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L" convergence

Def.2.1: Let r > 0 be fixed. A sequence (X,)n>1, of random
variables converges to a random variable X in L" as n — oo

(write X, = X), if
E}Xn—X’r—>Oas n — oo.

Example 2.2: Let (Xn) ,>1 De a sequence of random variables
such that for some real numbers (an)n>1, we have

P(Xo=an) =pn, P(Xa=0)=1-p,. (2.1)

Then X, Yoo iff E‘Xn’r = |ap|"pn — 0 as n — .
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Theorem 2.3: Let X}, j > 1, be a sequence of uncorrelated
random variables with

EX; = p and Var(Xj) < € < o0.

1 2
Denote S,, = X1+ ---+ X,,. Then fSnL—>uasn—>oo.
n

Proof: Indeed,

E(%Sn - u)z —E

as n — o0.



WLLN

@000

Convergence in probability

Def.2.4: A sequence (X,)n>1, of random variables converges in

probability as n — oo to a random variable X (write X, 5 X),
if for every fixed e > 0

P(1Xo — X|>¢) =0 as n— 0o.

Example 2.5: Let the sequence (X,) ., be asin (2.1). Then for

every € >0
P(’Xn‘ > 5) < P(Xn # 0) = Pn,

sothatXnSOifpn—>Oasn—>oo.
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Theorem 2.6: Let Xj, j > 1, be a sequence of uncorrelated
random variables with

EX; = p and Var(Xj) < € < 0.

Denote S, = X1 + -+ X,. Then

1op
=S, = u as n — 00.
n

Exercise 2.7: Derive this theorem from the Chebyshev inequality!
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Theorem 2.6 follows directly from the following observation:

Lemma 2.8: Let (X,)n>1, be a sequence of random variables.

If X, £> X for some fixed r > 0, then X, E> X as n — oo.

Proof: Indeed, for every fixed ¢ > 0,

E|X, — X|
<— =
= o

P(IXn— X| =) =P(|X, — X|" > ¢") 0

as n — 0.
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A high dimensional cube =~ a sphere

One can use convergence in probability to argue that, for large n,
most points of the n-dimensional cube [—1,1]" are located near

the sphere of radius \/n/3!

If interested, see Example 2.9 in the notes.
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Theorem 2.10: Let random variables (S,)n>1, have two finite
moments,
wun = ES,, 02 =Var(S,) < .

If, for some sequence b,, we have o,/b, — 0 as n — oo, then

M —0 as n — oo
b
both in L? and in probability.
Proof: Indeed,
(Sn — 11n)? _ Var(Sn)
E( 12 )_ 12 — 0 as n — o00.

n n
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Example 2.11: In the coupon collector’s problem (problem R 4),
let T, be the time to collect all n coupons. We know that

n

1 2n2

ET,=n — ~ nlogn, Var(T),) <n2 ,
m=1
so that
T,—ET, : Th
———— =0 e, —1
nlogn nlogn

as n — oo both in L2 and in probability.
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ALMOST SURE CONVERGENCE

Recall: | WLLN is just A

Let Xi, Xo, ... bei.id. r.v. with EX; = 4 and VarXj < oo.
Denote S, ' S oreq Xk

By the usual (weak) law of large numbers (WLLN): for every
0>0
P(In7tSh—pu|>6) 20 asn—oo (2.2)

l.e., WLLN states: n1S, > X = w=E(Xy), as n — oc.
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Notice: In general

X, % X is not related to Xn(w) = X(w) for fixed w € Q
ie., the pointwise convergence:

Example 2.13: Let Q =[0,1], let F = 0((3, b):0<a<b< 1),
and let, for A= [a, b] C [0,1], P(A) = b — a.

1,  ifweA,

0, ifwdA. (23)

VACF ~ ]lA(w)déf{

Consider X, def 14,, where, for n > 1 such that 2™ < n < om+l

A= [%5, H5R2] < [o0,1].

Then X,,£>XEO, but
{weQ: Xp(w) = X(w)=0asn—so00} =0,

ie., there is no point w € Q for which X,(w) — X(w). R script!



A.S. CONVERGENCE
000000

ALMOST SURE CONVERGENCE

Def.2.14: A sequence X1, Xa, ... of r.v. in (R, F,P) converges,
as n — oo, to a random variable X with probability one or
almost surely (write X, 23 X) if

(o e X)X o)) =1 (24

Remark 2.14.1: For e > 0, let
An(g) = {w : [Xn(w) — X(w)| > }. Then the definition (2.4) is
equivalent to saying that for every € > 0

P({An(e) finitely often }) = (2.5)

This is why the Borel-Cantelli lemma is so useful in studying
almost sure limits.
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Example 2.13 [cont’d]: Let (2, F,P) be as before; consider

def def
Yn = ﬂ(O,l/n] and Zn = 1[071/,,]. Then

{weQ:Yy(w)—0asn—o0}=10,1],
{weQ:Z,(w) > 0asn—oc0} =(0,1],

so that Yna;>s'OandZ,,Ef>'Oasn—>oo.
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Example 1.5 [cont’d]:
Let X be a finite random variable, P(| X| < c0) = 1.

Then the sequence (X )x>1 defined via X def %X converges to
zero with probability one.

Indeed, the event {w : Xx(w) 4 0} = {w : | X(w)| = oo} has
probability zero.
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Lemma 2.15: Let Xy, X5, ... and X be r.v®. If, for every € > 0,

iP(|Xn—X|>s)<oo, (2.6)

n=1

then X, converges to X almost surely.

This is NOT the definition of the almost sure convergence, but
only a sufficient condition for it!

Notice: Let X7, Xo, ... and X be r.v°. If X, E> X, then there
exists a non-random sequence of integers ni, no, ... such that

Xn, 23 X as n— 00.

B see Problem C11!
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[* STRONG LAW OF LARGE NUMBERS

Theorem 2.16 (SLLN, Borel): Let Xi, Xo, ... bei.i.d. r.v. with
E(Xk) = p and E((Xk)*) < o0.

IfS, % X, + Xo + - + X,,, then

Sa/n23 as n— oo.
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[! STRONG LAW OF LARGE NUMBERS

Theorem 2.17 (SLLN, Kolmogorov): Let Xi, Xo, ... bei.i.d.
r.v. with
E|Xk| < 0.

If E(X¢) = g and Sp & X; + Xp + -+ + X, then

Sn/na%s'u as n — oo.



RELATIONS
©00

a.s.

L' P
RELATIONS BETWEEN —, —, AND —
We know that (Lemma 2.8)

X, 5 X = X, DX,
one can also show (we shall not do it here!)

X 3X = X, 5 X,
In addition, according to Example 2.13,

X, B x A X, %X,
and the same construction shows that

X, 5 X A X3 X.
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X, 5 X A X,253 X

Example 2.18: Let X, be a sequence of independent random
variables such that

P(X,=1)=pn, P(X,=0)=1-p,.
Then, with X =0,
X,,E>X — ppr—0 = X,,£>X as n — 00,

whereas
Xo X = ) pa< oo
n

Taking p, = 1/n, we get X, L X but not X, 33 X.

Notice that this example also shows that X, E> X 2 Xn %X,
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X, 5 X & X, 5 X

Example 2.19: Let (Q, 7, P) be the canonical probability space
(recall Example 2.13). For n > 1, define

def

Xn(w)

e", 0<w<1/n
e" - 1o,1/m(w) = { /

0, w>1/n.

Clearly, X, 220, and Xn E> 0 as n — oo; however, for every r > 0

nr

E\Xn|r:ef%oo, as n — oo, Ie., X,,7|1r>0.
n

Notice that this example also shows that X, 2 X = X L> X.



FINAL REMARKS

CONVERGENCE OF RANDOM VARIABLES
By the end of this section you should be able to:
define convergence in L", verify whether a given sequence of
random variables converges in L";

define convergence in probability, verify whether a given
sequence of random variables converges in probability;

explain the relation between convergence in L" and
convergence in probability (Lem 2.8);

state and apply the sufficient condition for convergence in L2
(Thm 2.10);

define almost sure convergence, verify whether a given
sequence of random variables converges almost surely;

state and apply the sufficient condition for almost sure
convergence (Lem 2.15);

state and apply the Strong Laws of Large Numbers.
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