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A Some useful mathematical facts

This (growing) section is aimed to help you by listing various basic facts used in the
course. Feel free to suggest any further additions you find useful!

A.1 Sets and their properties

If A, B are sets (events), we write A ⊂ B to indicate that every x ∈ A satisfies x ∈ B.
We also write A = B if both A ⊂ B and B ⊂ A, or, using the equivalence symbol ⇔,

A = B ⇔ A ⊂ B and B ⊂ A .
It is useful to remember that (exercise!)

A ⊂ B ⇔ Bc ⊂ Ac ⇔ A ∩Bc = ∅ ,

where Ac denotes the complement of the set (event) A. If (Aα)α∈A is any collection
of events, then

( ⋃

α∈A
Aα
)c

=
⋂

α∈A
Ac
α ,

( ⋂

α∈A
Aα
)c

=
⋃

α∈A
Ac
α .

Lemma A.1. If (An)n≥0 is an increasing sequence of sets and (Bn)n≥0 is a decreasing
sequence of sets, then

A0 ⊂
⋂

n≥1

An , and
⋃

n≥1

Bn ⊂ B0 .

Lemma A.2. Let
(
Aα
)
α∈A and

(
Bβ)β∈B be arbitrary1 collections of sets, such that

for every Aα there exists Bβ with Aα ⊂ Bβ , then
⋃

α∈A
Aα ⊂

⋃

β∈B
Bβ .

Similarly, if for every Bβ there exists Aα with Aα ⊂ Bβ , then
⋂

α∈A
Aα ⊂

⋂

β∈B
Bβ .

Proof. A useful exercise!

If A is an event, its indicator function 1A : Ω→ {0, 1} is defined via

1A(ω) =

{
1 , ω ∈ A ,
0 , ω 6∈ A .

Convergence of events is equivalent2 to the point-wise convergence of the corresponding
indicator functions: An → A, iff 1Ak (ω)→ 1A(ω) for every ω ∈ Ω.

Notice that for a sequence (Ak)k≥1 of events, the random variable

N(ω) =
∑∞
k=1 1Ak (ω)

counts how many of the events Ak occur. One can show that EN =
∑∞
k=1 P(Ak).

1with A and B countable or even uncountable!
2 The general theory of set convergence is the subject of ‘pure’ courses such as set theory

or (real) analysis/measure theory; if interested, have a look at problems E26–E28 and/or get
in touch!
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A.2 Real sequences and their limits

The following observation explains why the Borel-Cantelli lemma (Lemma 1.6) is so
useful in studying limits of random variables: If (xn)n≥1 is a sequence of real numbers,
we say that it converges to a limit a (and write a = lim

n→∞
xn) if for every ε > 0 the set

{n ≥ 1 : |xn − a| > ε} is finite,

∣∣{n ≥ 1 : |xn − a| > ε
}∣∣ <∞ .

Not every sequence (xn)n≥1 has a limit, however, every such sequence has the upper
and the lower limits,

lim sup
n→∞

xn ≡ lim
n→∞

sup
k≥n

xk , lim inf
n→∞

xn ≡ lim
n→∞

inf
k≥n

xk .

Of course, lim
n→∞

xn exists if and only if lim sup
n→∞

xn = lim inf
n→∞

xn (and their common

value gives lim
n→∞

xn).

Lemma A.3. Let (xn)n≥1 be a real sequence. Then a = lim sup
n→∞

xn if and only if for

every ε > 0

∣∣{n ≥ 1 : xn > a+ ε
}∣∣ <∞ and

∣∣{n ≥ 1 : xn > a− ε
}∣∣ =∞ . (A.1)

The following fact is useful in studying extreme values, recall Remark 1.10.1; it
also highlights the usefulness of the Borel-Cantelli lemma (Lemma 1.6).

Lemma A.4. Let (xn)n≥1 and (yn)n≥1 be real sequences, where, for every n ≥ 1,
one has yn = max(x1, . . . , xn). Then for every non-decreasing sequence (bn)n≥1 (ie.,
bn ≤ bn+1 for all n ≥ 1) with bn →∞ as n→∞, the sets

{
n ≥ 1 : xn > bn

}
and

{
n ≥ 1 : yn > bn

}

are both finite or both infinite.

It is instructive to write a carefull proof of the previous lemmata.Z In particular,
you might wish to explore what happens in Lemma A.4 if the condition bn → ∞ as
n→∞ is dropped.

A.3 Integral calculus of sequences

The following facts show that the “integral calculus for sequences” is basically a Core B1
material:

Lemma A.5. Let S =
(
sm,n

)
m,n≥1

be an increasing in both indices (m and n)

collection of numbers in R ≡ [−∞,+∞], ie., as soon as j ≤ m and k ≤ n, we have
sj,k ≤ sm,n. Then

lim
m→∞

lim
n→∞

sm,n = lim
n→∞

lim
m→∞

sm,n = supS ,

Remark A.5.1. In other words, interchanging the order of limits does not change the
result!

Proof. An easy exercise using definitions of lim and sup.
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Lemma A.6. Let A =
(
am,n

)
m,n≥1

be a collection of numbers in R+ ≡ [0,+∞].

Then ∞∑

n=1

∞∑

m=1

am,n =
∞∑

m=1

∞∑

n=1

am,n = supS ,

where S is the set of all sums of finitely many elements of A.

Remark A.6.1. In other words, iterated sums of non-negative numbers can be summed
in any order. You had a similar statement for multiple integrals in Core A; it is often
referred to as the Fubini theorem (for non-negative sums).

Proof. Just consider all sums sm,n =
∑m
i=1

∑n
j=1 ai,j and use Lemma A.5.

Lemma A.7. Let
(
am,n

)
m,n≥1

be a collection of numbers in R+ ≡ [0,+∞], which is

increasing in the second index n, ie., for every fixed m ∈ N, the inequality am,k ≤ am,n
holds provided k ≤ n. Then

lim
n→∞

∞∑

m=1

am,n =
∞∑

m=1

lim
n→∞

am,n .

Remark A.7.1. If the functions fn : N→ R+
are defined via fn(m) = am,n, they form

a point-wise monotone sequence (ie., for every fixed m ∈ N, we have fn(m) ≤ fn+1(m)
for all n ≥ 1); the statement above says that the limit of the sum (integral) equals
the sum (integral) of limits. In other words, the statement above is the Monotone
Convergence Theorem for sequences.

Proof. Put sm,n =
∑m
l=1 al,n and use Lemma A.5.

Lemma A.8. Let
(
am,n

)
m,n≥1

,
(
am
)
m≥1

and
(
bm
)
m≥1

be collections of numbers

such that for every fixed m ∈ N, we have limn→∞ am,n = am,
∣∣am,n

∣∣ ≤ bm, and∑
m bm <∞. Then

lim
n→∞

∞∑

m=1

am,n =
∞∑

m=1

am =
∞∑

m=1

lim
n→∞

am,n .

Remark A.8.1. This is just the Dominated Convergence Theorem for sequences!

Proof. Fix arbitrary ε > 0. By assumption, choosing M large enough, we can get∑
m>M

∣∣am,n−am
∣∣ ≤∑m>M bm < ε/2. For a finite M with this property, we can find

n large enough so that
∑M
m=1

∣∣am,n − am
∣∣ < ε/2. Since ε > 0 is arbitrary, the result

follows.

Notice that for non-negative functions on N, the sum is linear, monotone and respects
limits; in other words, in this case the integral calculus reduces to a calculus of sums!

A.4 Some properties of power series

For a real sequence (ak)k≥0, consider the power series

G(s) = Ga(s)
def
=
∞∑

k=0

ak s
k . (A.2)
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Theorem A.9 (Radius of convergence). There exists a number R ≥ 0 such that the
series in (A.2) converges absolutely if |s| < R and diverges if |s| > R. This value of R
is called the radius of convergence, and the series (A.2) converges uniformly on sets of
the form {s : |s| ≤ R′} for any R′ < R.

Clearly, if G(s) is a probability generating function, then |s| ≤ 1 implies |G(s)| ≤
G(1) = 1, so that R ≥ 1.

Remark A.9.1. The radius of convergence of the g.f. G(s) =
∑∞
k=0 ak s

k can be
obtained from the so-called root test; it gives3

R =
1

lim supk→∞
k
√
|ak|

. (A.3)

Theorem A.10 (Differentiation). If the radius of convergence of a generating function
Ga(s) equals R > 0, then Ga(s) may be differentiated or integrated term by term any
number of times when |s| < R.

Theorem A.11 (Uniqueness).b If two generating functions, Ga(s) and Gb(s), are finite
and coincide on a disk of radius R′ > 0, ie., for all |s| < R′ we have Ga(s) = Gb(s),
then an = bn for all n. Furthermore,

an ≡ 1

n!

dn

dsn

∣∣∣
s=0

Ga(s) .

Theorem A.12 (Abel’s theorem). If ak ≥ 0 for all k and Ga(s) is finite for |s| < 1,
then

lim
s↗1

Ga(s) =
∞∑

k=0

ak , (A.4)

whether this sum is finite or equals +∞.

3 alternatively, if the limit q = lim
n→∞

|an+1/an| exists, then R = 1/q.
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