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2 Convergence of random variables

In probability theory one uses various modes of convergence of random variables,
many of which are crucial for applications. In this section we shall consider some
of the most important of them: convergence in Lr, convergence in probability and
convergence with probability one (a.k.a. almost sure convergence).

2.1 Weak laws of large numbers

Definition 2.1.b Let r > 0 be fixed. We say that a sequence Xj , j ≥ 1, of random

variables converges to a random variable X in Lr (write Xn
Lr

→ X) as n → ∞, if
E
∣∣Xn −X

∣∣r → 0 as n→∞.

Example 2.2. Let
(
Xn

)
n≥1 be a sequence of random variables such that for

some real numbers (an)n≥1, we have

P
(
Xn = an

)
= pn , P

(
Xn = 0

)
= 1− pn . (2.1)

Then Xn
Lr

→ 0 iff E
∣∣Xn

∣∣r ≡ |an|r pn → 0 as n→∞.

The following result is the L2 weak law of large numbers (L2-WLLN)

Theorem 2.3.Z Let Xj , j ≥ 1, be a sequence of uncorrelated random variables
with EXj = µ and Var(Xj) ≤ C < ∞. Denote Sn = X1 + · · · + Xn. Then

1
nSn

L2

→ µ as n→∞.

Proof. Immediate from

E
( 1

n
Sn − µ

)2
= E

(Sn − nµ)2

n2
=

Var(Sn)

n2
≤ Cn

n2
→ 0 as n→∞ .

Definition 2.4.b We say that a sequence Xj , j ≥ 1, of random variables converges

to a random variable X in probability (write Xn
P→ X) as n → ∞, if for every

fixed ε > 0
P
(
|Xn −X| ≥ ε

)
→ 0 as n→∞ .

Example 2.5. Let the sequence
(
Xn

)
n≥1 be as in (2.1). Then for every ε > 0

we have P
(
|Xn| ≥ ε

)
≤ P

(
Xn 6= 0) = pn, so that Xn

P→ 0 if pn → 0 as n→∞.

The usual (WLLN) is just a convergence in probability result:

Theorem 2.6.Z Under the conditions of Theorem 2.3, 1
nSn

P→ µ as n→∞.

Exercise 2.7. Derive Theorem 2.6 from the Chebyshev inequality.

We prove Theorem 2.6 using the following simple fact:

Lemma 2.8.Z Let Xj , j ≥ 1, be a sequence of random variables. If Xn
Lr

→ X

for some fixed r > 0, then Xn
P→ X as n→∞.
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Proof. By the generalized Markov inequality with g(x) = xr and Zn = |Xn −X| ≥ 0,
we get: for every fixed ε > 0

P
(
Zn ≥ ε

)
≡ P

(
|Xn −X|r ≥ εr

)
≤ E|Xn −X|r

εr
→ 0

as n→∞.

Proof of Theorem 2.6. Follows immediately from Theorem 2.3 and Lemma 2.8.

As the following example shows, a high dimensional cube is almost a sphere.

Example 2.9. Let Xj , j ≥ 1 be iid with Xj ∼ U(−1, 1). Then the variables
Yj = (Xj)

2 satisfy EYj = 1
3 , Var(Yj) ≤ E[(Y 2

j )] = E[(Xj)
4] ≤ 1. Fix ε > 0 and

consider the set

An,ε
def
=
{
z ∈ Rn : (1− ε)

√
n/3 < |z| < (1 + ε)

√
n/3

}
,

where |z| is the usual Euclidean length in Rn, |z|2 =
∑n
j=1(zj)

2. By the WLLN,

1

n

n∑

j=1

Yj ≡
1

n

n∑

j=1

(Xj)
2 P→ 1

3
;

in other words, for every fixed ε > 0, a point X = (X1, . . . , Xn) chosen uniformly
at random in (−1, 1)n satisfies

P
(∣∣∣ 1
n

n∑

j=1

(Xj)
2 − 1

3

∣∣∣ ≥ ε
)
≡ P

(
X 6∈ An,ε

)
→ 0 as n→∞ ,

ie., for large n, with probability approaching one, a random point X ∈ (−1, 1)n

is near the n-dimensional sphere of radius
√
n/3 centred at the origin.

Theorem 2.10.Z Let random variables Sn, n ≥ 1, have two finite moments,
µn ≡ ESn, σ2

n ≡ Var(Sn) <∞. If, for some sequence bn, we have σn/bn → 0 as
n→∞, then (Sn − µn)/bn → 0 as n→∞, both in L2 and in probability.

Proof. The result follows immediately from the observation

E
( (Sn − µn)2

b2n

)
=

Var(Sn)

b2n
→ 0 as n→∞ .

Example 2.11. In the “coupon collector’s problem” 12 let Tn be the time to
collect all n coupons. It is easy to show that ETn = n

∑n
m=1

1
m ∼ n log n and

Var(Tn) ≤ n2∑n
m=1

1
m2 ≤ π2n2

6 , so that

Tn − ETn
n log n

→ 0 ie.,
Tn

n log n
→ 1

as n→∞ both in L2 and in probability.

12 Problem R4
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2.2 Almost sure convergence

Let (Xk)k≥1 be a sequence of i.i.d. random variables having mean EX1 = µ and

finite second moment. Denote Sn
def
=
∑n
k=1Xk. Then the usual (weak) law of

large numbers (WLLN) tells us that for every δ > 0

P
(∣∣n−1Sn − µ

∣∣ > δ
)
→ 0 as n→∞. (2.2)

In other words, according to WLLN, n−1Sn converges in probability to a constant
random variable X ≡ µ = E(X1), as n→∞ (recall Definition 2.4, Theorem 2.6).

It is important to remember that convergence in probability is not related to
the pointwise convergence, ie., convergence Xn(ω) → X(ω) for a fixed ω ∈ Ω.
The following useful definition can be realised in terms of a U [0, 1] random
variable, recall Remark 1.6.2

Definition 2.12. The canonical probability space is
(
Ω,F ,P

)
, where Ω = [0, 1],

F is the smallest σ-field containing all intervals in [0, 1], and P is the ‘length
measure’ on Ω (ie., for A = [a, b] ⊆ [0, 1], P(A) = b− a).

Example 2.13.Z Let
(
Ω,F ,P

)
be the canonical probability space. For every

event A ∈ F consider the indicator random variable

1A(ω) =

{
1, if ω ∈ A ,

0, if ω /∈ A .
(2.3)

For n ≥ 1 put m = [log2 n], ie., m ≥ 0 is such that 2m ≤ n < 2m+1, define

An =
[n− 2m

2m
,
n+ 1− 2m

2m

]
⊆
[
0, 1
]

and let Xn
def
= 1An . Since P

(∣∣1An
∣∣ > 0

)
= P(An) = 2−[log2 n] < 2

n → 0 as
n→∞, the sequence Xn converges in probability to X ≡ 0. However,

{
ω ∈ Ω : Xn(ω)→ X(ω) ≡ 0 as n→∞

}
= ∅ ,

ie., there is no point ω ∈ Ω for which the sequence Xn(ω) ∈ {0, 1} converges to
X(ω) = 0.Z [Try the R script simulating this sequence from the course webpage!]

The following is the key definition of this section.

Definition 2.14.b A sequence (Xk)k≥1 of random variables in (Ω,F ,P) converges,
as n→∞, to a random variable X with probability one (or almost surely) if

P
({
ω ∈ Ω : Xn(ω)→ X(ω) as n→∞

})
= 1 . (2.4)

Remark 2.14.1.Z For ε > 0, let An(ε) =
{
ω : |Xn(ω)−X(ω)| > ε

}
. Then the

property (2.4) is equivalent to saying that for every ε > 0

P
({
An(ε) finitely often

})
= 1 . (2.5)

This is why the Borel-Cantelli lemma is so useful in studying almost sure limits.
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Example 1.5 (continued) Consider a finite random variable X, ie., satisfying

P(|X| < ∞) = 1. Then the sequence (Xk)k≥1 defined via Xk
def
= 1

kX converges
to zero with probability one.

Solution. The previous discussion established exactly (2.5).

In general, to verify convergence with probability one is not immediate. The
following lemma gives a sufficient condition of almost sure convergence.

Lemma 2.15.Z Let X1, X2, . . . and X be random variables. If, for every ε > 0,

∞∑

n=1

P
(
|Xn −X| > ε

)
<∞ , (2.6)

then Xn converges to X almost surely.

Proof. Fix ε > 0 and let An(ε) =
{
ω ∈ Ω : |Xn(ω) − X(ω)| > ε

}
. By (2.6),∑

n P
(
An(ε)

)
< ∞, and, by Lemma 1.6a), only a finite number of An(ε) occur with

probability one. This means that for every fixed ε > 0 the event

A(ε)
def
=
{
ω ∈ Ω : |Xn(ω)−X(ω)| ≤ ε for all n large enough

}

has probability one. By monotonicity (A(ε1) ⊂ A(ε2) if ε1 < ε2), the event

{
ω ∈ Ω : Xn(ω)→ X(ω) as n→∞

}
=
⋂

ε>0

A(ε) =
⋂

m≥1

A(1/m)

has probability one. The claim follows.

A straightforward application of Lemma 2.15 improves the WLLN (2.2) and
gives the following famous (Borel) Strong Law of Large Numbers (SLLN):

Theorem 2.16 (L4-SLLN).Z Let the variablesX1, X2, . . . be i.i.d. with E(Xk) =

µ and E
(
(Xk)4

)
< ∞. If Sn

def
= X1 + X2 + · · · + Xn, then Sn/n → µ almost

surely, as n→∞.

Proof. We may and shall suppose13 that µ = E(Xk) = 0. Now,

E
(
(Sn)4

)
= E

(( n∑

k=1

Xk

)4)
=
∑

k

E
(
(Xk)4

)
+ 6

∑

1≤k<m≤n
E
(
(Xk)2(Xm)2

)

so that E
(
(Sn)4

)
≤ Cn2 for some C ∈ (0,∞). By Chebyshev’s inequality,

P
(
|Sn| > nε

)
≤ E

(
(Sn)4

)

(nε)4
≤ C

n2ε4

and the result follows from (2.6).

13otherwise, consider the centred variables X′k = Xk − µ and deduce the result from the

relation 1
n
S′n = 1

n
Sn − µ and linearity of almost sure convergence.
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With some additional work,14 one can obtain the following SLLN (which is
due to Kolmogorov):

Theorem 2.17 (L1-SLLN).b Let X1, X2, . . . be i.i.d. r.v. with E|Xk| < ∞. If

E(Xk) = µ and Sn
def
= X1 + · · ·+Xn, then 1

nSn → µ almost surely, as n→∞.

Notice that verifying almost sure convergence through the Borel-Cantelli
lemma (or the sufficient condition (2.6)) is easier than using an explicit con-
struction in the spirit of Example 1.5. We shall see more examples below.

2.3 Relations between different types of convergence

It is important to remember the relations between different types of convergence. We
know that (Lemma 2.8)

Z Xn
Lr→ X =⇒ Xn

P→ X ;

one can also show15

Z Xn
a.s.→ X =⇒ Xn

P→ X .

In addition, according to Example 2.13,

Z Xn
P→ X 6⇒ Xn

a.s.→ X ,

and the same construction shows that

Z Xn
Lr→ X 6⇒ Xn

a.s.→ X .

The following examples fill in the remaining gaps:

Example 2.18 (Xn
Lr→ X 6⇒ Xn

a.s.→ X).Z Let Xn be a sequence of independent random
variables such that P(Xn = 1) = pn, P(Xn = 0) = 1− pn. Then

Xn
P→ X ⇐⇒ pn → 0 ⇐⇒ Xn

Lr→ X as n→∞,

whereas
Xn

a.s.→ X ⇐⇒
∑

n

pn <∞.

In particular, taking pn = 1/n we deduce the claim. Notice that this example also

shows that Xn
P→ X 6⇒ Xn

a.s.→ X.

Example 2.19 (Xn
P→ X 6⇒ Xn

Lr→ X).Z Let (Ω,F ,P) be the canonical probability
space, recall Definition 2.12. For every n ≥ 1, define

Xn(ω)
def
= en · 1[0,1/n](ω) ≡

{
en , 0 ≤ ω ≤ 1/n

0 , ω > 1/n .

We obviously have Xn
a.s.→ 0 and Xn

P→ 0 as n → ∞; however, for every r > 0

E|Xn|r = enr

n
→∞ as n→∞, ie., Xn 6 L

r

→ 0. Notice that this example also shows that

Xn
a.s.→ X 6⇒ Xn

Lr→ X.

14we will not do this here!
15although we shall not do it here!
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