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Preliminaries

This section revises some parts of Core A Probability, which are essential for
this course, and lists some other mathematical facts to be used (without proof)
in the following.

Probability space

We recall that a sample space Ω is a collection of all possible outcomes of a
probabilistic experiment; an event is a collection of possible outcomes, ie., a
subset of the sample space. We introduce the impossible event ∅ and the certain
event Ω; also, if A ⊂ Ω and B ⊂ Ω are events, it is natural to consider other
events such that A∪B (A or B), A∩B (A and B), Ac ≡ Ω \A (not A), and
A \B (A but not B).

Definition 0.1. Let A be a collection of subsets of Ω. We shall call A a field if
it has the following properties:

1. ∅ ∈ A;

2. if A1, A2 ∈ A, then A1 ∪A2 ∈ A;

3. if A ∈ A, then Ac ∈ A.

Remark 0.1.1. Obviously, every field is closed w.r.t. taking finite unions or
intersections.

Definition 0.2. Let F be a collection of subsets of Ω. We shall call F a σ-field
if it has the following properties:

1. ∅ ∈ F ;

2. if A1, A2, · · · ∈ F , then
⋃∞
k=1Ak ∈ F ;

3. if A ∈ F , then Ac ∈ F .

Remark 0.2.1. Obviously, property 2 above can be replaced by the equivalent
condition

⋂∞
k=1Ak ∈ F .

Clearly, if Ω is fixed, the smallest σ-field in Ω is just
{
∅,Ω

}
and the biggest

σ-field consists of all subsets of Ω. We observe the following simple fact:

Exercise 0.3. Show that if F1 and F2 are σ-fields, then1 F1 ∩ F2 is a σ-field,
but, in general, F1 ∪ F2 is not a σ-field.

If A and B are events, we say that A and B are incompatible (or disjoint),
if A ∩B = ∅.

Definition 0.4. Let Ω be a sample space, and F be a σ-field of events in Ω.
A probability distribution P on (Ω,F) is a collection of numbers P(A), A ∈ F ,
possessing the following properties:

1and, in fact, an intersection of arbitrary (even uncountable!) collection of σ-fields;
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A1 for every event A ∈ F , P(A) ≥ 0;

A2 P(Ω) = 1;

A3 for any pair of incompatible events A and B, P(A ∪B) = P(A) + P(B);

A4 for any countable collection A1, A2, . . . of mutually incompatible2 events,

P
( ∞⋃

k=1

Ak

)
=

∞∑

k=1

P
(
Ak
)
.

Remark 0.4.1. Notice that the additivity axiom A4 above does not extend to
uncountable collections of incompatible events.

Remark 0.4.2. Obviously, property A4 above and Definition 0.2 are non-
trivial only in examples with infinitely many different events, ie., when the
collection F of all events (and, therefore, the sample space Ω) is infinite.

The following properties are immediate from the above axioms:

P1 for any pair of events A, B in Ω we have

P(B \A) = P(B)− P(A ∩B) , P(A ∪B) = P(A) + P(B \A);

in particular, P(Ac) = 1− P(A);

P2 if events A, B in Ω are such that ∅ ⊆ A ⊆ B ⊆ Ω, then

0 = P(∅) ≤ P(A) ≤ P(B) ≤ P(Ω) = 1 .

P3 if A1, A2, . . . , An are events in Ω, then P
(
∪nk=1Ak

)
≤∑n

k=1 P(Ak) with the
inequality becoming an equality if these events are mutually incompatible;

Definition 0.5. A probability space is a triple (Ω,F ,P), where Ω is a sample
space, F is a σ-field of events in Ω, and P( · ) is a probability measure on (Ω,F).

In what follows we shall always assume that some probability space (Ω,F ,P)
is fixed.

Conditional probability, independence

Definition 0.6. The conditional probability of event A given event B such that
P(B) > 0, is

P(A |B)
def
=

P(A ∩B)

P(B)
.

It is easy to see that if E ∈ F is any event with P(E) > 0, then P( · |E) is a
probability measure on (Ω,F), ie., axioms A1–A4 and properties P1–P3 hold
(just P( · ) replace with P( · |E)). We list some additional useful properties of
conditional probabilities:

2ie., Ak ∩Aj = ∅ for all k 6= j;
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P4 multiplication rule for probabilities: if A and B are events, then

P(A ∩B) = P(A) P(B |A) = P(B) P(A |B) ;

more generally, if A1, . . . , An are arbitrary events in F , then

P
( n⋂

k=1

Ak

)
= P(A1) ·

n∏

k=2

P
(
Ak |

k−1⋂

j=1

Aj

)
; (0.1)

for example, P(A ∩B ∩ C) = P(A) P(B |A) P(C |A ∩B).

P5 partition theorem or formula of total probability: we say that events B1,
. . . , Bn form a partition of Ω if they are mutually incompatible (disjoint)
and their union ∪nk=1Bk is the entire space Ω. The partition theorem says
that if B1, . . . , Bn form a partition of Ω, then for any event A we have

P(A) =

n∑

k=1

P(Bk) · P(A |Bk) . (0.2)

P6 Bayes’ theorem: for any events A, B, we have

P(A |B) =
P(A) P(B |A)

P(B)
;

in particular, if D is an event and C1, . . . , Cn form a partition of Ω, then

P(Ck |D) =
P(Ck) P(D |Ck)∑n
k=1 P(Ck) P(D |Ck)

; (0.3)

Exercise 0.7. Check carefully (ie., by induction) property P4 above.

Then next definition is one of the most important in probability theory.

Definition 0.8. We say that events A and B are independent if

P
(
A ∩B

)
= P(A) P(B) ; (0.4)

under (0.4), we have P(A |B) = P(A), ie., event A is independent of B; similarly,
P(B |A) = P(B), ie., event B is independent of A.

More generally,

Definition 0.9. A collection of events A1, . . . , An is called (mutually) indepen-
dent, if

P
( n⋂

k=1

Ak

)
=

n∏

k=1

P
(
Ak
)
. (0.5)

It is immediate from (0.5) that every sub-collection of
{
A1, . . . , An

}
is also

mutually independent.
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Random variables

It is very common for the sample space Ω of possible outcomes to be a set of real
numbers. Then the outcome to the “probabilistic experiment” is often called
a random variable and denoted by a capital letter such as X. In this case the
events are subsets A ⊆ R and it is usual to write P(X ∈ A) instead of P(A) and
similarly P(X = 1) for P({1}), P(1 < X < 5) for P(A) where A = (1, 5) and
so on. The probability distribution of a r.v. X is the collection of probabilities
P(X ∈ A) for all intervals A ⊆ R (and other events that can be obtained from
intervals via axioms A1–A4).

Let X be a random variable (so the sample space Ω is a subset of R). We say
that X is a discrete r.v. if in addition Ω is countable, i.e., if the possible values
for X can be enumerated in a (possibly infinite) list. In this case the function

p(x)
def
= P(X = x) (defined for all real x) is called the probability mass function

of X and the corresponding probability distribution of X is defined via

P(X ∈ A) =
∑

x∈A
P(X = x) =

∑

x∈A
p(x) .

If X takes possible values x1, x2, . . . , then, by axiom A3,
∑
k≥1 p(xk) = 1 and

if x is NOT one of the possible values of X then p(x) = 0.
Similarly, a random variable X has a continuous probability distribution

if there exists a non-negative function f(x) on R such that for any interval
(a, b) ⊆ R

P
(
a < X < b

)
=

∫ b

a

f(x) dx ;

in particular, by axiom A3, we must have
∫∞
−∞ f(x) dx = 1. The function f( · )

is then called the probability density function (or pdf) of X.
In Core A Probability you saw a number of random variables with discrete

(Bernoulli, binomial, geometric, Poisson) or continuous (uniform, exponential,
normal) distribution.

Definition 0.10. For any random variable X, the cumulative distribution func-
tion (or cdf) of X is the function F : R → [0, 1] that is given at all x ∈ R by

F (x)
def
= P(X ≤ x) =

{∫ x
−∞ f(y) dy , X a continuous r.v.;
∑
xk:xk≤x p(xk) , X a discrete r.v.;

(0.6)

If, in addition, f(x) is continuous function on some interval (a, b) then by
the fundamental theorem of calculus, for all x ∈ (a, b), F ′(x) = f(x); ie., the cdf
determines the pdf and vice versa. In fact, the cdf of a r.v. X always determines
its probability distribution.

Remark 0.10.1. Suppose X is a random variable and h is some real-valued
function defined for all real numbers. Then h(X) is also a random variable,
namely, the outcome to a new “experiment” obtained by running the old “ex-
periment” to produce the r.v. X and then evaluating h(X).
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Joint distributions

It is essential for most useful applications of probability to have a theory which
can handle many random variables simultaneously.

Definition 0.11. Let (X1, . . . , Xn) be a multivariate random variable (or random
vector). Its cumulative distribution function is

FX1,...,Xn(x1, . . . , xn)
def
= P

(
X1 ≤ x1, . . . , Xn ≤ xn

)
, (0.7)

here and below we write
{
X1 ≤ x1, . . . , Xn ≤ xn

}
= {X1 ≤ x1}∩· · ·∩{Xn ≤ xn}.

Bivariate variables: discrete case

Suppose (X,Y ) is a bivariate r.v. and that X and Y are discrete r.v. taking
possible values x1, x2, . . . and y1, y2,. . . respectively. Then the collection of
probabilities

p(xj , yk) ≡ P(X = xj , Y = yk) , k ≥ 1 , j ≥ 1 ,

determines the joint probability distribution of (X,Y ). It is important to re-
member that given the joint distribution of X, Y we can recover the probability
density function pX (in this case it is called the marginal probability distribu-
tion) of X via

pX(xj) ≡ P(X = xj) =
∑

k

P(X = xj , Y = yk) =
∑

k

p(xj , yk) (0.8)

for any possible value xj of X. Similarly, the marginal probability distribution
of Y is given by

pY (yk) =
∑

j

P(X = xj , Y = yk) =
∑

j

p(xj , yk) .

Conditional distribution and independence

For any discrete bivariate rv (X,Y ) the conditional distribution of X given Y
has probability mass function

p(x | y) ≡ P(X = x |Y = y) =
p(x, y)

pY (y)

for all y with pY (y) > 0. There is also a r.v. version of the partition theorem
(0.2); it is often called the law of total probability: for any X-event A,

P(X ∈ A) =
∑

y

P
(
X ∈ A |Y = y

)
pY (y) . (0.9)

We say that X and Y are independent if for all x, y

p(x, y) = pX(x) pY (y) . (0.10)

Alternatively, we have
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Definition 0.12. Random variables X, Y are independent if for every X-event
A and every Y -event B we have

P
(
X ∈ A, Y ∈ B

)
≡ P

(
(X,Y ) ∈ A×B

)
= P(X ∈ A) P(Y ∈ B) . (0.11)

The definitions (0.10), (0.11) can be easily extended to the case of any general
multivariate distribution.

Let (X1, . . . , Xn) be a random vector and g : Rn → R be a function. Then
g(X1, . . . , Xn) is a random variable (obtained by the new “experiment” con-
sisting of first carrying out the original experiment to determine the value of
(X1, . . . , Xn) and then applying the function g to this ordered n-tuple to obtain
a real number g(X1, . . . , Xn)).

Exercise 0.13. 1). Let (X,Y, Z) be a random vector with independent com-
ponents; show that for any function h : R2 → R the variables h(X,Y ) and Z
are independent.

2). Let X1, . . . , Xk and Y1, . . . , Ym be a collection of independent random
variables. If the functions f and g are such that f : Rk → R and g : Rm → R,
show that the random variables f(X1, . . . , Xm) and g(Y1, . . . , Ym) are indepen-
dent.

Bivariate variables: continuous case

We will only consider the case where (X,Y ) has a continuous joint pdf f(x, y)
defined for (x, y) ∈ R2. By analogy with the definition for discrete random
variables,

P
(
(X,Y ) ∈ A

)
=

∫∫

A

f(x, y) dx dy

for any integrable set A. In this case X and Y have the marginal pdfs

fX(x) =

∫ ∞

−∞
f(x, y) dy , fY (y) =

∫ ∞

−∞
f(x, y) dx

and for any interval (a, b) we have

P(a < X < b) ≡
∫ b

a

∫ ∞

−∞
f(x, y) dx dy =

∫ b

a

fX(x) dx .

We define the continuous conditional density of X given Y by

f(x | y) =

{
f(x, y)/fY (y) , if fY (y) > 0

0 , if fY (y) = 0 .

Also, X and Y are independent if and only if f(x, y) = fX(x) fY (y) for every
pair (x, y) ∈ R2.

Transformations g(X,Y ) in the continuous case are treated similarly to the
discrete case.
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Expectation

Definition 0.14. For any random variable X the expected value (or mean) of X
is the number

E(X) =





∑
xk∈Ω xk p(xk) , X discrete with pmf p ;

∫∞
−∞ xf(x) dx , X continuous with pdf f .

(0.12)

The following generalisation of this definition is of great importance to the
whole theory.

If X is a discrete rv and takes values in Ω = {x1, x2, . . . } with probabilities
p(xk) and the transformed rv g(X) takes values y1, y2, . . . with probabilities

q(ym)
def
= P(X ∈ Gm) =

∑

x∈Gm
p(x) , where Gm

def
=
{
x ∈ Ω : g(x) = ym

}
,

then the sets Gm form a partition of Ω and it follows that

E
(
g(X)

)
=
∑

m

ymq(ym) =
∑

m

∑

x∈Gm
g(x) p(x) =

∞∑

k=1

g(xk) p(xk) .

Similarly, if X is continuous rv with pdf f , then

E
(
g(X)

)
=

∫ ∞

−∞
g(x) f(x) dx .

The most important properties of the expectation are:

E1 linearity: let f , g be real functions and let a, b be real numbers; then

E
(
af(X) + bg(X)

)
= aE

(
f(X)

)
+ bE

(
g(X)

)
, (0.13)

provided the corresponding expectations exist.

E2 monotonicity: if h(x) ≥ 0 for all real x, then E
(
h(X)

)
≥ 0; in other words,

if the real functions f , g are such that f(x) ≤ g(x) for all real x, then

E
(
f(X)

)
≤ E

(
g(X)

)
, (0.14)

provided the corresponding expectations exist.

Recall three important special cases: the variance Var(X) of a rv X, its r-th
moment E(Xr), and its moment generating function, MX(t),

Var(X)
def
= E

(
X − E(X)

)2
, MX(t)

def
= E

(
etX
)
.

Exercise 0.15. Let X be a rv, and let g : R→ [0,∞] be an increasing function
such that E

(
g(X)

)
<∞. Show that for any real a, one has

P
(
X > a

)
≤ E

(
g(X)

)

g(a)
. (0.15)

In particular, P
(
X > a

)
≤ E

(
exp
{
λ(X − a)

})
for any real a and any λ > 0.

Notice that the Markov inequality and the Chebyshev inequality are special
cases of (0.15).
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Multivariate case

In the multivariate case, the expectation is defined similarly and has proper-
ties analogous to the considered above. Additionally, we mention two other
properties:

E3 multivariate linearity: let (X1, . . . , Xn) be a random vector, g1, . . . , gn be
real functions, and a1, . . . , an be real numbers. Then

E
( n∑

k=1

ak gk(Xk)
)

=

n∑

k=1

ak E
(
gk(Xk)

)
. (0.16)

E4 independence: if X1, . . . , Xn are independent rv’s, so that their joint
pmf/pdf factorises,

pX1,...,Xn(x1, . . . , xn) =

n∏

k=1

pXk(xk) ,

then for all real functions g1, . . . , gn one has

E
( n∏

k=1

gk
(
Xk

))
=

n∏

k=1

E
(
gk(Xk)

)
. (0.17)

We say that the variables X and Y are uncorrelated if their covariance,

Cov(X,Y )
def
= E

(
(X − E(X))(Y − E(Y ))

)
≡ E(XY )− E(X) E(Y ) , (0.18)

vanishes, Cov(X,Y ) = 0. In particular, any pair of independent variables is
uncorrelated.

By linearity property E3, the variance Var
(∑n

k=1Xk

)
of the sum of rv’s X1,

. . . , Xn equals

Var
( n∑

k=1

Xk

)
=

n∑

k=1

Var
(
Xk

)
+ 2

∑

k<l

Cov(Xk, Xl) .

Thus, if the variables X1, . . . , Xn are pairwise uncorrelated (in particular, inde-
pendent), then

Var
( n∑

k=1

Xk

)
=

n∑

k=1

Var
(
Xk

)
. (0.19)

Conditional expectation

Let X be a discrete rv on a sample space Ω, and let A ⊆ Ω be an event. The
conditional expectation of X given A is a number E(X |A) defined by

E(X |A) =
∑

x

xP(X = x |A) , (0.20)
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where the sum runs through all possible values of X.
In particular, we have the partition theorem for expectation: if events B1, . . . ,

Bn form a partition of the sample space Ω, then

E(X) =

n∑

k=1

E(X |Bk) P(Bk) .

Using the definition (0.20), it is immediate to compute E(X |Y = y); we
recall that then E(X |Y ) is a random variable such that E

(
E(X |Y )

)
= E(X).

Limiting results

Theorem 0.16 (Law of Large Numbers). Let X1, . . . , Xn be iid (independent,
identically distributed) rv’s such that

E(Xk) ≡ µ , Var(Xk) = σ2 .

Denote Sn
def
=
∑n
k=1Xk. Then for any fixed a > 0

P
(
|n−1Sn − µ| > a

)
→ 0 (0.21)

as n→∞.

Theorem 0.17 (Central Limit Theorem). Under the conditions of the previous
theorem, denote

S∗n
def
=

Sn − nµ√
Var(Sn)

≡ Sn − nµ
σ
√
n

.

Then, as n → ∞, the distribution of S∗n converges to that of the standard
Gaussian random variable (ie., N (0, 1)): for every fixed a ∈ R,

P
(
S∗n ≤ a

)
→
∫ a

−∞

1√
2π
e−y

2/2 dy . (0.22)

Moment generating functions

As mentioned before, the moment generating function (or mgf) of a rv X is
defined via

MX(t)
def
= E

(
etX
)
. (0.23)

We finish by listing several useful properties of mgf’s.

M1 For each positive integer r

E(Xr) =
drMX

dtr
(0) .

M2 [uniqueness] The mgf MX(t) of X uniquely determines the probability dis-
tribution of X, provided that MX(t) is finite in some neighbourhood of
the origin.

ix



O.H. Probability II (MATH 2647) M15

M3 [linear transformation] If X has mgf MX(t), and Y = aX + b, then

MY (t) = ebtMX(at) .

M4 [independence] Suppose that X1, . . . , Xn are independent rv’s and let Y =∑n
k=1Xk. Then

MY (t) =

n∏

k=1

MXk(t) .

M5 [convergence] Suppose that Y1, Y2, . . . is an infinite sequence of rv’s, and
that Y is a further random variable. Suppose that MY (t) is finite for
|t| < a for some positive a and that for all t ∈ (−a, a)

MYn(t)→MY (t) as n→∞ .

Then, as n→∞,
P(Yn ≤ c)→ P(Y ≤ c) .

for all real c such that P(Y = c) = 0.
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