
Mixed Multiscale Methods

for Heterogeneous Elliptic Problems

Part 2: Mixed Multiscale Numerics

Todd Arbogast

Department of Mathematics

and

Center for Subsurface Modeling,

Institute for Computational Engineering and Sciences (ICES)

The University of Texas at Austin

This work was supported by

• U.S. National Science Foundation
• U.S. Department of Energy, Office of Basic Energy Sciences as part of the Center

for Frontiers of Subsurface Energy Security
• KAUST through the Academic Excellence Alliance

Institute for Computational Engineering and Sciences 1 of 62
Center for Subsurface Modeling, The University of Texas at Austin



Outline

1. Variational Multiscale Method

2. Some (Multiscale) Mixed Finite Elements

• Microscale Structure from Homogenization and a New Mixed

Multiscale Finite Element

3. An Error Analysis

4. Some Numerical Results

• Some Channelized Flows

5. Summary and Conclusions

Institute for Computational Engineering and Sciences 2 of 62
Center for Subsurface Modeling, The University of Texas at Austin



Second Order Elliptic PDE’S in Mixed Form

The differential problem:
u = −aε∇p in Ω

∇ · u = f in Ω

u · ν = 0 on ∂Ω
Flow in porous media

The mixed variational problem:

Find p ∈W = L2/R and u ∈ V = H0(div) such that

(a−1
ε u,v) = (p,∇ · v) ∀ v ∈ V (Darcy’s law)

(∇ · u, w) = (f, w) ∀ w ∈W (conservation)

Remark: The mixed form preserves the conservation equation, and so

allows locally conservative approximations. This is a critical property in

many applications.
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Mixed Finite Element Approximation

Define

Th a reasonable finite element partition of Ω

Eh the set of edges of the finite elements

h the maximal element diameter

Wh ×Vh any inf-sup stable mixed finite element spaces in W ×V

Find p ∈Wh ⊂W and u ∈ Vh ⊂ V such that

(a−1
ε uh,v) = (ph,∇ · v) ∀ v ∈ Vh (Darcy’s law)

(∇ · uh, w) = (f, w) ∀ w ∈Wh (conservation)

Difficulty: Fine-scale variation in aε (the permeability) leads to fine-scale

variation in the solution (u, p).

Solution: Define Vh ×Wh to respect the scales:

• Multiscale finite elements (Babuška & Osborn 1983; Hou & Wu

1997; Chen & Hou 2003)

• Variational multiscale method (Hughes 1995, Arbogast, Minkoff &

Keenan 1998, Arbogast & Boyd 2006)
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Variational Multiscale Method
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A Two-Scale Expansion

We base our expansion on local mass conservation.

Define a coarse computational grid Th on Ω.

Pressure space: W = W̄ ⊕W ′

W̄ = {w̄ ∈W : w̄ is constant on each coarse element E}
W ′ = W̄⊥

Velocity space: V = V̄ ⊕V′

V′ = {v′ ∈ V : ∇ · v′ ∈W ′, v′ · ν = 0 on ∂E ∀ E} (locality)

V̄ = V/V′ (conservation)

Then

(a) ∇ · V̄ = W̄ (coarse conservation)

(b) ∇ ·V′ = W ′ (fine subgrid conservation)

(c) V̄ ' {v · ν on ∂E : E ∈ Th}

Remark: To obtain subgrid locality in V′, V̄ has full normal velocity

coupling on the coarse edges e ∈ Eh.
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Separation of Scales

Separate scales uniquely via the direct sum as

u = ū + u′ ∈ V̄ ⊕V′

p = p̄+ p′ ∈ W̄ ⊕W ′

Coarse:

(a−1
ε (ū + u′), v̄) = (p̄,∇ · v̄) ∀ v̄ ∈ V̄

(∇ · ū, w̄) = (f, w̄) ∀ w̄ ∈ W̄
Subgrid:

(a−1
ε (ū + u′),v′) = (p′,∇ · v′) ∀ v′ ∈ V′

(∇ · u′, w′) = (f, w′) ∀ w′ ∈W ′

Lemma. The inf-sup condition holds over both W̄ × V̄ and W ′×V′, with
constants independent of the coarse mesh and ε.

Theorem. Given ū ∈ V̄, there exists a unique solution (p′,u′) ∈W ′ ×V′.
Moreover,

‖p′‖+ ‖u′‖ ≤ C{‖f‖+ ‖ū‖}
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The Closure Operator

Constant part: Define (p̃′, ũ′) ∈W ′ ×V′ by

(a−1
ε ũ′,v′) = (p̃′,∇ · v′) ∀ v′ ∈ V′

(∇ · ũ′, w′) = (f, w′) ∀ w′ ∈W ′

Linear part: For v̄ ∈ V̄, define (p̂′, û′) ∈W ′ ×V′

(a−1
ε (v̄ + û′),v′) = (p̂′,∇ · v′) ∀ v′ ∈ V′

(∇ · û′, w′) = 0 ∀ w′ ∈W ′

Then

p′ = p̂′(ū) + p̃′

u′ = û′(ū) + ũ′

Lemma. The operator û′ : V̄→ V′ is bounded and linear.
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The Upscaled Equation

The coarse scale equation, in symmetric form, is:

Find (p̄, ū) ∈ W̄ × V̄ such that

(a−1
ε (ū+û′(ū)), (v̄+û′(v̄)))

= (p̄,∇ · v̄)−(a−1
ε ũ′, v̄) ∀ v̄ ∈ V̄

(∇ · ū, w̄) = (f, w̄) ∀ w̄ ∈ W̄

Full solution:

p = p̄+ p̂′(ū) + p̃′

u = ū + û′(ū) + ũ′

Remarks:

• No approximation has been made yet.
• The equations maintain strict local conservation on both scales.
• The subgrid and upscaled problems are well posed.
• Because V′ · ν = 0 on each ∂E, û′ is locally defined:

û′(ū)|E = û′(ū|E)
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Antidiffusion from the Correction Terms

We can also rewrite the problem as

Find (p̄, ū) ∈ W̄ × V̄ such that

(a−1
ε ū, v̄)−(a−1

ε û′(ū), û′(v̄))

= (p̄,∇ · v̄)−(a−1
ε ũ′, v̄) ∀ v̄ ∈ V̄

(∇ · ū, w̄) = (f, w̄) ∀ w̄ ∈ W̄

Thus the subscale correction is antidiffusive on the coarse scale.

0.75

0.65

0.6

Fine 30× 30

0.75

0.6

0.5

Average a coarse 6× 6

Remark: This is the main reason effective parameters cannot work.

Multiscale ideas are needed.
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Analytic Representation of the Permeability Term

Let Gx(y) be the Greens function on a coarse element E{
−∇ · aε∇Gx = δx − 1/|E| in E

− aε∇Gx · ν = 0 on ∂E

Then

u(x) = (ū · ν, aε(x)∇xGx)∂E − (f, aε(x)∇xGx)E

and

(a−1
ε u, v̄)E =

∫
E

∫
E

ū · ∇x∇yGx · v̄ dx dy −
∫
E
f ′∇xGx · v̄ dx

So the upscaled permeability tensor is a nonlocal (but confined to E)

operator

â−1
ε (x, y) = ∇x∇yGx(y)

Moreover, there is an affine correction term related to f ′.
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Numerical Approximation

Choose any inf-sup stable mixed space V̄H × W̄H on the coarse mesh.

Formulation 1: Find (ūH , p̄H) ∈ V̄H × W̄H such that(
a−1
ε (ūH + û′(ūH)), v̄H + û′(v̄H)

)
= (p̄H ,∇ · v̄H)− (a−1

ε ũ′, v̄H) ∀ v̄H ∈ V̄H

(∇ · ūH , w̄H) = (f, w̄H) ∀ w̄H ∈ W̄H

Then
u ≈ uH = ūH + û′(ūH) + ũ′

p ≈ pH = p̄H + p̂′(ūH) + p̃′

Formulation 2: Define

V̂H = { v̄H + û′(v̄H) : v̄H ∈ V̄H} ( V̄H + V′

Find uH ∈ V̂H + ũ′ and p̄H ∈ W̄H such that

(a−1
ε uH , v̂H) = (p̄H ,∇ · v̂H) ∀ v̂H ∈ V̂H

(∇ · uH , w̄H) = (f, w̄H) ∀ w̄H ∈ W̄H

Remark: We have some multiscale finite elements!
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Some (Multiscale) Mixed Finite Elements
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General Remarks

Pressure Spaces: In all cases, we take

Wh = {w̄ ∈ L2(Ω) : w̄ is constant on each coarse element E}

We deal with the fact that Wh 6∈W = L2(Ω)/R in the usual way.

Velocity Space: Since

V̄ ' {v · ν on ∂E : E ∈ Th}

we need only specify v̄ ∈ V̄ on coarse element edges e ∈ Eh. We obtain

the corresponding multiscale finite element vh by solving the local

Neumann problem.
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Raviart-Thomas Mixed FEM (RT0)—1

Define vRT0
e ∈ V RT0

h for each coarse element edge e ∈ Eh.

Element definition:

For each edge e ⊂ ∂E, solve

vRT0
e = −∇φRT0

e in E,

∇ · vRT0
e = ±|e|/|E| in E,

vRT0
e · ν =

0 on ∂E \ e,
1 on e,

e

Ee,1

e

Ee,2

Dual-support definition (rectangular case):

For each edge e ∈ Eh, solve
vRT0
e = −∇φRT0

e in Ee,

∇ · vRT0
e = ±|e|/|Ee,i| in Ee,i, i = 1,2,

vRT0
e · ν = 0 on ∂Ee.

e

Ee
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Raviart-Thomas Mixed FEM (RT0)—2

Theorem: (Raviart & Thomas, 1977)

‖u− uRT0
h ‖0 ≤ C‖u‖1h = O

(
h

ε2

)
Remark: These elements have no dependence on the scale ε. They are

accurate only when h < ε, i.e., h resolves the fine-scale heterogeneity.

Elements Based on the Heterogeneity

The main idea of multiscale finite elements is to use aε in their

definition. In the boundary value problems used to define vRT0
e ∈ VRT0

h ,

simply insert the coefficient aε.
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Variational Multiscale Element (ME0) Based on RT0
(Arbogast, Minkoff & Keenan 1998, Chen & Hou 2003)

Define vME0
e ∈ V ME0

h for each coarse element edge e ∈ Eh.

Element definition:

For each edge e ⊂ ∂E, solve

vME0
e = −aε∇φME0

e in E,

∇ · vME0
e = ±|e|/|E| in E,

vME0
e · ν =

0 on ∂E \ e,
1 on e,

e

Ee,1

e

Ee,2

Theorem: (Arbogast ’04; Chen & Hou ’03; Arbogast & Boyd ’06)

‖u− uME0
h ‖0 ≤ C‖u‖1h,

‖u− uME0
h ‖0 ≤ C

{
h‖u0‖1 + ε‖u0‖0 +

√
ε/h‖u0‖0,∞

}
,

where u0 is a smooth function independent of ε. Thus,

‖u− uME0
h ‖0 = O

(
min

{
h

ε
, h+ ε+

√
ε

h

})
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Multiscale Dual-Support (MD) Elements
(Aarnes, 2004; Aarnes, Krogstad, Lie, 2006)

Define vMD
e ∈ V MD

h for each coarse element edge e ∈ Eh.

Dual support definition (rectangular case):

For each edge e ∈ Eh, solve
vMD
e = −aε∇φMD

e in Ee,

∇ · vMD
e = ±|e|/|Ee,i| in Ee,i, i = 1,2,

vMD
e · ν = 0 on ∂Ee.

Ee

A problem: Anisotropy!
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Counterexample to Convergence of MD

Take a constant

aε(x) = a = QΛQT with Λ =

(
100 0

0 1

)
and Q = 30◦ rotation.

We have a genuine anisotropy, but no microstructure.

Velocity and Speed x-velocity y-velocity

The space VMD
h cannot reproduce

constants, so the method cannot converge

in any reasonable sense as h→ 0.
Normal trace on e
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Second Order Accurate Elements
(Brezzi, Douglas, Marini 1985; Arbogast 2000)

Standard BDM1 Elements: The BDM1 elements have two degrees of

freedom per element edge. That is

v · ν|e is a linear function for each edge e ∈ ∂E

Moreover

∇ · v|E is a constant on each element E =⇒ ∇ · v ∈Wh

Multiscale ME1 Elements:
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Some Additional Elements

Oversampled elements (OS) (Hou et al., 1997,

2003)

Solve on a larger domain and restrict back to

E. Leads to a nonconforming method.

Reduced dimension-based elements (Hou, Wu 1997)

Solve a reduced dimension problem on each edge e ⊂ ∂E to set v · ν on e.

Generalized finite elements and partition of unity methods (Babuška et

al. 1983, 1994, 2001)

Create a multiscale finite element basis from a partition of unity

modified by local multiscale functions.

Local eigenfunction-based elements (Efendiev, Galvis 2009; Hetmaniuk,

Lehoucq 2010)

Base v · ν on solutions to local eigenfunction problems.
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Microscale Structure from Homogenization

and a New Mixed Multiscale Finite Element
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Homogenization

Suppose that aε is locally periodic of period ε. Then

aε(x) = a(x, x/ε)

where a(x, y) is periodic in y of period 1 on the unit cube Y .

Let a0 be the homogenized permeability matrix, defined by

a0,ij(x) =
∫
Y
a(x, y)

(
δij +

∂ωj(x, y)

∂yi

)
dy

where, for fixed x, ωj(x, y) is the Y -periodic solution of

−∇y · (a∇y ωj) = ∇ · (aej)

Homogenized solution: Let (u0, p0) solve
u0 = −a0∇p0 in Ω

∇ · u0 = f in Ω

u0 · ν = 0 on ∂Ω

Then (u0, p0) is a smooth “approximation” of (u, p).
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Microscale Structure

Theorem: Assume that p0 ∈ H2(Ω) ∩W1,∞(Ω). Let α0 = a−1
0 and define

the fixed tensor independent of ε and the domain Ω

Aij(x, y) =
∑
k,`

aik(x, y)
(
δk` +

∂ω`(x, y)

∂yk

)
α0,`j ⇐⇒ A = a (I +Dω)α0

Let

Aε(x) = A(x, x/ε)

Then

uε(x) = Aε(x) u0(x) + θΩ
ε (x)

where

‖θΩ
ε ‖0 ≤ C

{
ε‖u0‖1 +

√
ε|∂Ω|‖u0‖0,∞

}
= O

(
ε+
√
ε
)

Consequence:

uε ≈ Aεu0 =⇒ Vh ≈ {Aεv : v is some nice smooth function}.

However, these finite elements lie outside H(div; Ω).
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Homogenization-Based Multiscale (HE) Element—1

Key idea. On each edge e, we use only the normal trace and piecewise

constant approximation to define vHE
e ∈ V HE

h .

uε · ν ≈ Aεu0 · ν ∼ Aε
(
α
β

)
· ν = αAεe1 · ν + βAεe2 · ν for α, β ∈ R

Step 1: On Ee (or a larger

oversampled domain), find the

periodic solution ωj(x) of

−∇ · (a∇ωj) =
∂a

∂xj

Compute Aε from ω1 and ω2, and

extract Aε e1 · ν and Aε e2 · ν on e.

ω1

ω2
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Homogenization-Based Multiscale (HE) Element—2

Step 2: On each E, ∂E ⊃ e,

vHE,i
e = −aε∇φHE,i

e in E,

∇ · vHE,i
e = ±|e|/|E| in E,

vHE,i
e · ν =

0 on ∂E\e,
Aε ei · ν on e,

Aε e1 · ν

primary flow

Aε e2 · ν

cross-flow

Remarks:

• This is not a dual-support element, but we use Ee in the definition.

• We sample the microstructure aε more thoroughly than ME0.

• It has twice the number of degrees of freedom as MD (same as ME1).
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An Error Analysis
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Optimal Error Estimates

Theorem (Arbogast 2004) u ≈ uh = ūh + û′(ūh) + ũ′

‖a−1/2
ε (u− uh)‖0 ≤ inf

vh∈V̄h+V′
∇·vh=f

‖a−1/2
ε (u− vh)‖0

∇ · uh = f

Remarks:

1. We have assumed that the upscaling operator is solved exactly, since

it can be well resolved on a fine grid.

2. The method is locally conservative on the (fully resolved) fine scale.

3. We can show optimal polynomial convergence rates in

• h for the coarse part

• hf for the fine part

• hf for the divergence

4. Optimality is over the large space V̄h+ V′, so the best approximation

has an energy minimizing fine part with respect to the coarse part.

That is, the optimal solution is in {v̄h + û′(v̄h) : v̄h ∈ V̄h} ( V̄h + V′

Institute for Computational Engineering and Sciences 28 of 62
Center for Subsurface Modeling, The University of Texas at Austin



Multiscale Convergence

We present a multiscale error analysis for ME0.

• We quantify the error in terms of h and ε.

• The proofs are based on comparison to the homogenized solution.

• The style of proof is due to Hou, Wu, and Cai 1999. See also

• Efendiev, Hou, and Wu 2000

• Chen and Hou 2003 (mixed case)

• Arbogast and Boyd 2006 (mixed case)

We present a simplified proof involving

• certain projection operators

• four key results

• we saw the first key result from homogenization theory

(1) uε(x) = Aε(x) u0(x) +O(
√
ε)

• a one line proof

We show where MD fails, and conjecture that HE works.
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Quasi-Optimality

Assume aε(x) is smooth and positive definite:

a∗|ξ|2 ≤ ξTαε(x) ξ ≤ a∗|ξ|2 ∀x ∈ Ω.

Let PWh
denote L2-projection into Wh.

Lemma: (Quasi-optimality) If ∇ ·Vh ⊂Wh, then

(2) ‖uε − uh‖0 ≤
√
a∗

a∗
‖uε − v‖0

for any v ∈ Vh such that ∇ · v = PWh
∇ · uε.

Goal: Find any vε ≈ uε in VM
h with ∇ · vε = PWh

∇ · uε.
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Homogenized Finite Elements—1

Key idea: To deal with the ε scale of our finite elements, define

corresponding homogenized finite elements.

Replace the true coefficient in the definition of the finite elements with

the corresponding homogenized one.

ME0 : aε 7−→ a0

VME0
0,h = span

e∈Eh
{vME0

0,e }
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Homogenized Finite Elements—2

Since our finite elements are defined by boundary value problems, the

homogenization theorem applies.

Lemma: For each e ∈ Eh

vME0
e = AεvME0

0,e + θEe,ME0
ε

where

‖θEe,ME0
ε ‖0,Ee ≤ C

{
ε‖vME0

0,e ‖1,Ee +
√
ε|∂Ee|‖vME0

0,e ‖0,∞,Ee
}

= O
({

ε

h
+
√
ε

h

}
hd/2

)
Remark: We see numerical resonance (i.e., factors of ε/h) here in the

estimate. These terms come from localizing to the element Ee.
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Flux-Based Projection Operators

The average normal flux across e ∈ Eh is

γe =
1

|e|

∫
e
v · νe ds

The Raviart-Thomas projection is

πRT0v =
∑
e∈Eh

γev
RT0
e ∈ VRT0

h

Similarly, define

πME0
ε v =

∑
e∈Eh

γev
ME0
e ∈ VME0

h and πME0
0 v =

∑
e∈Eh

γev
ME0
0,e ∈ VME0

0,h

Lemma:

∇ · πME0
ε v = ∇ · πME0

0 v = ∇ · πRT0v = PWh
∇ · v
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Multiscale Projection Approximation

Lemma:

(3) ‖πME0
ε v −AεπME0

0 v‖0 ≤ C‖v‖1
(
ε/h+

√
ε/h

)

Proof:

πME0
ε v −AεπME0

0 v =
∑
e∈Eh

γe(v
ME0
e −AεvME0

0,e ) =
∑
e∈Eh

γeθ
Ee,ME0
e

=⇒

‖πME0
ε v −AεπME0

0 v‖0,E ≤
∑
e⊂∂E

|γe| ‖θEe,ME0
e ‖0,E

≤ C
∑
e⊂∂E

(
h−d/2‖v‖1,Ee

)({
ε

h
+
√
ε

h

}
hd/2

)

= C
∑
e⊂∂E

‖v‖1,Ee
(
ε

h
+
√
ε

h

)
�
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Smooth Projection Approximation

Lemma: If v0 = −a0∇φ0, then

(4) ‖v0 − πME0
0 v0‖0 ≤ C‖v0‖1h

Proof:

ψ = v − πME0
0 v = −a0∇

(
φ0 −

∑
e⊂∂E

γeφ
ME0
0,e

)
in E

is a potential field satisfying the Neumann problem

∇ · ψ = ∇ · v0 − PWh
∇ · v0 in E

ψ · νe = v0 · νe − γe on e ⊂ ∂E

The standard energy estimate gives the result. �

Remarks:

• The counterexamples show that similar results cannot hold for MD.

• Conjecture: A similar result holds for HE, since

Aε −→ I as ε→ 0
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Convergence Theorem

Theorem: If Ω has elliptic regularity and p0 ∈ H2(Ω) ∩W1,∞(Ω), then

‖uε − uME0
h ‖0 + ‖PWh

pε − ph‖0
≤ C

{(
ε+ ε/h+

√
ε/h+ h

)
‖u0‖1 +

√
ε ‖u0‖0,∞

}
∇ · uME0

h = PWh
f and ‖∇ · (uε − uME0

h )‖0 ≤ C‖f‖1h

Proof:

uε ≈ πME0
ε u0 ∈ VME0

h and ∇ · πME0
ε u0 = PWh

∇ · u0 = PWh
uε

‖uε − uME0
h ‖0 ≤

(2) Quasi-optimality

C‖uε − πME0
ε u0‖0

≤ C
{
‖uε −Aεu0‖0

(1) Homogenization

+ ‖Aε(u0 − πME0
0 u0)‖0

(4) Smooth Proj.

+ ‖AεπME0
0 u0 − πME0

ε u0‖0
(3) Multiscale Proj.

}

Divergence result follows trivially from the definitions.
Pressure result follows from the inf-sup condition. �

Remark: A similar proof holds for ME1.
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Inf-Sup Condition

Corollary: If Ω has elliptic regularity, then there is some β > 0,

independent of ε, such that

sup
vh∈VME0

h

(wh,∇ · vh)

‖vh‖0 + ‖∇ · vh‖0
≥ β‖wh‖0 ∀wh ∈Wh

Proof: Solve
∇ · v0 = wh in Ω

v0 = −a0∇φ0 in Ω

v0 · ν = 0 on ∂Ω
=⇒ ‖v0‖1 ≤ C‖wh‖0

Take

vh = πME0
ε v0 ∈ VME0

h =⇒ ∇ · vh = PWh
∇ · v0 = wh

Then

‖vh‖0 ≤ ‖πME0
ε v0 −AεπME0

0 v0‖0
(3)

+ ‖Aε(πME0
0 v0 − v0)‖0

(4)
+ ‖Aεv0‖0

≤ C‖v0‖1 ≤ C‖wh‖0 �
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Some Numerical Results
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Composite Numerical Grid for BDM1–RT0

We use RT0 for the fine scales in all cases.
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⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

v Pressure ⊗ Coarse velocity (linear) × Subgrid velocity

We fully resolve a and f (using the variational multiscale correction

affine correction term), but we only partially couple the dynamics.
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A Constant, Anisotropic Permeability—1

• Constant

a =

(
80.8 39.4
39.4 21.7

)
=

(
cos θ − sin θ
sin θ cos θ

)(
100.5 0

0 1.99

)(
cos θ sin θ
− sin θ cos θ

)
• In this case, ωj = 0 for each j.

• Half the basis functions have constant fluxes across coarse edges

• Half the “basis functions” vanish, so HE = ME0. Reset to linear

Then HE = ME1 (and oversampling does not help).

• Unit square Ω = (0,1)2 with an injection

well in the lower left corner and a

production well of opposite strength in

the upper right corner.

• We take BDM1 on a 160× 160 grid as

the exact solution.

• Color depicts speed and the arrows show

the velocity direction (and speed).
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A Constant, Anisotropic Permeability—2

10× 10/16× 16 20× 20/8× 8 40× 40/4× 4
H

E
=

M
E

1
M

D

• Solution using fixed resolution 1/h = 160

• MD exhibits a fluctuation of period H
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A Constant, Anisotropic Permeability—3

Coarse Subgrid Pressure Velocity
mesh mesh Error Error

Method N ×N n× n `2 `∞ `2 `∞

HE 10 16 0.0525 0.315 0.252 0.343
20 8 0.0017 0.019 0.060 0.192
40 4 0.0007 0.007 0.019 0.046
80 2 0.0006 0.006 0.012 0.016

MD 10 16 0.0551 0.286 0.371 0.358
20 8 0.0197 0.139 0.264 0.545
40 4 0.0077 0.060 0.144 0.357
80 2 0.0016 0.014 0.055 0.134
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A Streaked Permeability—1

Permeability pattern illustrated on 7× 7 grid.
• One cell wide streaks

• Angle tan θ = 1/2 (θ = 26.565)

• Alternate permeability 200 (black) and 1 (white)

• The arithmetic and harmonic means of 1 and

200 are 100.5 and 1.99

Up to the stair-step nature of the permeability

streaks, these fields homogenize into the

anisotropic tensor treated in the previous tests.

40× 40 80× 80 16× 160

F
in

e
B

D
M

1
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A Streaked Permeability—2

5× 5/8× 8 10× 10/8× 8 20× 20/8× 8
H

E
-O

S
M

D

• MD is more numerically diffusive and the speed is disjointed
• MD exhibits a fluctuation across the domain of period H

• MD has difficulty since there is an induced anisotropy from the subgrid
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Moderately Heterogeneous Permeability—1

• uniform 40× 40 m2 grid

• geostatistically generated permeability, mildly correlated, locally

isotropic

• Permeability shown on a log scale, varies from 0.32 to 3200 millidarcy

Institute for Computational Engineering and Sciences 45 of 62
Center for Subsurface Modeling, The University of Texas at Austin



Moderately Heterogeneous Permeability—2

BDM1 ME0 ME1

MD HE HE-OS
• 40× 40 fine grid, 4× 4 coarse grid with 10× 10 subgrid

• Color depicts speed, on a log scale (arrows show velocity)
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Moderately Heterogeneous Permeability—3

Pressure Velocity
Error Error

Method `2 `∞ `2 `∞

RT0 0.04 0.03 0.03 0.03
ME0 0.16 0.21 0.29 0.26
ME1 0.10 0.16 0.19 0.17
MD 0.14 0.24 0.16 0.12
HE 0.13 0.20 0.14 0.14

HE-OS 0.14 0.19 0.12 0.11
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Some Channelized Flows

These are far from periodic!
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Simple Channelized Permeability—1

Local methods have difficulty with long-range correlations.

Perm: 10-white, 1-gray, 0.1-black Fine BDM1 speed (log scale)

HE-OS HE MD
Fine 30× 30 grid, 3× 3 coarse grid with 10× 10 subgrid
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Simple Channelized Permeability—2

Pressure Velocity
Error Error

Method `2 `∞ `2 `∞

RT0 0.02 0.02 0.03 0.04
ME0 1.10 0.18 0.47 0.34
ME1 0.49 0.12 0.28 0.32
MD 0.31 0.10 0.26 0.36
HE 0.28 0.07 0.20 0.31

HE-OS 0.28 0.07 0.15 0.22
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SPE10 Permeability Layer 36—1

x-permeability y-permeability BDM

Grid: The grid is 60× 220, upscaled to 6× 22.
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SPE10 Permeability Layer 36—2

BDM HE-OS HE MD ME1

Speed
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SPE10 Permeability Layer 36—3

Relative Errors with Respect to BDM Solution
Pressure Velocity

Method L2 err max err L2 err max err
RT0 0.13 0.12 0.12 0.18
ME0 1.89 1.52 0.71 0.87
ME1 1.28 1.04 0.66 0.86
MD 1.03 1.05 0.57 0.52
HE 1.50 1.27 0.48 0.50

HE-OS 1.59 1.29 0.49 0.50
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SPE10 Permeability Layer 36—4

BDM HE-OS

Err 0.57

HE

Err 0.55

MD

Err 0.51

ME1

Err 0.49

Tracer Concentration
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SPE10 Permeability Layer 85—1

x-permeability y-permeability BDM

Grid: The grid is 60× 220, upscaled to 6× 22.
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SPE10 Permeability Layer 85—2

BDM HE-OS HE MD ME1

Speed
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SPE10 Permeability Layer 85—3

Relative Errors with Respect to BDM Solution
Pressure Velocity Tracer

Error Error Error
Method L2 err max err L2 err max err L2 err

RT0 0.04 0.03 0.08 0.14 —
ME0 0.27 0.10 0.72 0.53 —
ME1 0.22 0.08 0.58 0.56 0.41
MD 0.24 0.11 0.45 0.46 0.30
HE 0.24 0.10 0.70 0.91 0.20

HE-OS 0.24 0.11 0.35 0.55 0.18
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SPE10 Permeability Layer 85—4

BDM HE-OS

Err 0.18

HE

Err 0.20

MD

Err 0.30

ME1

Err 0.41

Tracer Concentration
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Some Techniques for Controlling Errors

Limited global information (Aarnes 2004; Chen, Durlofsky 2006;

Efendiev et al. 2006)

Use the solution to a full fine scale problem to set the proper BC’s for

v · ν on edges e ⊂ ∂E. This is useful for

• nonlinear problems (solve a global linear problem)

• time dependent problems

• stochastic problems

A-posteriori error estimation and control (Arbogast, Pencheva, Wheeler,

Yotov 2007; Pencheva, Vohralik, Wheeler, Wildey 2010)

Include more scales where a-posteriori estimation shows high errors.

Preconditioners (Xu, Zikatanov 2004; Graham, Scheichl 2007)

Iterate the fine scale system to convergence using multiscale ideas as a

preconditioner (or in defining prolongation operators in multigrid).
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Summary and Conclusions
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Summary and Conclusions—1

1. We presented the Variational Multiscale Method.

• Upscaling is an affine and antidiffusive operation

• Implicitly defines multiscale finite elements

2. We defined multiscale elements:

• Multiscale elements (ME0 and ME1).

• Multiscale dual-support (MD) elements.

• These do not converge in the presence of anisotropy.

• However, experience suggests they work well in a practically

reasonable range of parameters ε and h.

• A new homogenization-based element HE was defined from the

microscale structure.
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Summary and Conclusions—2

3. Error results were presented

• Optimal approximations

• Polynomial approximation theory

• A simplified proof was presented for multiscale convergence of

ME0:

(2) Quasi-optimality (uε − πME
ε u0)

(1) Microscale structure (uε −Aεu0)

(3) Multiscale projection approximation Aε(u0 − πME
0 u0)

(4) Smooth projection approximation (AεπME
0 u0 − πME

ε u0)

4. Numerical results show the methods work well

• Except ME0

• Perhaps HE-OS works best

• MD works well in practice, but has some difficulty with anisotropy
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