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- Introduction
Introduction sG Stability DNA Discussion

Homogeneous nonlinear wave equations like

o Uy — Uypy — V' (u) =0 (e.g. V'(u) = sinwu, sine-Gordon);

o Wy +Yer — f'([Y1*)Y =0 (eg. f'(I¥I°) = a+Dbly[? NLS);

often have (families of) travelling/stationary solitary waves or kinks.
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r Introduction 1

Introduction

Homogeneous nonlinear wave equations like
o Uy — Uge — V'(u2) =0 (e.g. V(u, )= sin u, sine-Gordon);
o ith +1hue — fI(IW[7 )Y =0 (eg. f([9%) = ale) +blr)|¢

often have (families of) travelling/stationary solitary waves or kinks.

2 NLS);

What happens with these coherent structures if there are inhomogeneities
(e.g. related to periodic media, external potentials, or interfaces)?

e Do the fronts/solitons persist?

e What about their stability?

In this talk, we consider an inhomogeneous sine-Gordon-like equation for

e superconductors: long Josephson junction with impurity;

e DNA-RNAP interaction.
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- Recap nonlinear homogeneous wave eqn -
Introduction sG Stability DNA Discussion

A nonlinear (semi-linear) wave equation on the real line:
/
Ut = Uge + V' (1),
A travelling wave front or solitary wave solution is of the form

u(z,t) =u(x —ct) and lim ug(§) = 0.

€] =00

Existence and stability of such solutions?
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- Existence of fronts/solitary waves -
Introduction sG Stability DNA Discussion

Write £ = f% then () satisfies uge + V' (u) = 0, |§l|i_1;1f1OO ue(€) = 0.

This is a Hamiltonian ODE, we can use phase plane analysis.

V(u) = cos(u)

e Fronts correspond to heteroclinic connections;

e Solitary waves correspond to homoclinic connections.
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r Stability of fronts/solitary waves 1

Introduction

Linearise about the front/solitary wave: u(x,t) = u(€) + v(&,t) with
£ = xl_Ct and v(&,t) = eMu(€) gives the eigenvalue problem

c2

v = Lo, with L= D+ V(7).

e This is a Sturm-Liouville problem, so the eigenfunction associated to the
largest eigenvalue of £ has no zeros.

o Differentiating the ODE for uw with respect to & gives Lus = 0. As u is
smooth, u¢ is an eigenfunction of £ with the eigenvalue zero.

Lemma The front w is nonlinearly stable iff us has no zeros. The solitary
wave U is non-monotonic, hence unstable.

To prove nonlinear stability, use the Hamiltonian

H(u, P) = % /_OO [P? + uf — V(u)] d&.
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r Josephson junctions & sine-Gordon models 1

sG

Propagation of the magnetic flux ¢(x,t) in a long Josephson junction (LJJ) is
described by an inhomogeneous perturbed sine-Gordon equation:

b1t = Gpr — D(x) singp +v —agy, xR, t>0.

The meaning of the various terms: —/ S
e ~v: induced current; s /[T
o « > 0: dissipation; —/ [ =
] ! upl_‘:l:-l:-und;ular::_':- >
e D(x): magnetic variations/impurities: o ]

25nm Josephson junction

0 D = 1: long Josephson junction without variations/impurities;

0 D(x) =1, for x <0 and D(z) = —1 for z > 0: 0-7 Josephson
junction. Magnetic variation induces phase shift of ;

0 D(x)=1for |z| > L and D(x)=d >0 for |z| < L: —1 ——
magnetic impurities;

[1 Combinations of above.
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- The perturbed sine-Gordon model -
Introduction sG Stability DNA Discussion

No magnetic variations/impurities (D = 1): perturbed sine-Gordon equation

¢tt:¢xa}_81n§b‘|"7—(1§bt, reR, t>0.

Solutions:
e Fixed points are solutions of sin¢g — v = 0.

e If v =0 = q, then it is the sine-Gordon equation. There is a family of
stable travelling fronts (|c| < 1), called fluxons.
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- The perturbed sine-Gordon model -
Introduction sG Stability DNA Discussion

No magnetic variations/impurities (D = 1): perturbed sine-Gordon equation

¢tt:¢xa}_81n§b‘|"7—(1§bt, reR, t>0.

Solutions:
e Fixed points are solutions of sin¢g — v = 0.

e If v =0 = q, then it is the sine-Gordon equation. There is a family of
stable travelling fronts (|c| < 1), called fluxons.

e If =0, v#0, then there are unstable travelling solitary waves.
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r The perturbed sine-Gordon model 1

sG

No magnetic variations/impurities (D = 1): perturbed sine-Gordon equation
tht:ﬁbm—singb—l—v—agbt, reR, t>0.
Solutions:
o Fixed points are solutions of sin¢ — v = 0.

e If v=0 = q, then it is the sine-Gordon equation. There is a family of
stable travelling fronts (|c| < 1), called fluxons.

e If =0, v+#0, then there are unstable travelling solitary waves.

o If v #0, a # 0: there is one travelling fluxon with speed ¢(v, «). This
fluxon connects arcsin~y with 27 4 arcsin~y and is stable.
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The effect of impurities

Introduction sG Stability DNA Discussion

What happens with the travelling fluxon if an impurity is —1
present?

565

800"\

400 100

A slow-ish fluxon gets trapped. A faster fluxon gets slowed down.

Questions: e are there pinned fluxons?

e if so, which ones are stable?
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r Sine-Gordon with impurity 1

sG

—1 —
The sine-Gordon equation with an impurity: | d
) | | [ L el
¢tt — ¢xm o D(QZ) SlHQﬁ + v a¢t’ with D(:U) o { d > O, ‘CC| < L

We focus on the existence and stability of stationary (pinned) fluxons.

o A pinned fluxon connects (arcsiny) with (27 + arcsin ).

e Stationary solutions satisfy 0 = ¢, — D(x) sin ¢ + 7.
This is a spatially Hamiltonian system with Hamiltonian

H = 1(6,)? - D(@)(1 — cos6) + 16
e Hamiltonian H is conserved on (—oo, —L), (=L, L), (L, 00):
0 On (—oo,—L) and (L, 0), H is determined by the fixed points;
0 On (=L, L), the H-value depends on the length L, denote by h(L).
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v=10.15,d=0

Red: leaving arcsin~y (unstable manifold);
Magenta: returning to 27w + arcsiny (stable
Blue: dynamics for d = 0.

Existence of pinned fluxons

Introduction sG Stability DNA Discussion

Zoom near (27,0)

-0.5

manifold);
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Monotonic pinned fluxons

Introduction sG Stability DNA Discussion

Two monotonic fluxons for h = 0: Two monotonic fluxons for h = %:
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Other pinned fluxons

Introduction sG Stability DNA Discussion

Eight non-monotonic fluxons for h = (hy + hmax)/2 (four shown):
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Impurity lengths, v =0.15, d =0

Introduction sG Stability DNA Discussion

[DERKS, DOELMAN, KNIGHT, SUSANTO (2012)]

Observations:

e There is strictly positive
minimum length and maxi-
mum length;

e For a fixed length, there are
up to five pinned fluxons.

e Most fluxons are non-
monotonic

How about stability??

LMS Prospects in Mathematics, December 2013
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r Wave equation with one inhomogeneity 1

Stability

Consider a wave equation with one finite length inhomogeneity

[ Vi(w), < -L;
(u,z; L), where V(u,z; L) =< Viu(u), —L <z <L;
Ve(u), x> L.

o
ou

Utt = Uggy T

Assumptions:

o Hamiltonian equations with outer potentials V;(u) and V,.(u) have fixed
points, called u_, resp. us,, Which are saddles in the spatial dynamics
(stable in temporal dynamics).

e There is an interval of L-values for which there exist stationary fronts
connecting u_»o and us.. I'he L-values and the fronts can be
parametrised by

h =302+ V() 0< z < L;

where u(x; h) is the front.
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r Stability and the L-h curve 1

Stability

Linearisation about a front u(x; h) gives

MO — a)v = L(h), with £(h) = D, ‘?)UZ( (z: h). 2 L(R)).

Theorem [KnicuT, DErkS, DorLMAN, Susanto (2013)] If the solution u(x; h) is such
that u; # 0 on the middle interval, then its linearisation operator L(h) has an
eigenvalue zero in H*(R) if and only if

Vi (@(h)) = V' (@(h)] pi(h) [V (G (R)) = V(@ ()] pr(h) L'(h) = 0.

where T(h) = a(0;h),  m(h) = T(0:h),
ur(h) = u(L(h);h), pr(h) = uz(L(h);h).

)

o Bifurcation points if [V, (u;(h)) — V/(uw;(h))] — 0, or p;(h) — 0, etc.
and then L'(h) — oc.

e For "most” fronts, the stability criterion is L'(h) = 0.
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r Ideas behind the proof 1

Stability

o Get a compatibility condition for the existence of an eigenvalue zero by
using that the eigenfunction will consist of linear combinations of

u, and ﬂ/ dx
’ C ) (U())?

which have to be patched together smoothly (C!) at the points x = —L
and x = L.

o In the simplest case, u,(u,h) = \/2[h — Vi, (u)] and
@ (h)
L(h) = / du .
ai(h) /2[h = Vi (u)]

For more complex functions u, the length consists of sums of similar
integrals.

o Relate the derivative of the length curve L(h) to compatibility condition.
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Stability in long JJ with impurity '

Introduction sG Stability DNA Discussion

6 12}
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9—37 S 6

2 a

1 2

I — v 1
Stable monotonic Stable non-monoto-
fluxon (L = 0.4) nic fluxon (L = 10)

For each length, there is exactly one stable
pinned fluxon: they are on the magenta curve.

o Full proof uses continuity via (v,d) =
(0,0);

ho e Nonlinear stability can be shown via the
Hamiltonian.
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r Wave equation with N inhomogeneities 1

Stability

Consider a wave equation with N inhomogeneities

( W(u)a $<X07
Vi(u), xo <z <xi;

Ut = Ugpy + %—Z(u, x), where V(u,z) = <

Vn(u), xn-1 <z <XN;
‘/;“(u)a X > XN-

Assumptions:

o Hamiltonian equations with outer potentials V;(u) and V,.(u) have fixed
points, called u_, resp. 1o, which are saddles in the spatial dynamics.

e There is region of L; = x; — x;_1-values for which there exist stationary
fronts connecting u_~ and u~,. I'he L;-values and the fronts can be

parametrised by
h; = %ﬂ§+‘/}(ﬂ), Yict1 <x <y, t=1,...,N,

where u(x; hy,...,hy) denote the fronts.
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r Stability and the L;-h; surfaces 1

Stability

Linearisation about a front u(x;h) gives (with h = (hy,...,hy))
A\ — a)o = L(h)v, with L(h) = Dy + 25 (u(a; h); L(h)).

Theorem [Knienr, Derks, DorLMAN, Susanto (2013)] If the solution u(x;h) is such
that u, #Z 0 on any interval, then its linearisation operator L(h) has an
eigenvalue zero if and only if

N
det (FN) H%Z =0,
1=0
where  #;(h) = [V (u(x:)) — V/(w(xi)] te(xi), t=1¢,...,N -1
%o(h) = [V{(um(x0)) — V] (um(x0))] tz(x0),
Zn(h) = [Vi(u(xn)) — Vy@xn))] ue(xn)
and oL, »
Ohso ' LT =
L'y = ?3((%: :}LLg))_ 0 By ' ?;LiJrlZ: _OL;
: - {@;ﬁ , Oh,; Ohir1"
\0 0 ... By, g{;—g}

UNIVERSITY OF

LMS Prospects in Mathematics, December 2013 G. Derks, University of Surrey© SURREY



- A 0-7 junction with impurity -
Introduction sG Stability DNA Discussion

A 0-7 junction is given by

Ot = g — D(x) sin @ +v — gy, with D(x) = {

1, x< Lo
—1, x> Lo

It can be shown that there are three )

types of stationary fluxons (see right,
used Lo = 0).

The black m-fluxon is unstable and the
red and blue ones are unstable (red one
marginally unstable if v = 0). )

-10 5 0 5 10
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Stabilitization of 7-fluxon by impurity

Introduction sG Stability DNA Discussion

1
Now add an impurity with d = 0 on the left of the junc- S
tion, does this stabilise the red w-fluxon? e
We have a wave equation with 2 inhomogeneties (N=2):
_ a(LlyLQ) _ . 8(L17L2) _ ;

Sketch of I'y = det [m} forv = 0.1:| The curve det [—8(h1,h2)] = 0:

By B ,ﬁmu] ke ol

250 - ) Vi () = V2, (w)

1:2“ ) <= B /s’f;_/,.-":_r;“ W

Eigenfunctions without zeros on the zero curve: red m-fluxon is stabilised by impur

LMS Prospects in Mathematics, December 2013

G. Derks, University of Surrey
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r Link with one inhomogeneity theorem 1

Stability

e If one of the two lengths are fixed, then we are in the situation of one
inhomogeneity. Fixing one length (say L1), leads to a curve hi(hsa).

e The theorem for one inhomogeneity checks for a extremal point of
Lg(hl(hg), hg) with hl(hg) given by Ll(hl, hg) = const. It turns out
that this is the condition that the determinant vanishes at a point on
the curve hi(hs).
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- Yakushevich model for DNA dynamics

Introduction sG Stability DNA Discussion

Assumptions and notation:

e The DNA is homogeneous, the sugar-
phosphate backbone (SPB) doesn’t move, the
only dynamics are the nitrogen base rotations.
The rotation angle of the base n on the “£”"

(red/blue) chain, away from the equilibrium,
is denoted ¢

e Interactions are modelled by potentials:

[0 a stacking potential ‘A/S(gbfﬂ,qb,,f): From:
~ n n K 4 N2 http://www.csb.yale.edu/
V9(¢n—|—17 qb’n) — TS <¢n—|—1 o qbn) ;

1 a pairing potential V,(¢7, ¢ ):
Vp(or, 67) = 2 | (2= cos gy — cos 6;)° + (sin g} +singy, )7

e The kinetic energy of a base is T

L N2
I+
()

LMS Prospects in Mathematics, December 2013 G. Derks, University of Surrey© SURREY



r The continuum Y-model 1

DNA

e Change of coordinates: 1, = (¢;7 + @) /2 and xn = (¢ — @) /2.

e The distance 0 between the base sites is small: assume interpolating
fields ¥ (x,t) and x(x,t) with ¥ (nd,t) = ¥, (t) and x(nd,t) = xn(t).
e The equations of motion are
Vit = Ksgy — Kp SN cos x '
Xtt = KsXzz — Kpsin x(cosy — cosy)
where ks = K36%/1, k, = K,r?/I, and /1 is the dissipation coefficient.

e The symmetric configuration y = 0 is invariant EEES
and gives the sine-Gordon equation ’

Vit = RKsWrpx — Rp sin 1
and has a family of travelling soliton solutions (u = 0).

Similar for the anti-symmetric configuration with @) = 0 (double sG).

UNIVERSITY OF
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r Including the interaction with RNAP

DNA
e Assumptions:
[0 RNAP is present on DNA chain; %&m& &x‘x
1 RNAP acts locally on DNA: T 0 T
[0 RNAP moves by pulling on DNA chain; -
[0 There is sufficient ATP to feed RNAP. |

o Write £(t) for the centre of the RNAP and d for the radius of the region
of binding with the DNA, i.e., the fields feel the RNA for
£ —d<x <&+ d. The interaction potential is

- d
W(9..8) = Wo(9) B¢ ), mm.ma@—{3 E—gid

e The interaction potential Wy (¢) should keep the DNA open, thus ¢ = 7
should be a stable equilibrium. We will use Wy(¢) = K, cos ¢.

e Constant RNAP pulling force P along the axis: & = P — v&;.

UNIVERSITY OF
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- DNA-RNAP interaction dynamics -
Introduction sG Stability DNA Discussion

The DNA-RNAP interaction gives for the equations of motion

Vit = KsWgp — [Rp - HTR(f, :Ij)] sin 1 cos X — L1}
Xtt = KsXax — KpSinx(cosy) — cosy) + k,R(&, x)sin x cos P — iy
Eit = P —v&;.

Asymptotically, the RNAP moves with speed ¢ = P/v, thus £(t) = ct + &.

z — (1)
VKg — C?

wtt - %wzt + th — wzz _ [Kfp - K"rp(z)] Siﬂ¢COSX o U%;
Xt — %th [t = Xazz — Kpsinx(cosy — cosx) + Krp(2)sinycosy — o .;

Going to a moving frame z = gives

_ 1, |z] < d ~ d {c
with p(z) = ~, d= and o = .
p(z) {O, z| > d Ks — C? Ks — C°
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Undamped symmetric travelling kinks

Introduction sG Stability DNA Discussion

Kink equations for the symmetric solutions:

Vey = Kpsing — o, 2] > d;
V2 = [KJP—KJ’/‘] siny — o, |Z| < d.
No damping (0 = 0), Kk, < Ky No damping (o = 0), K, > kyp
szl, Kr=0.5, o0=0 Kp=1, Kr=0.5, o0=0

2=~ Ss, smNE, d =T

U
Exist for any d>0 Exist for any d>0

~ UNIVERSITY OF
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- Damped symmetric travelling kinks -
Introduction sG Stability DNA Discussion

Kink equations for the symmetric solutions:

Vey = Kpsing — o, 2] > c/l\,
Vo = [Kp — K] sing — o, 2] < d.
Damped (o > 0), Ky < Kp:
Kp=1, Kr=0, 0=0.1 Kp=l, Kr=0.5, 0=0.5

25 T T T T T T T 25

15r-
15

)

0.5F
0.5

-0.5r

-05F

-15F

-25 ! ! ! ! ! ! ! -2 ! ! ! ! ! ! !
-1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7

W R v ~
Outer: |z| > d Inner: |z| < d
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Damped symmetric travelling kinks

Introduction sG Stability DNA Discussion

Kink equations for the symmetric solutions:

Vey = Kpsing — o, 2] > c/l\,
V2 = [KJP—KJ’/‘] siny — o, |Z| < d.
Damped (o > 0), Ky < Kp:
szl, Kr=0.5, 0=0.1 szl, Kr=0.5, 0=0.1
= 947

0.5~

0 ! ! ! ! ! ! 0 .
0 1 2 3 4 5 6 -15 -10 -5 0 5

A~ v z
Exist for d not too small and similar for x, > kK,,.

10 15
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Anti-symmetric travelling kinks

Introduction sG Stability DNA Discussion

Equations for the anti-symmetric solutions:

Xzz = HKpsinx(l—cosx)— o, 2| > d;
Xzz sin x [(kp — kr) — Kpcos x| — 0., |z| < d.

K =1, Kk =0.5, 0=0 K =1,k =1.5, 0=0 K =1, Kr=3, o0=0
~ j . KIS ~ Kd 7 "
2 “-\ 2,~ N S ;’ﬂ; ‘‘‘‘‘‘‘‘‘ . -] 2 ' A . o"‘&: ’ !
JIPNIN > + -~ , Yy Nt - ‘o
/’ \“ . / . \‘ . _ SN ’ R
. NN = “ “'-‘-"— ‘‘‘‘‘‘ WL 8 »° AN 4 7 !
KX Ry T NN . . R DRV AN A
1.5+ ,‘z ” ,\:‘_.-,\\' \ \\ 4 1.5»\\ ‘,\ ‘,\ ” “ - G 1.5¢ [ ‘o, “‘r' i
Tl Pte ,": 2 \’:'\ ® Saimm = DN ot -7 = Y o d
- S ‘ \ . _ N ; l/ . L
~~~~~~~ of 20 W\ S et LYY c o, N S
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e Undamped kinks exist for any d > 0;

o Damped kinks exist for d not too small
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Undamped travelling solitons

Introduction sG Stability DNA Discussion

New soliton solutions:

S t . I t. t .
K =1, K =0.5, 0=0 K =1,k =15, 0=0
P r
' PO T P -] 2~ S j -
e g T T S » hS .
P TN S~ o -~ ~, . -
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——— i a - _ oY - —————— -
~~~~~ "‘.,«Q‘ PR ~\':4.\\\, m‘!_‘- RIERE R R
‘‘‘‘‘‘‘‘‘ - "y‘ RN ~,~&o “/
""""" o T Lrsa s, Sl L
> AR 4 2,
’ > . \ A
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4 » ‘4 . . .
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o In the symmetric section (left), solitons exist for x, > k, and any d > 0;
e In the anti-symmetric section (right), these solitons exist always.

e Middle plot show the soliton shapes, the dashed curve is the symmetric
one, the solid curve the anti-symmetric one.
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Kink stability

Introduction sG Stability DNA Discussion

e Without the RNAP the symmetric and anti-symmetric kinks are stable

in their own invariant sub space, but unstable under symmetry breaking
perturbations.

Symmetric instability

Anti-symmetric instability

Steady state, cp(")

\
&

0 10 20
X

30 40 50

Steady state, cp(')

LMS Prospects in Mathematics, December 2013
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- Kink stability
Introduction sG Stability DNA Discuss ion

e Without the RNAP the symmetric and anti-symmetric kinks are stable

in their own invariant sub space, but unstable under symmetry breaking
perturbations.

e The RNAP and dissipation have a stabilising effect on the symmetric
and anti-symmetric kink.

Symmetric wave: k=0.5, d=5, A=0.1

ﬁ UNIVERSITY OF
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r Kink stability 1

DNA

e Without the RNAP the symmetric and anti-symmetric kinks are stable

in their own invariant sub space, but unstable under symmetry breaking
perturbations.

e The RNAP and dissipation have a stabilising effect on the symmetric
and anti-symmetric kink.

e The a-symmetric stable kink undergoes a tiny modification due to the
RNAP and stays stable.

Anti-symmetric wave: k=0.5, d=5, A=0.1

[DERKS, GAETA (2011)]

UNIVERSITY OF

LMS Prospects in Mathematics, December 2013 G. Derks, University of Surrey© SURREY



r Conclusion and discussion 1

Discussion

e For the Josephson junctions we showed existence and stability of
stationary fluxons for one and more inhomogeneities. The stability
results are valid for general inhomogeneous wave equations.

e In the Josephson junctions, how do travelling fluxons interact with the
stationary ones or an inhomogeneity?

Projecting onto families of sine-
Gordon-type fluxons could be a
good avenue.
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r Conclusion and discussion 1

Discussion

e For the Josephson junctions we showed existence and stability of
stationary fluxons for one and more inhomogeneities. The stability
results are valid for general inhomogeneous wave equations.

e In the Josephson junctions, how do travelling fluxons interact with the
stationary ones or an inhomogeneity? Some results can be derived by
projecting onto families of sine-Gordon-type fluxons.

e Can we extend the theory to the existence and stability of pinned fronts

in coupled inhomogeneous wave equations? This is needed in the
DNA-RNAP models.
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Discussion

Some other researchers at UK universities working in related areas:

Aston: Sergei Turitsyn

Bath: Karsten Matthies, Johannes Zimmer

Heriott Watt: Margot Beck, Simon Malham, Noel Smyth
Loughborough: Gennady El, Roger Grimshaw, Karima Khusnutdinova
Nottingham: Hadi Susanto

Oxford: Mason Porter

Warwick: Claude Baesens, Robert MacKay

And many others ....
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