then

∀k ≥ 0 ak,n → ak ⇐⇒ ∀s ∈ [0, 1) Gn(s)→ G (s) ,

where G (s) =
∑

k≥0 aks
k , the generating function of the limiting

sequence (ak)k≥0.

The convergence
{
ak,n

}
k≥0 →

{
ak
}
k≥0 is known as the

convergence in distribution!
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Example 4.16: If Xn ∼ Bin(n, p) with p = pn satisfying
n · pn → λ as n→∞, then

GXn(s) ≡
(
1 + pn(s − 1)

)n → exp{λ(s − 1)} ,

so that the distribution of Xn converges to that of X ∼ Poi(λ).

R script!
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Generating functions

By the end of this section you should be able to:

• define ordinary, probability, and moment generating functions;

• derive the value of the nth term of a sequence from the
corresponding generating function;

• state and apply the theorem about generating functions of
convolutions;

• use probability generating functions to compute moments of
random variables;

• state and apply the uniqueness and continuity theorems for
generating functions;

• use generating functions in solving recurrent relations;

• explain the role of generating functions in proving convergence
in distribution.
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Problem GF-17

Two players play a game called heads or tails. In this game, a coin
coming up heads with probability p is tossed consecutively. Each
time a head comes up Player I wins 1 pence, otherwise she loses 1
pence. Let Xk ∈ {−1, 1} denote the outcome of the kth trial, and
let Sn, n ≥ 0, be the total gain of Player I after n trials,
Sn = X1 + · · ·+ Xn, where different outcomes are assumed
independent. Let T be the moment when Player I is first in the
lead, ie.,

Sk ≤ 0 for k < T , and ST = 1 .

(a) find the generating function GT (s) = E(sT ) of T ;

(b) for which values of p is T a proper random variable, ie., when
P(T <∞) ≡ lims↗1 GT (s) = 1?

(c) compute the expectation ET of T .
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Solution

Let f
(k)
ij = P(S1 6= j , . . . ,Sk−1 6= j ,Sk = j | S0 = i) be the

probability to first hit state j after k jumps, starting from i . Then

P(T = k) = f
(k)
01 and GT (s) =

∑∞
k=0 f

(k)
01 sk .

On the event {X1 = 1} we have T = 1, and on the event
{X1 = −1} we have T = 1 + T2, where T2 is the time to first hit
state 1 starting from −1. By the partition theorem,

GT (s) = E(sT | X1 = 1)P(X1 = 1) + E(sT | X1 = −1)P(X1 = −1)

or (with q = 1− p)

GT (s) = ps + qsE(sT2) = ps + qs GT2(s) . (*)
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To get from state −1 to state 1 we have to pass through 0, so that

P(T = m) = f
(m)
−1,1 =

m−1∑̀
=1

f
(`)
−1,0 f

(m−`)
0,1 ,

where, by homogeneity, f
(`)
−1,0 ≡ f

(`)
0,1 ; the convolution theorem now

implies GT2(s) = GT (s)GT (s) =
(
GT (s)

)2
. Substituting this into

(*) and solving for GT (s), we get (since GT (s)→ 0 if s → 0!)

GT (s) =
1−
√

1−4pqs2
2qs = 2ps

1+
√

1−4pqs2
.

Now,

P(T <∞) = GT (1) = 1−|p−q|
2q =

{
1 , p ≥ q ,

p/q , p < q .

Similarly (do the computation!),

ET = G ′T (1) =

{
1/(p − q) , p > q ,

+∞ , p = q .

Also, for p < q we have P(T =∞) = 1− p
q > 0, so that ET =∞.
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