
O.H. Probability II (MATH 2647) M15

4 Generating functions

Even quite straightforward counting problems can lead to laborious and lengthy
calculations. These are often greatly simplified by using generating functions. 28

Definition 4.1. Given a collection of real numbers (ak)k≥0, the function

G(s) = Ga(s)
def
=

∞∑

k=0

ak s
k (4.1)

is called the generating function of (ak)k≥0.

Why do we care?Z If the generating function Ga(s) of (an)n≥0 is analytic near the
origin, then there is a one-to-one correspondence between Ga(s) and (an)n≥0;
namely, ak can be recovered via 29

ak =
1

k!

dk

dsk
Ga(s)

∣∣
s=0

. (4.2)

This result is often referred to as the uniqueness property of generating functions.

Definition 4.2. If X is a discrete random variable with values in Z+ def
= {0, 1, . . . },

its (probability) generating function,

G(s) ≡ GX(s)
def
= E

(
sX
)

=

∞∑

k=0

skP(X = k) , (4.3)

is just the generating function of the pmf
{
pk
}
≡
{

P(X = k)
}

of X.

Recall that the moment generating function30 MX(t)
def
= E(etX) of a random

variable X is just 31
∑
k≥0

E(Xk)
k! tk. WhyZ do we introduce both GX(s) and MX(t)?

The following result illustrates one of the most useful applications of gener-
ating functions in probability theory:

Theorem 4.3.b If X and Y are independent random variables with values in

{0, 1, 2, . . . } and Z
def
= X + Y , then their generating functions satisfy 32

GZ(s) = GX+Y (s) = GX(s)GY (s) .

Example 4.4. If X1, X2, . . . , Xn are independent identically distributed ran-
dom variables 33 with values in {0, 1, 2, . . . } and if Sn = X1 + · · ·+Xn, then

GSn(s) = GX1(s) . . . GXn(s) ≡
[
GX(s)

]n
.

28 introduced by de Moivre and Euler in the early eighteenth century.
29 this and a several other useful properties of power series can be found in Sect. A.4 below.
30we might have MX(t) =∞ for t 6= 0!
31ie., it is the generating function of the sequence E(Xk)/k!.
32Z recall: if X and Y are discrete random variables, and f , g : Z+ → R are arbitrary functions,

then f(X) and g(Y ) are independent random variables and E
[
f(X)g(Y )

]
= Ef(X) · Eg(Y );

33 from now on we shall often abbreviate this to just i.i.d.r.v.
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Example 4.5.Z Let X1, X2, . . . , Xn be i.i.d.r.v. with values in {0, 1, 2, . . . }
and let N ≥ 0 be an integer-valued random variable independent of {Xk}k≥1.

Then34 SN
def
= X1 + · · ·+XN has generating function

GSN
(s) = GN

(
GX(s)

)
. (4.4)

Solution. This is a straightforward application of the partition theorem for expec-
tations. Alternatively, the result follows from the standard properties of conditional

expectations: E
(
zSN

)
= E

[
E
(
zSN | N

)]
= E

([
GX(z)

]N)
= GN

(
GX(z)

)
.

Example 4.6. [Renewals]Z Imagine a diligent janitor who replaces a light bulb
the same day as it burns out. Suppose the first bulb is put in on day 0 and
let Xi be the lifetime of the ith light bulb. Let the individual lifetimes Xi

be i.i.d.r.v.’s with values in {1, 2, . . . } and have a common distribution with

generating function Gf (s). Define rn
def
= P

(
a light bulb was replaced on day n

)

and fk
def
= P

(
the first light bulb was replaced on day k

)
. Then

r0 = 1 , f0 = 0 , and rn =
n∑
k=1

fkrn−k , n ≥ 1 .

A standard computation implies that Gr(s) = 1 + Gf (s)Gr(s) for all |s| < 1,
so that Gr(s) = 1/(1−Gf (s)).

In general, we say a sequence (cn)n≥0 is the convolution of (ak)k≥0 and
(bm)m≥0 (write c = a ? b), if

cn =

n∑

k=0

ak bn−k , n ≥ 0 , (4.5)

The key property of convolutions is given by the following result:

Theorem 4.7. [Convolution thm]b If c = a ? b, then the generating functions
Gc(s), Ga(s), and Gb(s) satisfy Gc(s) = Ga(s)Gb(s).

Example 4.8. Let X ∼ Poi(λ) and Y ∼ Poi(µ) be independent. Then Z =
X + Y is Poi(λ+ µ).

Solution. A straightforward computation gives GX(s) = eλ(s−1); Theorem 4.3 then
implies GZ(s) = GX(s)GY (s) = eλ(s−1) eµ(s−1) ≡ e(λ+µ)(s−1), so that the result
follows by uniqueness.

A similar argument implies the following result.

Example 4.9. If X ∼ Bin(n, p) and Y ∼ Bin(m, p) are independent, then
X + Y ∼ Bin(n+m, p).

Another useful property of probability generating function GX(s) is that it
can be used to compute moments of X:

34This is a two-stage probabilistic experiment!
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Theorem 4.10.b If X has generating function G(s), then 35

E
[
X(X − 1) . . . (X − k + 1)

]
= G(k)(1) .

Remark 4.10.1. The quantity E
[
X(X − 1) . . . (X − k + 1)

]
is called the kth

factorial moment of X. Notice also that

Var(X) = G′′X(1) +G′X(1)−
(
G′X(1)

)2
. (4.6)

Proof. Fix s ∈ (0, 1) and differentiate G(s) k times 36 to get

G(k)(s) = E
[
sX−kX(X − 1) . . . (X − k + 1)

]
.

Taking the limit s ↑ 1 and using the Abel theorem,37 we obtain the result.

Remark 4.10.2. Notice also that

lim
s↗1

GX(s) ≡ lim
s↗1

E[sX ] = P(X <∞) .

This allows us to check whether a variable is finite, if we do not know this
apriori.

Exercise 4.11. Let SN be defined as in Example 4.5. Use (4.4) to compute E
[
SN
]

and Var
[
SN
]

in terms of E[N ], E[N ], Var[X] and Var[N ]. Now check your result

for E
[
SN
]

and Var
[
SN
]

by directly applying the partition theorem for expectations.

Generating functions are also very useful in solving recurrences, especially
when combined with the following algebraic fact.38

Lemma 4.12 (Partial fraction expansion). Let f(x) = g(x)/h(x) be a ratio of
two polynomials without common roots. Let deg(g) < deg(h) = m and suppose
that the roots a1, . . . , am of h(x) are all distinct. Then f(x) can be decomposed
into a sum of partial fractions, ie., for some constants b1, b2, . . . , bm,

f(x) =
b1

a1 − x
+

b2
a2 − x

+ · · ·+ bm
am − x

. (4.7)

Remark 4.12.1. Since

b

a− x =
b

a

∑

k≥0

(x
a

)k
=
∑

k≥0

b

ak+1
xk ,

a generating function of the form (4.7) can be easily written as a power series.

35 here, if G(k)(1) does not exists we understand the RHS of the equation as G(k)(1−) ≡
lims↑1G(k)(s), the limiting value of the kth left derivative of G(s) at s = 1;

36 As |GX(s)| ≤ E|sX | ≤ 1 for all |s| ≤ 1, the generating function GX(s) can be differenti-
ated many times for all s inside the disk

{
s : |s| < 1

}
.

37 Theorem A.12 below; by footnote 36, it applies to all probability generating functions.
38An alternative way would be to use products of matrices; get in touch, if interested!
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Example 4.13. Let an be the probability that n independent Bernoulli trials
(with success probability p) result in an even number of successes. Find the
generating function of an.

Solution. The event under consideration occurs if an initial failure at the first trial is
followed by an even number of successes or if an initial success is followed by an odd
number of successes. Therefore, a0 = 1 and an = q an−1 + p (1− an−1) for all n ≥ 1,
where q = 1− p. Multiplying these equalities by sn and adding them we get

Ga(s)− 1 = qsGa(s) + p
∑

n≥1

sn − psGa(s) = (q − p)sGa(s) +
ps

1− s
,

and after rearranging,

Ga(s) =
(

1 +
ps

1− s

)
/
(
1− (q − p)s

)
=

1

2

( 1

1− s
+

1

1− (q − p)s

)
.

As a result, an =
(
1 + (q − p)n

)
/2.

Example 4.14. A biased coin is tossed repeatedly; on each toss, it shows a
“head” with probability p. Let rn be the probability that a sequence of n tosses
never has two “heads” in a row. Show that r0 = 1, r1 = 1, and for all n > 1,
rn = qrn−1 + pqrn−2, where q = 1 − p. Deduce the generating function of the
sequence (rn)n≥0.

Solution. Every sequence of n ≥ 2 tosses starts either with T or with HT; hence the
relation. Multiplying these equalities by sn and summing, we get

Gr(s) =
∑

n≥0

rns
n = 1 + s + qs

∑

n≥2

rn−1s
n−1 + pqs2

∑

n≥2

rn−2s
n−2

so that

Gr(s) =
1 + ps

1− qs− pqs2
.

Theorem 4.15 (Continuity Theorem). Let for every fixed n the sequence a0,n,
a1,n, . . . be a probability distribution, ie., ak,n ≥ 0 and

∑
k≥0 ak,n = 1, and

let Gn(s) be the corresponding generating function, Gn(s) =
∑
k≥0 ak,ns

k. In
order that for every fixed k

lim
n→∞

ak,n = ak (4.8)

it is necessary and sufficient that for every s ∈ [0, 1),

lim
n→∞

Gn(s) = G(s) ,

where G(s) =
∑
k≥0 aks

k, the generating function of the limiting sequence (ak).

Remark 4.15.1.b The convergence in (4.8) is known as convergence in distribution!

Example 4.16. If Xn ∼ Bin(n, p) with p = pn satisfying n · pn → λ as n→∞,
then

GXn
(s) ≡

(
1 + pn(s− 1)

)n → exp{λ(s− 1)} ,
so that the distribution of Xn converges to that of X ∼ Poi(λ).
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