WLLN •0 0000 00 A.s. convergence 000000 00 Relations 000

L^r convergence

Def.2.1: Let r > 0 be fixed. A sequence $(X_n)_{n \ge 1}$, of random variables *converges* to a random variable X in L^r as $n \to \infty$ (write $X_n \xrightarrow{L^r} X$), if $E|X_n - X|^r \to 0$ as $n \to \infty$.

Example 2.2: Let $(X_n)_{n\geq 1}$ be a sequence of random variables such that for some real numbers $(a_n)_{n\geq 1}$, we have

$$P(X_n = a_n) = p_n$$
, $P(X_n = 0) = 1 - p_n$. (2.1)

Then $X_n \stackrel{\mathsf{L}^r}{\to} 0$ iff $\mathsf{E} |X_n|^r \equiv |a_n|^r p_n \to 0$ as $n \to \infty$.

A.s. convergence

Relations 000 FINAL REMARKS

L^2 -WLLN

Theorem 2.3: Let X_j , $j \ge 1$, be a sequence of uncorrelated random variables with

$$\mathsf{E} X_j = \mu$$
 and $\mathsf{Var}(X_j) \le C < \infty$.
Denote $S_n = X_1 + \dots + X_n$. Then $\frac{1}{n} S_n \stackrel{\mathsf{L}^2}{\to} \mu$ as $n \to \infty$.

Proof: Indeed,

$$\mathsf{E}\Big(\frac{1}{n}S_n - \mu\Big)^2 = \mathsf{E}\frac{(S_n - n\mu)^2}{n^2} = \frac{\mathsf{Var}(S_n)}{n^2} \le \frac{Cn}{n^2} \to 0$$

as $n \to \infty$.

Relations 000

Convergence in probability

Def.2.4: A sequence $(X_n)_{n\geq 1}$, of random variables *converges in* probability as $n \to \infty$ to a random variable X (write $X_n \stackrel{P}{\to} X$), if for every fixed $\varepsilon > 0$

$$\mathsf{P}(|X_n - X| \ge \varepsilon) \to 0$$
 as $n \to \infty$.

Example 2.5: Let the sequence $(X_n)_{n\geq 1}$ be as in (2.1). Then for every $\varepsilon > 0$

$$\mathsf{P}(|X_n| \ge \varepsilon) \le \mathsf{P}(X_n \neq 0) = p_n$$

so that $X_n \xrightarrow{\mathsf{P}} 0$ if $p_n \to 0$ as $n \to \infty$.

WLLN A.S. CONVERGENCE RELATIONS FINAL REMARKS 00 000000 000 000000 000

Theorem 2.6: Let X_j , $j \ge 1$, be a sequence of uncorrelated random variables with

 $\mathsf{E} X_j = \mu$ and $\mathsf{Var}(X_j) \le C < \infty$. Denote $S_n = X_1 + \dots + X_n$. Then $rac{1}{n} S_n \xrightarrow{\mathsf{P}} \mu$ as $n \to \infty$.

Exercise 2.7: Derive this theorem from the Chebyshev inequality!

Relations 000

Theorem 2.6 follows directly from the following observation:

Lemma 2.8: Let $(X_n)_{n\geq 1}$, be a sequence of random variables. If $X_n \xrightarrow{L^r} X$ for some fixed r > 0, then $X_n \xrightarrow{P} X$ as $n \to \infty$.

Proof: Indeed, for every fixed $\varepsilon > 0$,

$$\mathsf{P}(|X_n - X| \ge \varepsilon) \equiv \mathsf{P}(|X_n - X|^r \ge \varepsilon^r) \le \frac{\mathsf{E}|X_n - X|^r}{\varepsilon^r} \to 0$$

as $n \to \infty$.

A high dimensional cube $~~\sim~~$ a sphere

One can use convergence in probability to argue that, for large n, most points of the *n*-dimensional cube $[-1,1]^n$ are located near the sphere of radius $\sqrt{n/3}!$

If interested, see Example 2.9 in the notes.

Theorem 2.10: Let random variables $(S_n)_{n\geq 1}$, have two finite moments,

$$\mu_n \equiv \mathsf{E}S_n\,, \qquad \sigma_n^2 \equiv \mathsf{Var}(S_n) < \infty\,.$$

If, for some sequence b_n , we have $\sigma_n/b_n
ightarrow 0$ as $n
ightarrow \infty$, then

$${S_n-\mu_n\over b_n}
ightarrow 0$$
 as $n
ightarrow\infty$

both in L^2 and in probability.

Proof: Indeed,

$$\mathsf{E}\Big(rac{(S_n-\mu_n)^2}{b_n^2}\Big)=rac{\mathsf{Var}(S_n)}{b_n^2} o 0\qquad ext{ as }n o\infty\,.$$

WLLN A.S. CONVERGENCE RELATIONS FINAL REMARKS 00 00000 000 000 00 00

Example 2.11: In the coupon collector's problem (problem R 4), let T_n be the time to collect all *n* coupons. We know that

$$\mathsf{E}T_n = n \sum_{m=1}^n \frac{1}{m} \sim n \log n$$
, $\mathsf{Var}(T_n) \le n^2 \sum_{m=1}^n \frac{1}{m^2} \le \frac{\pi^2 n^2}{6}$,

so that

$$\frac{T_n - \mathsf{E} T_n}{n \log n} \to 0 \quad \text{ ie., } \quad \frac{T_n}{n \log n} \to 1$$

as $n \to \infty$ both in L^2 and in probability.

Relations 000 FINAL REMARKS

Almost sure convergence

Recall: **WLLN** is just
$$\xrightarrow{P}$$

Let X_1, X_2, \ldots be i.i.d. r.v. with $\mathsf{E}X_1 = \mu$ and $\mathsf{Var}X_1 < \infty$. Denote $S_n \stackrel{\text{def}}{=} \sum_{k=1}^n X_k$.

By the usual (weak) law of large numbers (WLLN): for every $\delta > 0$ $P(|n^{-1}S_n - \mu| > \delta) \to 0$ as $n \to \infty$. (2.2)

I.e., WLLN states: $n^{-1}S_n \xrightarrow{\mathsf{P}} X \equiv \mu = \mathsf{E}(X_1)$, as $n \to \infty$.

Relations 000

Notice: In general

 $X_n \xrightarrow{P} X$ is **not** related to $X_n(\omega) \to X(\omega)$ for **fixed** $\omega \in \Omega$ i.e., the **pointwise** convergence:

Example 2.13: Let $\Omega = [0, 1]$, let $\mathcal{F} = \sigma((a, b) : 0 \le a \le b \le 1)$, and let, for $A = [a, b] \subseteq [0, 1]$, P(A) = b - a.

$$^{\forall} A \in \mathcal{F} \quad \rightsquigarrow \quad \mathbb{1}_{A}(\omega) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{if } \omega \in A, \\ 0, & \text{if } \omega \notin A. \end{cases}$$
 (2.3)

Consider $X_n \stackrel{\text{def}}{=} \mathbbm{1}_{A_n}$, where, for $n \geq 1$ such that $2^m \leq n < 2^{m+1}$,

$$A_n = \left[\frac{n-2^m}{2^m}, \frac{n+1-2^m}{2^m}\right] \subseteq \left[0,1\right].$$

Then $X_n \xrightarrow{\mathsf{P}} X \equiv 0$, but

$$\left\{\omega\in\Omega:X_n(\omega) o X(\omega)\equiv 0 \text{ as } n o\infty
ight\}=arnothing \,,$$

ie., there is **no point** $\omega \in \Omega$ for which $X_n(\omega) \to X(\omega)$.

WLLN 00 0000 00

Almost sure convergence

Def.2.14: A sequence X_1, X_2, \ldots of r.v. in $(\Omega, \mathcal{F}, \mathsf{P})$ converges, as $n \to \infty$, to a random variable X with probability one or almost surely (write $X_n \stackrel{\text{a.s.}}{\to} X$) if

$$\mathsf{P}\Big(ig\{\omega\in\Omega:X_n(\omega) o X(\omega) ext{ as } n o\inftyig\}\Big)=1\,.$$
 (2.4)

Remark 2.14.1: For $\varepsilon > 0$, let $A_n(\varepsilon) = \{\omega : |X_n(\omega) - X(\omega)| > \varepsilon\}$. Then the definition (2.4) is equivalent to saying that for every $\varepsilon > 0$

$$\mathsf{P}(\{A_n(\varepsilon) \text{ finitely often }\}) = 1.$$
 (2.5)

This is why the Borel-Cantelli lemma is so useful in studying almost sure limits.

A.S. CONVERGENCE 00000000 Relations 000

Example 2.13 [cont'd]: Let $(\Omega, \mathcal{F}, \mathsf{P})$ be as before; consider $Y_n \stackrel{\text{def}}{=} \mathbb{1}_{(0,1/n]}$ and $Z_n \stackrel{\text{def}}{=} \mathbb{1}_{[0,1/n]}$. Then $\{\omega \in \Omega : Y_n(\omega) \to 0 \text{ as } n \to \infty\} \equiv [0,1], \{\omega \in \Omega : Z_n(\omega) \to 0 \text{ as } n \to \infty\} \equiv (0,1],$ so that $Y_n \stackrel{\text{a.s.}}{\to} 0$ and $Z_n \stackrel{\text{a.s.}}{\to} 0$ as $n \to \infty$.

A.s. convergence

Relations 000 FINAL REMARKS

Example 1.5 [cont'd]:

Let X be a finite random variable, $P(|X| < \infty) = 1$.

Then the sequence $(X_k)_{k\geq 1}$ defined via $X_k \stackrel{\text{def}}{=} \frac{1}{k}X$ converges to zero with probability one.

Indeed, the event $\{\omega : X_k(\omega) \not\to 0\} = \{\omega : |X(\omega)| = \infty\}$ has probability zero.

Relations 000

Lemma 2.15: Let X_1, X_2, \ldots and X be r.v^s. If, for every $\varepsilon > 0$,

$$\sum_{n=1}^{\infty} \mathsf{P}(|X_n - X| > \varepsilon) < \infty, \qquad (2.6)$$

then X_n converges to X almost surely.

This is **NOT** the definition of the almost sure convergence, but only a **sufficient condition** for it!

Notice: Let X_1, X_2, \ldots and X be r.v^s. If $X_n \xrightarrow{P} X$, then there exists a **non-random** sequence of integers n_1, n_2, \ldots such that

$$X_{n_k} \stackrel{ ext{a.s.}}{ o} X \qquad ext{ as } n o \infty$$
 .

L^4 Strong Law of Large Numbers

Theorem 2.16 (SLLN, Borel): Let X_1, X_2, \ldots be i.i.d. r.v. with

$$\mathsf{E}(X_k) = \mu$$
 and $\mathsf{E}((X_k)^4) < \infty$.

If $S_n \stackrel{\text{def}}{=} X_1 + X_2 + \dots + X_n$, then

 $S_n/n \stackrel{\text{a.s.}}{\to} \mu$ as $n \to \infty$.

L^1 Strong Law of Large Numbers

Theorem 2.17 (SLLN, Kolmogorov): Let X_1, X_2, \ldots be i.i.d. r.v. with $E[X_1] < \infty$

If
$$E(X_k) = \mu$$
 and $S_n \stackrel{\text{def}}{=} X_1 + X_2 + \dots + X_n$, then
 $S_n/n \stackrel{\text{a.s.}}{\to} \mu$ as $n \to \infty$.

Relations between $\xrightarrow{L^{r}}$, \xrightarrow{P} , and $\xrightarrow{a.s.}$

We know that (Lemma 2.8)

$$X_n \stackrel{\mathsf{L}^r}{\to} X \qquad \Longrightarrow \qquad X_n \stackrel{\mathsf{P}}{\to} X;$$

one can also show (we shall not do it here!)

$$X_n \stackrel{\text{a.s.}}{\to} X \implies X_n \stackrel{\mathsf{P}}{\to} X$$

In addition, according to Example 2.13,

$$X_n \xrightarrow{\mathsf{P}} X \qquad \Rightarrow \qquad X_n \xrightarrow{\mathsf{a.s.}} X \,,$$

and the same construction shows that

$$X_n \stackrel{\mathsf{L}^{\mathrm{r}}}{\to} X \qquad \Rightarrow \qquad X_n \stackrel{\mathrm{a.s.}}{\to} X \,.$$

WLLN 00 0000 00

A.S. CONVERGENCE

Relations 000 FINAL REMARKS

$$X_n \xrightarrow{\mathsf{L}^r} X \not\Rightarrow X_n \xrightarrow{\mathsf{a.s.}} X$$

Example 2.18: Let X_n be a sequence of *independent* random variables such that

$$P(X_n = 1) = p_n$$
, $P(X_n = 0) = 1 - p_n$.

Then, with $X \equiv 0$,

$$X_n \stackrel{\mathsf{P}}{\to} X \quad \Longleftrightarrow \quad p_n o 0 \quad \Longleftrightarrow \quad X_n \stackrel{\mathsf{L}^r}{\to} X \qquad \text{as } n o \infty,$$

whereas

$$X_n \stackrel{\text{a.s.}}{\to} X \iff \sum_n p_n < \infty.$$

Taking $p_n = 1/n$, we get $X_n \xrightarrow{L^r} X$ but **not** $X_n \xrightarrow{a.s.} X$.

Notice that this example also shows that $X_n \xrightarrow{\mathsf{P}} X \not\Rightarrow X_n \xrightarrow{\mathsf{a.s.}} X$.

WLLN 00 0000 00

A.S. CONVERGENCE 000000 00 Relations 000 FINAL REMARKS

$$X_n \xrightarrow{\mathsf{P}} X \not\Rightarrow X_n \xrightarrow{\mathsf{L}^r} X$$

Example 2.19: Let $(\Omega, \mathcal{F}, \mathsf{P})$ be the canonical probability space (recall Example 2.13). For $n \ge 1$, define

$$X_n(\omega) \stackrel{\text{def}}{=} e^n \cdot \mathbb{1}_{[0,1/n]}(\omega) \equiv \begin{cases} e^n, & 0 \le \omega \le 1/n \\ 0, & \omega > 1/n \end{cases}$$

Clearly, $X_n \stackrel{\text{a.s.}}{\to} 0$, and $X_n \stackrel{\text{P}}{\to} 0$ as $n \to \infty$; however, for every r > 0

$$\mathsf{E}|X_n|^r = rac{e^{nr}}{n} \to \infty$$
, as $n \to \infty$, i.e., $X_n \not\xrightarrow{\mathsf{L}^r} 0$.

Notice that this example also shows that $X_n \stackrel{\text{a.s.}}{\to} X \neq X_n \stackrel{\mathsf{L}^r}{\to} X$.

CONVERGENCE OF RANDOM VARIABLES

By the end of this section you should be able to:

- define convergence in L^r, verify whether a given sequence of random variables converges in L^r;
- define convergence in probability, verify whether a given sequence of random variables converges in probability;
- explain the relation between convergence in L^r and convergence in probability (Lem 2.8);
- state and apply the sufficient condition for convergence in L^2 (Thm 2.10);
- define almost sure convergence, verify whether a given sequence of random variables converges almost surely;
- state and apply the sufficient condition for almost sure convergence (Lem 2.15);
- state and apply the Strong Laws of Large Numbers.