
WLLN A.s. convergence Relations Final remarks

Lr convergence

Def.2.1: Let r > 0 be fixed. A sequence (Xn)n≥1, of random
variables converges to a random variable X in Lr as n→∞
(write Xn

Lr→ X ), if
E
∣∣Xn − X

∣∣r → 0 as n→∞.

Example 2.2: Let
(
Xn

)
n≥1 be a sequence of random variables

such that for some real numbers (an)n≥1, we have

P
(
Xn = an

)
= pn , P

(
Xn = 0

)
= 1− pn . (2.1)

Then Xn
Lr→ 0 iff E

∣∣Xn

∣∣r ≡ |an|r pn → 0 as n→∞.
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L2-WLLN

Theorem 2.3: Let Xj , j ≥ 1, be a sequence of uncorrelated
random variables with

EXj = µ and Var(Xj) ≤ C <∞ .

Denote Sn = X1 + · · ·+ Xn. Then
1

n
Sn

L2→ µ as n→∞ .

Proof: Indeed,

E
(1

n
Sn − µ

)2
= E

(Sn − nµ)2

n2
=

Var(Sn)

n2
≤ Cn

n2
→ 0

as n→∞.
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Convergence in probability

Def.2.4: A sequence (Xn)n≥1, of random variables converges in

probability as n→∞ to a random variable X (write Xn
P→ X ),

if for every fixed ε > 0

P
(
|Xn − X | ≥ ε

)
→ 0 as n→∞ .

Example 2.5: Let the sequence
(
Xn

)
n≥1 be as in (2.1). Then for

every ε > 0
P
(
|Xn| ≥ ε

)
≤ P

(
Xn 6= 0) = pn ,

so that Xn
P→ 0 if pn → 0 as n→∞.
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Theorem 2.6: Let Xj , j ≥ 1, be a sequence of uncorrelated
random variables with

EXj = µ and Var(Xj) ≤ C <∞ .

Denote Sn = X1 + · · ·+ Xn. Then

1

n
Sn

P→ µ as n→∞ .

Exercise 2.7: Derive this theorem from the Chebyshev inequality!



WLLN A.s. convergence Relations Final remarks

Theorem 2.6 follows directly from the following observation:

Lemma 2.8: Let (Xn)n≥1, be a sequence of random variables.

If Xn
Lr→ X for some fixed r > 0, then Xn

P→ X as n→∞.

Proof: Indeed, for every fixed ε > 0,

P
(
|Xn − X | ≥ ε

)
≡ P

(
|Xn − X |r ≥ εr

)
≤ E|Xn − X |r

εr
→ 0

as n→∞.
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A high dimensional cube ≈ a sphere

One can use convergence in probability to argue that, for large n,
most points of the n-dimensional cube [−1, 1]n are located near
the sphere of radius

√
n/3!

If interested, see Example 2.9 in the notes.
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Theorem 2.10: Let random variables (Sn)n≥1, have two finite
moments,

µn ≡ ESn , σ2n ≡ Var(Sn) <∞ .

If, for some sequence bn, we have σn/bn → 0 as n→∞, then

Sn − µn
bn

→ 0 as n→∞

both in L2 and in probability.

Proof: Indeed,

E
((Sn − µn)2

b2n

)
=

Var(Sn)

b2n
→ 0 as n→∞ .
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Example 2.11: In the coupon collector’s problem (problem R 4),
let Tn be the time to collect all n coupons. We know that

ETn = n
n∑

m=1

1

m
∼ n log n , Var(Tn) ≤ n2

n∑
m=1

1

m2
≤ π2n2

6
,

so that
Tn − ETn

n log n
→ 0 ie.,

Tn

n log n
→ 1

as n→∞ both in L2 and in probability.
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Almost sure convergence

Recall: WLLN is just
P→

Let X1, X2, . . . be i.i.d. r.v. with EX1 = µ and VarX1 <∞.

Denote Sn
def
=
∑n

k=1 Xk .

By the usual (weak) law of large numbers (WLLN): for every
δ > 0

P
(∣∣n−1Sn − µ∣∣ > δ

)
→ 0 as n→∞. (2.2)

I.e., WLLN states: n−1Sn
P→ X ≡ µ = E(X1), as n→∞.
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Notice: In general

Xn
P→ X is not related to Xn(ω)→ X (ω) for fixed ω ∈ Ω

ie., the pointwise convergence:

Example 2.13: Let Ω = [0, 1], let F = σ
(
(a, b) : 0 ≤ a ≤ b ≤ 1

)
,

and let, for A = [a, b] ⊆ [0, 1], P(A) = b − a.

∀A ∈ F  1A(ω)
def
=

{
1, if ω ∈ A ,

0, if ω /∈ A .
(2.3)

Consider Xn
def
= 1An , where, for n ≥ 1 such that 2m ≤ n < 2m+1,

An =
[
n−2m
2m , n+1−2m

2m

]
⊆
[
0, 1
]
.

Then Xn
P→ X ≡ 0, but{
ω ∈ Ω : Xn(ω)→ X (ω) ≡ 0 as n→∞

}
= ∅ ,

ie., there is no point ω ∈ Ω for which Xn(ω)→ X (ω). R script!
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Almost sure convergence

Def.2.14: A sequence X1, X2, . . . of r.v. in (Ω,F ,P) converges,
as n→∞, to a random variable X with probability one or
almost surely (write Xn

a.s.→ X ) if

P
({
ω ∈ Ω : Xn(ω)→ X (ω) as n→∞

})
= 1 . (2.4)

Remark 2.14.1: For ε > 0, let
An(ε) =

{
ω : |Xn(ω)− X (ω)| > ε

}
. Then the definition (2.4) is

equivalent to saying that for every ε > 0

P
({

An(ε) finitely often
})

= 1 . (2.5)

This is why the Borel-Cantelli lemma is so useful in studying
almost sure limits.
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Example 2.13 [cont’d]: Let (Ω,F ,P) be as before; consider

Yn
def
= 1(0,1/n] and Zn

def
= 1[0,1/n]. Then{

ω ∈ Ω : Yn(ω)→ 0 as n→∞
}
≡ [0, 1] ,{

ω ∈ Ω : Zn(ω)→ 0 as n→∞
}
≡ (0, 1] ,

so that Yn
a.s.→ 0 and Zn

a.s.→ 0 as n→∞.
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Example 1.5 [cont’d]:

Let X be a finite random variable, P(|X | <∞) = 1.

Then the sequence (Xk)k≥1 defined via Xk
def
= 1

kX converges to
zero with probability one.

Indeed, the event {ω : Xk(ω) 6→ 0} = {ω : |X (ω)| =∞} has
probability zero.
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Lemma 2.15: Let X1, X2, . . . and X be r.vs . If, for every ε > 0,

∞∑
n=1

P
(
|Xn − X | > ε

)
<∞ , (2.6)

then Xn converges to X almost surely.

This is NOT the definition of the almost sure convergence, but
only a sufficient condition for it!

Notice: Let X1, X2, . . . and X be r.vs . If Xn
P→ X , then there

exists a non-random sequence of integers n1, n2, . . . such that

Xnk
a.s.→ X as n→∞ .

Z see Problem C11 !
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L4 Strong Law of Large Numbers

Theorem 2.16 (SLLN, Borel): Let X1, X2, . . . be i.i.d. r.v. with

E(Xk) = µ and E
(
(Xk)4

)
<∞ .

If Sn
def
= X1 + X2 + · · ·+ Xn, then

Sn/n
a.s.→ µ as n→∞.
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L1 Strong Law of Large Numbers

Theorem 2.17 (SLLN, Kolmogorov): Let X1, X2, . . . be i.i.d.
r.v. with

E|Xk | <∞ .

If E(Xk) = µ and Sn
def
= X1 + X2 + · · ·+ Xn, then

Sn/n
a.s.→ µ as n→∞.
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Relations between
Lr

→ ,
P→ , and

a.s.→
We know that (Lemma 2.8)

Xn
Lr→ X =⇒ Xn

P→ X ;

one can also show (we shall not do it here!)

Xn
a.s.→ X =⇒ Xn

P→ X .

In addition, according to Example 2.13,

Xn
P→ X 6⇒ Xn

a.s.→ X ,

and the same construction shows that

Xn
Lr→ X 6⇒ Xn

a.s.→ X .
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Xn
Lr

→ X 6⇒ Xn
a.s.→ X

Example 2.18: Let Xn be a sequence of independent random
variables such that

P(Xn = 1) = pn , P(Xn = 0) = 1− pn .

Then, with X ≡ 0,

Xn
P→ X ⇐⇒ pn → 0 ⇐⇒ Xn

Lr→ X as n→∞,

whereas
Xn

a.s.→ X ⇐⇒
∑
n

pn <∞.

Taking pn = 1/n, we get Xn
Lr→ X but not Xn

a.s.→ X .

Notice that this example also shows that Xn
P→ X 6⇒ Xn

a.s.→ X .
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Xn
P→ X 6⇒ Xn

Lr

→ X

Example 2.19: Let
(
Ω,F ,P

)
be the canonical probability space

(recall Example 2.13). For n ≥ 1, define

Xn(ω)
def
= en · 1[0,1/n](ω) ≡

{
en , 0 ≤ ω ≤ 1/n

0 , ω > 1/n .

Clearly, Xn
a.s.→ 0, and Xn

P→ 0 as n→∞; however, for every r > 0

E|Xn|r =
enr

n
→∞ , as n→∞, ie., Xn 6

Lr→ 0 .

Notice that this example also shows that Xn
a.s.→ X 6⇒ Xn

Lr→ X .
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Convergence of random variables
By the end of this section you should be able to:

• define convergence in Lr , verify whether a given sequence of
random variables converges in Lr ;

• define convergence in probability, verify whether a given
sequence of random variables converges in probability;

• explain the relation between convergence in Lr and
convergence in probability (Lem 2.8);

• state and apply the sufficient condition for convergence in L2

(Thm 2.10);

• define almost sure convergence, verify whether a given
sequence of random variables converges almost surely;

• state and apply the sufficient condition for almost sure
convergence (Lem 2.15);

• state and apply the Strong Laws of Large Numbers.
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