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Homogeneous nonlinear wave equations like

● utt − uxx − V ′(u) = 0 (e.g. V ′(u) = sinu, sine-Gordon);

● iψt + ψxx − f ′(|ψ|2)ψ = 0 (e.g. f ′(|ψ|2) = a+ b|ψ|2, NLS);

often have (families of) travelling/stationary solitary waves or kinks.
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Homogeneous nonlinear wave equations like

● utt − uxx − V ′(u;x) = 0 (e.g. V ′(u, x) = D(x) sinu, sine-Gordon);

● iψt + ψxx − f ′(|ψ|2;x)ψ = 0 (e.g. f ′(|ψ|2) = a(x) + b(x)|ψ|2, NLS);

often have (families of) travelling/stationary solitary waves or kinks.

What happens with these coherent structures if there are inhomogeneities
(e.g. related to periodic media, external potentials, or interfaces)?

● Do the fronts/solitons persist?

● What about their stability?

In this talk, we consider an inhomogeneous sine-Gordon-like equation for

● superconductors: long Josephson junction with impurity;

● DNA-RNAP interaction.
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A nonlinear (semi-linear) wave equation on the real line:

utt = uxx + V ′(u).

A travelling wave front or solitary wave solution is of the form

u(x, t) = û(x− ct) and lim
|ξ|→∞

ûξ(ξ) = 0.

c c

Existence and stability of such solutions?
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Write ξ = x−ct√
1−c2

, then û(ξ) satisfies ûξξ + V ′(û) = 0, lim
|ξ|→∞

ûξ(ξ) = 0.

This is a Hamiltonian ODE, we can use phase plane analysis.
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V (u) = cos(u) V (u) = cos(u) + u/3

● Fronts correspond to heteroclinic connections;

● Solitary waves correspond to homoclinic connections.
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Linearise about the front/solitary wave: u(x, t) = û(ξ) + v(ξ, t) with
ξ = x−ct√

1−c2
and v(ξ, t) = eλtv(ξ) gives the eigenvalue problem

λ2v = Lv, with L = Dξξ + V ′′(û).

● This is a Sturm-Liouville problem, so the eigenfunction associated to the
largest eigenvalue of L has no zeros.

● Differentiating the ODE for û with respect to ξ gives Lûξ = 0. As û is
smooth, ûξ is an eigenfunction of L with the eigenvalue zero.

Lemma The front û is nonlinearly stable iff ûξ has no zeros. The solitary

wave û is non-monotonic, hence unstable.

To prove nonlinear stability, use the Hamiltonian

H(u, P ) =
1

2

∫ ∞

−∞
[P 2 + u2ξ − V (u)] dξ.
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Propagation of the magnetic flux φ(x, t) in a long Josephson junction (LJJ) is
described by an inhomogeneous perturbed sine-Gordon equation:

φtt = φxx −D(x) sinφ+ γ − αφt, x ∈ R, t > 0.

The meaning of the various terms:

● γ: induced current;

● α ≥ 0: dissipation;

● D(x): magnetic variations/impurities:

◆ D = 1: long Josephson junction without variations/impurities;

◆ D(x) = 1, for x < 0 and D(x) = −1 for x > 0: 0-π Josephson
junction. Magnetic variation induces phase shift of π;

◆ D(x) = 1 for |x| > L and D(x) = d > 0 for |x| < L:
magnetic impurities;

1
d

◆ Combinations of above.
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No magnetic variations/impurities (D = 1): perturbed sine-Gordon equation

φtt = φxx − sinφ+ γ − αφt, x ∈ R, t > 0.

Solutions:

● Fixed points are solutions of sinφ− γ = 0.

● If γ = 0 = α, then it is the sine-Gordon equation. There is a family of
stable travelling fronts (|c| < 1), called fluxons.

−1 0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

u

u x

c



The perturbed sine-Gordon model
Introduction sG Stability DNA Discussion

LMS Prospects in Mathematics, December 2013 G. Derks, University of Surrey c©

No magnetic variations/impurities (D = 1): perturbed sine-Gordon equation

φtt = φxx − sinφ+ γ − αφt, x ∈ R, t > 0.

Solutions:

● Fixed points are solutions of sinφ− γ = 0.

● If γ = 0 = α, then it is the sine-Gordon equation. There is a family of
stable travelling fronts (|c| < 1), called fluxons.

● If α = 0, γ 6= 0, then there are unstable travelling solitary waves.
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No magnetic variations/impurities (D = 1): perturbed sine-Gordon equation

φtt = φxx − sinφ+ γ − αφt, x ∈ R, t > 0.

Solutions:

● Fixed points are solutions of sinφ− γ = 0.

● If γ = 0 = α, then it is the sine-Gordon equation. There is a family of
stable travelling fronts (|c| < 1), called fluxons.

● If α = 0, γ 6= 0, then there are unstable travelling solitary waves.

● If γ 6= 0, α 6= 0: there is one travelling fluxon with speed c(γ, α). This
fluxon connects arcsin γ with 2π + arcsin γ and is stable.
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What happens with the travelling fluxon if an impurity is
present?

1
d

A slow-ish fluxon gets trapped. A faster fluxon gets slowed down.

Questions: ● are there pinned fluxons?

● if so, which ones are stable?
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The sine-Gordon equation with an impurity:
1

d

φtt = φxx −D(x) sinφ+ γ − αφt, with D(x) =

{
1, |x| > L

d > 0, |x| < L

We focus on the existence and stability of stationary (pinned) fluxons.

● A pinned fluxon connects (arcsin γ) with (2π + arcsin γ).

● Stationary solutions satisfy 0 = φxx −D(x) sinφ+ γ.
This is a spatially Hamiltonian system with Hamiltonian

H = 1
2(φx)

2 −D(x)(1− cosφ) + γφ.

● Hamiltonian H is conserved on (−∞,−L), (−L,L), (L,∞):

◆ On (−∞,−L) and (L,∞), H is determined by the fixed points;

◆ On (−L,L), the H-value depends on the length L, denote by h(L).
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γ = 0.15, d = 0
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Red: leaving arcsin γ (unstable manifold);
Magenta: returning to 2π + arcsin γ (stable manifold);
Blue: dynamics for d = 0.
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Two monotonic fluxons for h = 0:
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Two monotonic fluxons for h = h1+hmax
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Eight non-monotonic fluxons for h = (h1 + hmax)/2 (four shown):
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Observations:

● There is strictly positive
minimum length and maxi-
mum length;

● For a fixed length, there are
up to five pinned fluxons.

● Most fluxons are non-
monotonic

How about stability??
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Consider a wave equation with one finite length inhomogeneity

utt = uxx +
∂V

∂u
(u, x;L), where V (u, x;L) =





Vl(u), x < −L;
Vm(u), −L < x < L;
Vr(u), x > L.

Assumptions:

● Hamiltonian equations with outer potentials Vl(u) and Vr(u) have fixed
points, called u−∞ resp. u∞, which are saddles in the spatial dynamics
(stable in temporal dynamics).

● There is an interval of L-values for which there exist stationary fronts
connecting u−∞ and u∞. The L-values and the fronts can be
parametrised by

h = 1
2 û

2
x + Vm(û), 0 < x < L;

where û(x;h) is the front.
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Linearisation about a front û(x;h) gives (using u(x, t) = û(x;h) + eλtv(x)):

λ(λ− α)v = L(h)v, with L(h) = Dxx +
∂2V

∂u2
(û(x;h), x;L(h)).

Theorem [Knight, Derks, Doelman, Susanto (2013)] If the solution û(x;h) is such
that ûx 6≡ 0 on the middle interval, then its linearisation operator L(h) has an
eigenvalue zero in H2(R) if and only if

[V ′
m(ûl(h))− V ′

l (ûl(h))] pl(h) [V
′
m(ûr(h))− V ′

r (ûr(h))] pr(h) L
′(h) = 0.

where ûl(h) = û(0;h), pl(h) = ûx(0;h),

ûr(h) = û(L(h);h), pr(h) = ûx(L(h);h).

● Bifurcation points if [V ′
m(ûl(h))− V ′

l (ûl(h))] → 0, or pl(h) → 0, etc.
and then L′(h) → ∞.

● For “most” fronts, the stability criterion is L′(h) = 0.



Ideas behind the proof
Introduction sG Stability DNA Discussion

LMS Prospects in Mathematics, December 2013 G. Derks, University of Surrey c©

● Get a compatibility condition for the existence of an eigenvalue zero by
using that the eigenfunction will consist of linear combinations of

ûx and ûx

∫
dx

(ûx(x))2
,

which have to be patched together smoothly (C1) at the points x = −L
and x = L.

● In the simplest case, ux(u, h) =
√

2[h− Vm(u)] and

L(h) =

∫ ûr(h)

ûl(h)

du√
2[h− Vm(u)]

.

For more complex functions û, the length consists of sums of similar
integrals.

● Relate the derivative of the length curve L(h) to compatibility condition.
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For each length, there is exactly one stable
pinned fluxon: they are on the magenta curve.

● Full proof uses continuity via (γ, d) =
(0, 0);

● Nonlinear stability can be shown via the
Hamiltonian.
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Consider a wave equation with N inhomogeneities

utt = uxx +
∂V
∂u

(u, x), where V (u, x) =





Vl(u), x < χ0;
V1(u), χ0 < x < χ1;

...
...

VN (u), χN−1 < x < χN ;
Vr(u), x > χN .

Assumptions:

● Hamiltonian equations with outer potentials Vl(u) and Vr(u) have fixed
points, called u−∞ resp. u∞, which are saddles in the spatial dynamics.

● There is region of Li = χi − χi−1-values for which there exist stationary
fronts connecting u−∞ and u∞. The Li-values and the fronts can be
parametrised by

hi =
1
2 û

2
x + Vi(û), χi−1 < x < χi, i = 1, . . . , N ,

where û(x;h1, . . . , hN ) denote the fronts.
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Linearisation about a front û(x;h) gives (with h = (h1, . . . , hN ))

λ(λ− α)v = L(h)v, with L(h) = Dxx +
∂2V
∂u2 (u(x;h);L(h)).

Theorem [Knight, Derks, Doelman, Susanto (2013)] If the solution û(x;h) is such
that ûx 6≡ 0 on any interval, then its linearisation operator L(h) has an
eigenvalue zero if and only if

det (ΓN )

N∏

i=0

Bi = 0,

where Bi(h) = [V ′
i+1(û(χi))− V ′

i (ûi(χi))] ûx(χi), i = i, . . . , N − 1
B0(h) = [V ′

1(ûm(χ0))− V ′
l (ûm(χ0))] ûx(χ0),

BN (h) = [V ′
r (û(χN))− V ′

N (û(χN ))] ûx(χN )
and

ΓN = ∂(L1,...,LN )
∂(h1,...,hN )=




∂L1

∂h1

B
−1

1
0 · · · 0

B
−1

1

∂L2

∂h2

B
−1

2

. . . 0

0 B
−1

2

. . .
. . .

...
. . . B

−1

N−1

0 0 . . . B
−1

N−1

∂LN

∂hN



,

as B
−1
i =

∂Li+1

∂hi
= ∂Li

∂hi+1
.
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A 0-π junction is given by

φtt = φxx−D(x) sinφ+γ−αφt, with D(x) =

{
1, x < L2

−1, x > L2 −1

1

It can be shown that there are three
types of stationary fluxons (see right,
used L2 = 0).

The black π-fluxon is unstable and the
red and blue ones are unstable (red one
marginally unstable if γ ≈ 0).
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Now add an impurity with d = 0 on the left of the junc-
tion, does this stabilise the red π-fluxon?

−L1 2L

1

−1
0

We have a wave equation with 2 inhomogeneties (N=2):

Sketch of Γ2 = det
[
∂(L1,L2)
∂(h1,h2)

]
for γ = 0.1: The curve det

[
∂(L1,L2)
∂(h1,h2)

]
= 0:

Eigenfunctions without zeros on the zero curve: red π-fluxon is stabilised by impurit
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● If one of the two lengths are fixed, then we are in the situation of one
inhomogeneity. Fixing one length (say L1), leads to a curve h1(h2).

● The theorem for one inhomogeneity checks for a extremal point of
L2(h1(h2), h2) with h1(h2) given by L1(h1, h2) = const. It turns out
that this is the condition that the determinant vanishes at a point on
the curve h1(h2).
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Assumptions and notation:

● The DNA is homogeneous, the sugar-
phosphate backbone (SPB) doesn’t move, the
only dynamics are the nitrogen base rotations.
The rotation angle of the base n on the “±”
(red/blue) chain, away from the equilibrium,
is denoted φ±n .

● Interactions are modelled by potentials:

◆ a stacking potential V̂s(φ
±
n+1, φ

±
n ):

V̂s(φ
±
n+1, φ

±
n ) =

Ks

2

(
φ±n+1 − φ±n

)2
;

◆ a pairing potential V̂p(φ
+
n , φ

−
n ):

V̂p(φ
+
n , φ

−
n ) =

Kp

2 r2
[
(2− cosφ+n − cosφ−n )

2
+ (sinφ+n + sinφ−n )

2
]
.

● The kinetic energy of a base is T̂ = I
2

(
φ̇±n

)2
.

From:

http://www.csb.yale.edu/
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● Change of coordinates: ψn = (φ+n + φ−n ) /2 and χn = (φ+n − φ−n ) /2.

● The distance δ between the base sites is small: assume interpolating
fields ψ(x, t) and χ(x, t) with ψ(nδ, t) = ψn(t) and χ(nδ, t) = χn(t).

● The equations of motion are

ψtt = κsψxx − κp sinψ cosχ− µψt;

χtt = κsχxx − κp sinχ(cosψ − cosχ)− µχt.

where κs = Ksδ
2/I, κp = Kpr

2/I, and µ is the dissipation coefficient.

● The symmetric configuration χ = 0 is invariant
and gives the (damped) sine-Gordon equation

ψtt = κsψxx − κp sinψ − µψt

and has a family of travelling soliton solutions (µ = 0).

● Similar for the anti-symmetric configuration with ψ = 0 (double sG).
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● Assumptions:

◆ RNAP is present on DNA chain;

◆ RNAP acts locally on DNA;

◆ RNAP moves by pulling on DNA chain;

◆ There is sufficient ATP to feed RNAP. d

ξ (t)

● Write ξ(t) for the centre of the RNAP and d for the radius of the region
of binding with the DNA, i.e., the fields feel the RNA for
ξ − d < x < ξ + d. The interaction potential is

W (φ, x, ξ) =W0(φ)R(ξ, x), with R(ξ, x) =

{
1, |x− ξ| < d

0, |x− ξ| > d

● The interaction potential W0(φ) should keep the DNA open, thus φ = π
should be a stable equilibrium. We will use W0(φ) = Kr cosφ.

● Constant RNAP pulling force P along the axis: ξtt = P − νξt.
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The DNA-RNAP interaction gives for the equations of motion

ψtt = κsψxx − [κp − κrR(ξ, x)] sinψ cosχ− µψt;

χtt = κsχxx − κp sinχ(cosψ − cosχ) + κrR(ξ, x) sinχ cosψ − µχt;

ξtt = P − νξt.

Asymptotically, the RNAP moves with speed c = P/ν, thus ξ(t) = ct+ ξ0.

Going to a moving frame z =
x− ξ(t)√
κs − c2

gives

ψtt − 2σ
µ
ψzt + µψt = ψzz − [κp − κrρ(z)] sinψ cosχ− σψz;

χtt − 2σ
µ
χzt + µχt = χzz − κp sinχ(cosψ − cosχ) + κrρ(z) sinχ cosψ − σχz;

with ρ(z) =

{
1, |z| < d̂

0, |z| > d̂
, d̂ =

d√
κs − c2

and σ =
µc√
κs − c2

.
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Kink equations for the symmetric solutions:

ψzz = κp sinψ − σψz, |z| > d̂;

ψzz = [κp − κr] sinψ − σψz, |z| < d̂.

No damping (σ = 0), κr < κp
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Kink equations for the symmetric solutions:

ψzz = κp sinψ − σψz, |z| > d̂;

ψzz = [κp − κr] sinψ − σψz, |z| < d̂.

Damped (σ > 0), κr < κp:
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Kink equations for the symmetric solutions:

ψzz = κp sinψ − σψz, |z| > d̂;

ψzz = [κp − κr] sinψ − σψz, |z| < d̂.

Damped (σ > 0), κr < κp:
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Equations for the anti-symmetric solutions:

χzz = κp sinχ(1− cosχ)− σψz, |z| > d̂;

χzz = sinχ [(κp − κr)− κp cosχ]− σψz, |z| < d̂.
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● Undamped kinks exist for any d̂ > 0;

● Damped kinks exist for d̂ not too small
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New soliton solutions:
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● In the symmetric section (left), solitons exist for κr > κp and any d̂ > 0;

● In the anti-symmetric section (right), these solitons exist always.

● Middle plot show the soliton shapes, the dashed curve is the symmetric
one, the solid curve the anti-symmetric one.
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● Without the RNAP the symmetric and anti-symmetric kinks are stable
in their own invariant sub space, but unstable under symmetry breaking
perturbations.
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● Without the RNAP the symmetric and anti-symmetric kinks are stable
in their own invariant sub space, but unstable under symmetry breaking
perturbations.

● The RNAP and dissipation have a stabilising effect on the symmetric
and anti-symmetric kink.
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● Without the RNAP the symmetric and anti-symmetric kinks are stable
in their own invariant sub space, but unstable under symmetry breaking
perturbations.

● The RNAP and dissipation have a stabilising effect on the symmetric
and anti-symmetric kink.

● The a-symmetric stable kink undergoes a tiny modification due to the
RNAP and stays stable.
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[Derks, Gaeta (2011)]
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● For the Josephson junctions we showed existence and stability of
stationary fluxons for one and more inhomogeneities. The stability
results are valid for general inhomogeneous wave equations.

● In the Josephson junctions, how do travelling fluxons interact with the
stationary ones or an inhomogeneity?

Projecting onto families of sine-
Gordon-type fluxons could be a
good avenue.
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● For the Josephson junctions we showed existence and stability of
stationary fluxons for one and more inhomogeneities. The stability
results are valid for general inhomogeneous wave equations.

● In the Josephson junctions, how do travelling fluxons interact with the
stationary ones or an inhomogeneity? Some results can be derived by
projecting onto families of sine-Gordon-type fluxons.

● Can we extend the theory to the existence and stability of pinned fronts
in coupled inhomogeneous wave equations? This is needed in the
DNA-RNAP models.
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Some other researchers at UK universities working in related areas:

Aston: Sergei Turitsyn

Bath: Karsten Matthies, Johannes Zimmer

Heriott Watt: Margot Beck, Simon Malham, Noel Smyth

Loughborough: Gennady El, Roger Grimshaw, Karima Khusnutdinova

Nottingham: Hadi Susanto

Oxford: Mason Porter

Warwick: Claude Baesens, Robert MacKay

And many others ....

Thank you!


	Maths research at Surrey
	Introduction
	Introduction
	Recap nonlinear homogeneous wave eqn
	Existence of fronts/solitary waves
	Stability of fronts/solitary waves

	sG
	Josephsonjunctions & sine-Gordonmodels
	The perturbed sine-Gordon model
	The effect of impurities
	Sine-Gordon with impurity
	Existence of pinned fluxons
	Monotonic pinned fluxons
	Other pinned fluxons
	Impurity lengths, =0.15, d=0

	Stability 
	Wave equation with one inhomogeneity
	Stability and the L-h curve
	Ideas behind the proof
	Stability in long JJ with impurity
	Wave equation with N inhomogeneities
	Stability and the Li-hj surfaces
	A 0- junction with impurity
	Stabilitization of -fluxon by impurity
	Link with one inhomogeneity theorem

	DNA
	Yakushevich model for DNA dynamics
	The continuum Y-model
	Including the interaction with RNAP
	DNA-RNAP interaction dynamics
	Undamped symmetric travelling kinks
	Damped symmetric travelling kinks
	Anti-symmetric travelling kinks
	Undamped travelling solitons 
	Kink stability

	Discussion
	Conclusion and discussion
	Some other researchers in the UK


