

Existence and stability of stationary fronts in inhomogeneous wave equations

Gianne Derks*

University of Surrey, Guildford, UK

Joint research with Arjen Doelman, Giuseppe Gaeta, Chris Knight and Hadi Susanto

LMS Prospect in Mathematics 2013

^{*}Work partially supported by NWO and NDNS+ grants

Maths research at Surrey

Introduction sG Stability DNA Discussion

At the interface between pure and applied mathematics

Biosystems

- Ecology and Evolutionary Biology
- Biophysics
- Metabolism
- Statistics

Dynamical Systems and PDEs

- Nonlinear PDEs
- Dynamical Systems
- Calculus of Variations
- Geometry and Mechanics

Fields, Strings and Geometry

- Quantum Fields, String/M-Theory and Supergravity
- Dualities (AdS/CFT,...)
- Topological Strings
- Integrability, Twistor Geometry and Geometric Analysis

Fluid Mechanics and Meteorology

- Geometric Fluid Dynamics
- Mathematical Meteorology and Data Assimilation
- Water Waves
- Hydrodynamic Stability

Introduction sG Stability DNA Discussion

Homogeneous nonlinear wave equations like

•
$$u_{tt} - u_{xx} - V'(u) = 0$$
 (e.g. $V'(u) = \sin u$, sine-Gordon);

•
$$i\psi_t + \psi_{xx} - f'(|\psi|^2)\psi = 0$$
 (e.g. $f'(|\psi|^2) = a + b|\psi|^2$, NLS);

often have (families of) travelling/stationary solitary waves or kinks.

Introduction

Homogeneous nonlinear wave equations like

•
$$u_{tt} - u_{xx} - V'(u; x) = 0$$
 (e.g. $V'(u, x) = D(x) \sin u$, sine-Gordon);

•
$$i\psi_t + \psi_{xx} - f'(|\psi|^2; x)\psi = 0$$
 (e.g. $f'(|\psi|^2) = a(x) + b(x)|\psi|^2$, NLS);

often have (families of) travelling/stationary solitary waves or kinks.

What happens with these coherent structures if there are inhomogeneities (e.g. related to periodic media, external potentials, or interfaces)?

- Do the fronts/solitons persist?
- What about their stability?

In this talk, we consider an inhomogeneous sine-Gordon-like equation for

- superconductors: long Josephson junction with impurity;
- DNA-RNAP interaction.

Introduction sG Stability DNA Discussion

A nonlinear (semi-linear) wave equation on the real line:

$$u_{tt} = u_{xx} + V'(u).$$

A travelling wave front or solitary wave solution is of the form

Existence and stability of such solutions?

Existence of fronts/solitary waves

Introduction sG Stability DNA Discussion

Write
$$\xi = \frac{x-ct}{\sqrt{1-c^2}}$$
, then $\widehat{u}(\xi)$ satisfies $\widehat{u}_{\xi\xi} + V'(\widehat{u}) = 0$, $\lim_{|\xi| \to \infty} \widehat{u}_{\xi}(\xi) = 0$.

This is a Hamiltonian ODE, we can use phase plane analysis.

- Fronts correspond to heteroclinic connections;
- Solitary waves correspond to homoclinic connections.

Stability of fronts/solitary waves

Introduction sG Stability DNA Discussion

Linearise about the front/solitary wave: $u(x,t) = \hat{u}(\xi) + v(\xi,t)$ with $\xi = \frac{x-ct}{\sqrt{1-c^2}}$ and $v(\xi,t) = e^{\lambda t}v(\xi)$ gives the eigenvalue problem

$$\lambda^2 v = \mathcal{L}v, \quad \text{with} \quad \mathcal{L} = D_{\xi\xi} + V''(\widehat{u}).$$

- This is a Sturm-Liouville problem, so the eigenfunction associated to the largest eigenvalue of \mathcal{L} has no zeros.
- Differentiating the ODE for \hat{u} with respect to ξ gives $\mathcal{L}\hat{u}_{\xi} = 0$. As \hat{u} is smooth, \hat{u}_{ξ} is an eigenfunction of \mathcal{L} with the eigenvalue zero.

Lemma The front \hat{u} is nonlinearly stable iff \hat{u}_{ξ} has no zeros. The solitary wave \hat{u} is non-monotonic, hence unstable.

To prove nonlinear stability, use the Hamiltonian

$$H(u, P) = \frac{1}{2} \int_{-\infty}^{\infty} [P^2 + u_{\xi}^2 - V(u)] d\xi.$$

Josephson junctions & sine-Gordon models

Introduction sG Stability DNA Discussion

Propagation of the magnetic flux $\phi(x,t)$ in a long Josephson junction (LJJ) is described by an inhomogeneous perturbed sine-Gordon equation:

$$\phi_{tt} = \phi_{xx} - D(x) \sin \phi + \gamma - \alpha \phi_t, \quad x \in \mathbb{R}, t > 0.$$

The meaning of the various terms:

- γ : induced current;
- $\alpha \ge 0$: dissipation;
- D(x): magnetic variations/impurities:

- D(x) = 1, for x < 0 and D(x) = −1 for x > 0: 0-π Josephson junction. Magnetic variation induces phase shift of π;
- D(x) = 1 for |x| > L and D(x) = d > 0 for |x| < L: _____d magnetic impurities;
- Combinations of above.

LMS Prospects in Mathematics, December 2013

The perturbed sine-Gordon model

Introduction sG Stability DNA Discussion

No magnetic variations/impurities (D = 1): perturbed sine-Gordon equation

$$\phi_{tt} = \phi_{xx} - \sin \phi + \gamma - \alpha \phi_t, \quad x \in \mathbb{R}, \ t > 0.$$

Solutions:

- Fixed points are solutions of $\sin \phi \gamma = 0$.
- If $\gamma = 0 = \alpha$, then it is the sine-Gordon equation. There is a family of stable travelling fronts (|c| < 1), called fluxons.

The perturbed sine-Gordon model

Introduction sG Stability DNA Discussion

No magnetic variations/impurities (D = 1): perturbed sine-Gordon equation

$$\phi_{tt} = \phi_{xx} - \sin \phi + \gamma - \alpha \phi_t, \quad x \in \mathbb{R}, t > 0.$$

Solutions:

- Fixed points are solutions of $\sin \phi \gamma = 0$.
- If $\gamma = 0 = \alpha$, then it is the sine-Gordon equation. There is a family of stable travelling fronts (|c| < 1), called fluxons.
- If $\alpha = 0$, $\gamma \neq 0$, then there are unstable travelling solitary waves.

The perturbed sine-Gordon model

Introduction sG Stability DNA Discussion

No magnetic variations/impurities (D = 1): perturbed sine-Gordon equation

$$\phi_{tt} = \phi_{xx} - \sin \phi + \gamma - \alpha \phi_t, \quad x \in \mathbb{R}, \ t > 0.$$

Solutions:

- Fixed points are solutions of $\sin \phi \gamma = 0$.
- If $\gamma = 0 = \alpha$, then it is the sine-Gordon equation. There is a family of stable travelling fronts (|c| < 1), called fluxons.
- If $\alpha = 0$, $\gamma \neq 0$, then there are unstable travelling solitary waves.
- If $\gamma \neq 0$, $\alpha \neq 0$: there is one travelling fluxon with speed $c(\gamma, \alpha)$. This fluxon connects $\arcsin \gamma$ with $2\pi + \arcsin \gamma$ and is stable.

The effect of impurities

Introduction sG Stability DNA Discussion

What happens with the travelling fluxon if an impurity is present?

5, -5 -5 -50 -50 -100 -100

A slow-ish fluxon gets trapped.

A faster fluxon gets slowed down.

- Questions: are there pinned fluxons?
 - if so, which ones are stable?

Sine-Gordon with impurity

Introduction sG Stability DNA Discussion

The sine-Gordon equation with an impurity:

$$\phi_{tt} = \phi_{xx} - D(x) \sin \phi + \gamma - \alpha \phi_t, \quad \text{with} \quad D(x) = \begin{cases} 1, & |x| > L \\ d > 0, & |x| < L \end{cases}$$

We focus on the existence and stability of stationary (pinned) fluxons.

- A pinned fluxon connects $(\arcsin \gamma)$ with $(2\pi + \arcsin \gamma)$.
- Stationary solutions satisfy $0 = \phi_{xx} D(x) \sin \phi + \gamma$. This is a spatially Hamiltonian system with Hamiltonian $H = \frac{1}{2}(\phi_x)^2 - D(x)(1 - \cos \phi) + \gamma \phi$.
- Hamiltonian H is conserved on $(-\infty, -L)$, (-L, L), (L, ∞) :
 - On $(-\infty, -L)$ and (L, ∞) , H is determined by the fixed points;
 - On (-L, L), the *H*-value depends on the length *L*, denote by h(L).

Existence of pinned fluxons

Introduction sG Stability DNA Discussion

$$\gamma = 0.15$$
, $d = 0$

Blue: dynamics for d = 0.

Monotonic pinned fluxons

Introduction sG Stability DNA Discussion

Two monotonic fluxons for h = 0: Two monotonic fluxons for $h = \frac{h_1 + h_{\text{max}}}{2}$:

LMS Prospects in Mathematics, December 2013

G. Derks, University of $Surrey^{(C)}$

Other pinned fluxons

Introduction sG Stability DNA Discussion

Eight non-monotonic fluxons for $h = (h_1 + h_{\text{max}})/2$ (four shown):

Impurity lengths, $\gamma=0.15\text{, }d=0$

Introduction sG Stability DNA Discussion

Observations:

- There is strictly positive minimum length and maximum length;
- For a fixed length, there are up to five pinned fluxons.
- Most fluxons are nonmonotonic

How about stability??

Wave equation with one inhomogeneity

Introduction sG Stability DNA Discussion

Consider a wave equation with one finite length inhomogeneity

$$u_{tt} = u_{xx} + \frac{\partial V}{\partial u}(u, x; L), \text{ where } V(u, x; L) = \begin{cases} V_l(u), & x < -L; \\ V_m(u), & -L < x < L; \\ V_r(u), & x > L. \end{cases}$$

Assumptions:

- Hamiltonian equations with outer potentials $V_l(u)$ and $V_r(u)$ have fixed points, called $u_{-\infty}$ resp. u_{∞} , which are saddles in the spatial dynamics (stable in temporal dynamics).
- There is an interval of *L*-values for which there exist stationary fronts connecting $u_{-\infty}$ and u_{∞} . The *L*-values and the fronts can be parametrised by

$$h = \frac{1}{2}\widehat{u}_x^2 + V_m(\widehat{u}), \ 0 < x < L;$$

where $\widehat{u}(x;h)$ is the front.

Stability and the L-h curve

Introduction sG Stability DNA Discussion

Linearisation about a front $\widehat{u}(x;h)$ gives (using $u(x,t) = \widehat{u}(x;h) + e^{\lambda t}v(x)$):

$$\lambda(\lambda - \alpha)v = \mathcal{L}(h)v$$
, with $\mathcal{L}(h) = D_{xx} + \frac{\partial^2 V}{\partial u^2}(\widehat{u}(x;h),x;L(h)).$

Theorem [KNIGHT, DERKS, DOELMAN, SUSANTO (2013)] If the solution $\hat{u}(x;h)$ is such that $\hat{u}_x \neq 0$ on the middle interval, then its linearisation operator $\mathcal{L}(h)$ has an eigenvalue zero in $H^2(\mathbb{R})$ if and only if

 $[V'_m(\widehat{u}_l(h)) - V'_l(\widehat{u}_l(h))] p_l(h) [V'_m(\widehat{u}_r(h)) - V'_r(\widehat{u}_r(h))] p_r(h) \mathbf{L}'(\mathbf{h}) = 0.$

where $\widehat{u}_l(h) = \widehat{u}(0;h), \quad p_l(h) = \widehat{u}_x(0;h),$ $\widehat{u}_r(h) = \widehat{u}(L(h);h), \quad p_r(h) = \widehat{u}_x(L(h);h).$

• Bifurcation points if $[V'_m(\widehat{u}_l(h)) - V'_l(\widehat{u}_l(h))] \to 0$, or $p_l(h) \to 0$, etc. and then $L'(h) \to \infty$.

• For "most" fronts, the stability criterion is $\mathbf{L}'(\mathbf{h}) = 0$.

Introduction sG Stability DNA Discussion

• Get a compatibility condition for the existence of an eigenvalue zero by using that the eigenfunction will consist of linear combinations of

$$\widehat{u}_x$$
 and $\widehat{u}_x \int rac{dx}{(\widehat{u}_x(x))^2},$

which have to be patched together smoothly (C^1) at the points x = -Land x = L.

• In the simplest case, $u_x(u,h) = \sqrt{2[h - V_m(u)]}$ and

$$L(h) = \int_{\widehat{u}_l(h)}^{\widehat{u}_r(h)} \frac{du}{\sqrt{2[h - V_m(u)]}}.$$

For more complex functions \hat{u} , the length consists of sums of similar integrals.

• Relate the derivative of the length curve L(h) to compatibility condition.

Stability in long JJ with impurity

Introduction sG Stability DNA Discussion

Stable non-monotonic fluxon (L = 10)

For each length, there is exactly one stable pinned fluxon: they are on the magenta curve.

- Full proof uses continuity via $(\gamma, d) = (0, 0);$
- Nonlinear stability can be shown via the Hamiltonian.

Wave equation with N inhomogeneities

Introduction sG Stability DNA Discussion

Consider a wave equation with N inhomogeneities

$$u_{tt} = u_{xx} + \frac{\partial V}{\partial u}(u, x), \text{ where } V(u, x) = \begin{cases} V_l(u), & x < \chi_0; \\ V_1(u), & \chi_0 < x < \chi_1; \\ \vdots & \vdots \\ V_N(u), & \chi_{N-1} < x < \chi_N; \\ V_r(u), & x > \chi_N. \end{cases}$$

Assumptions:

- Hamiltonian equations with outer potentials $V_l(u)$ and $V_r(u)$ have fixed points, called $u_{-\infty}$ resp. u_{∞} , which are saddles in the spatial dynamics.
- There is region of $L_i = \chi_i \chi_{i-1}$ -values for which there exist stationary fronts connecting $u_{-\infty}$ and u_{∞} . The L_i -values and the fronts can be parametrised by

$$h_i = \frac{1}{2}\widehat{u}_x^2 + V_i(\widehat{u}), \ \chi_{i-1} < x < \chi_i, \quad i = 1, \dots, N,$$

where $\widehat{u}(x; h_1, \ldots, h_N)$ denote the fronts.

Stability and the L_i - h_j surfaces

Introduction sG Stability DNA Discussion

Linearisation about a front $\widehat{u}(x; \mathbf{h})$ gives (with $\mathbf{h} = (h_1, \dots, h_N)$)

$$\lambda(\lambda - \alpha)v = \mathcal{L}(\mathbf{h})v$$
, with $\mathcal{L}(\mathbf{h}) = D_{xx} + \frac{\partial^2 V}{\partial u^2}(u(x;\mathbf{h});L(\mathbf{h})).$

Theorem [KNIGHT, DERKS, DOELMAN, SUSANTO (2013)] If the solution $\hat{u}(x; \mathbf{h})$ is such that $\hat{u}_x \neq 0$ on any interval, then its linearisation operator $\mathcal{L}(\mathbf{h})$ has an eigenvalue zero if and only if N

$$\det\left(\Gamma_{N}\right)\,\prod_{i=0}^{N}\mathscr{B}_{i}=0,$$

where
$$\mathscr{B}_{i}(\mathbf{h}) = [V'_{i+1}(\widehat{u}(\chi_{i})) - V'_{i}(\widehat{u}_{i}(\chi_{i}))] \widehat{u}_{x}(\chi_{i}), \quad i = i, \dots, N-1$$

 $\mathscr{B}_{0}(\mathbf{h}) = [V'_{1}(\widehat{u}_{m}(\chi_{0})) - V'_{l}(\widehat{u}_{m}(\chi_{0}))] \widehat{u}_{x}(\chi_{0}),$
 $\mathscr{B}_{N}(\mathbf{h}) = [V'_{r}(\widehat{u}(\chi_{N})) - V'_{N}(\widehat{u}(\chi_{N}))] \widehat{u}_{x}(\chi_{N})$

 and

$$\Gamma_{N} = \frac{\partial(L_{1}, \dots, L_{N})}{\partial(h_{1}, \dots, h_{N})} = \begin{pmatrix} \frac{\partial L_{1}}{\partial h_{1}} & \mathscr{B}_{1}^{-1} & 0 & \cdots & 0\\ \mathscr{B}_{1}^{-1} & \frac{\partial L_{2}}{\partial h_{2}} & \mathscr{B}_{2}^{-1} & \ddots & 0\\ 0 & \mathscr{B}_{2}^{-1} & \ddots & \ddots & \\ \vdots & & \ddots & \mathscr{B}_{N-1}^{-1}\\ 0 & 0 & \cdots & \mathscr{B}_{N-1}^{-1} & \frac{\partial L_{N}}{\partial h_{N}} \end{pmatrix}, \qquad \underset{\lambda}{\text{as }} \mathscr{B}_{i}^{-1} = \frac{\partial L_{i}}{\partial h_{i}}$$

LMS Prospects in Mathematics, December 2013

A $0\text{-}\pi$ junction with impurity

Introduction sG Stability DNA Discussion

A $0-\pi$ junction is given by $\phi_{tt} = \phi_{xx} - D(x) \sin \phi + \gamma - \alpha \phi_t, \text{ with } D(x) = \begin{cases} 1, & x < L_2 \\ -1, & x > L_2 \end{cases} \xrightarrow[-1]{}$

It can be shown that there are three types of stationary fluxons (see right, used $L_2 = 0$).

The black π -fluxon is unstable and the red and blue ones are unstable (red one marginally unstable if $\gamma \approx 0$).

Stabilitization of π -fluxon by impurity

Introduction sG Stability DNA Discussion

Now add an impurity with d = 0 on the left of the junction, does this stabilise the red π -fluxon?

We have a wave equation with 2 inhomogeneties (N=2):

Eigenfunctions without zeros on the zero curve: red π -fluxon is stabilised by impur

Link with one inhomogeneity theorem

Introduction sG Stability DNA Discussion

- If one of the two lengths are fixed, then we are in the situation of one inhomogeneity. Fixing one length (say L_1), leads to a curve $h_1(h_2)$.
- The theorem for one inhomogeneity checks for a extremal point of $L_2(h_1(h_2), h_2)$ with $h_1(h_2)$ given by $L_1(h_1, h_2) = \text{const.}$ It turns out that this is the condition that the determinant vanishes at a point on the curve $h_1(h_2)$.

LMS Prospects in Mathematics, December 2013

G. Derks, University of Surrey[©]

Yakushevich model for DNA dynamics

Introduction sG Stability DNA Discussion

Assumptions and notation:

- The DNA is homogeneous, the sugarphosphate backbone (SPB) doesn't move, the only dynamics are the nitrogen base rotations. The rotation angle of the base n on the " \pm " (red/blue) chain, away from the equilibrium, is denoted ϕ_n^{\pm} .
- Interactions are modelled by potentials:

• a stacking potential
$$\widehat{V}_s(\phi_{n+1}^{\pm}, \phi_n^{\pm})$$
:
 $\widehat{V}_s(\phi_{n+1}^{\pm}, \phi_n^{\pm}) = \frac{K_s}{2} \left(\phi_{n+1}^{\pm} - \phi_n^{\pm}\right)^2$;
• a pairing potential $\widehat{V}_p(\phi_n^+, \phi_n^-)$:

From: http://www.csb.yale.edu/

 $\widehat{V}_p(\phi_n^+, \phi_n^-) = \frac{K_p}{2} r^2 \left[\left(2 - \cos\phi_n^+ - \cos\phi_n^-\right)^2 + \left(\sin\phi_n^+ + \sin\phi_n^-\right)^2 \right].$

• The kinetic energy of a base is $\widehat{T} = \frac{I}{2} \left(\dot{\phi}_n^{\pm} \right)^2$.

The continuum Y-model

Introduction sG Stability DNA Discussion

• Change of coordinates:
$$\psi_n = (\phi_n^+ + \phi_n^-)/2$$
 and $\chi_n = (\phi_n^+ - \phi_n^-)/2$.

- The distance δ between the base sites is small: assume interpolating fields $\psi(x,t)$ and $\chi(x,t)$ with $\psi(n\delta,t) = \psi_n(t)$ and $\chi(n\delta,t) = \chi_n(t)$.
- The equations of motion are

$$\psi_{tt} = \kappa_s \psi_{xx} - \kappa_p \sin \psi \cos \chi - \mu \psi_t;$$

$$\chi_{tt} = \kappa_s \chi_{xx} - \kappa_p \sin \chi (\cos \psi - \cos \chi) - \mu \chi_t.$$

where $\kappa_s = K_s \delta^2 / I$, $\kappa_p = K_p r^2 / I$, and μ is the dissipation coefficient.

• The symmetric configuration $\chi = 0$ is invariant and gives the (damped) sine-Gordon equation

 $\psi_{tt} = \kappa_s \psi_{xx} - \kappa_p \sin \psi - \mu \psi_t$ and has a family of travelling soliton solutions ($\mu = 0$).

• Similar for the anti-symmetric configuration with $\psi = 0$ (double sG).

Including the interaction with RNAP

Introduction sG Stability DNA Discussion

• Assumptions:

- RNAP is present on DNA chain;
- RNAP acts locally on DNA;
- RNAP moves by pulling on DNA chain;
- There is sufficient ATP to feed RNAP.

- Write $\xi(t)$ for the centre of the RNAP and d for the radius of the region of binding with the DNA, i.e., the fields feel the RNA for $\xi d < x < \xi + d$. The interaction potential is $W(\phi, x, \xi) = W_0(\phi) R(\xi, x), \quad \text{with} \quad R(\xi, x) = \begin{cases} 1, & |x \xi| < d \\ 0, & |x \xi| > d \end{cases}$
- The interaction potential $W_0(\phi)$ should keep the DNA open, thus $\phi = \pi$ should be a stable equilibrium. We will use $W_0(\phi) = K_r \cos \phi$.
- Constant RNAP pulling force P along the axis: $\xi_{tt} = P \nu \xi_t$.

DNA-RNAP interaction dynamics

Introduction sG Stability DNA Discussion

The DNA-RNAP interaction gives for the equations of motion

$$\psi_{tt} = \kappa_s \psi_{xx} - [\kappa_p - \kappa_r R(\xi, x)] \sin \psi \cos \chi - \mu \psi_t;$$

$$\chi_{tt} = \kappa_s \chi_{xx} - \kappa_p \sin \chi (\cos \psi - \cos \chi) + \kappa_r R(\xi, x) \sin \chi \cos \psi - \mu \chi_t;$$

$$\xi_{tt} = P - \nu \xi_t.$$

Asymptotically, the RNAP moves with speed $c = P/\nu$, thus $\xi(t) = ct + \xi_0$.

Going to a moving frame
$$z = \frac{x - \xi(t)}{\sqrt{\kappa_s - c^2}}$$
 gives

$$\begin{split} \psi_{tt} &- \frac{2\sigma}{\mu} \psi_{zt} + \mu \psi_t = \psi_{zz} - [\kappa_p - \kappa_r \rho(z)] \sin \psi \cos \chi - \sigma \psi_z; \\ \chi_{tt} &- \frac{2\sigma}{\mu} \chi_{zt} + \mu \chi_t = \chi_{zz} - \kappa_p \sin \chi (\cos \psi - \cos \chi) + \kappa_r \rho(z) \sin \chi \cos \psi - \sigma \chi_z; \\ \text{with } \rho(z) &= \begin{cases} 1, & |z| < \hat{d} \\ 0, & |z| > \hat{d} \end{cases}, \quad \hat{d} = \frac{d}{\sqrt{\kappa_s - c^2}} \text{ and } \sigma = \frac{\mu c}{\sqrt{\kappa_s - c^2}}. \end{split}$$

G. Derks, University of Surrey[©]

Undamped symmetric travelling kinks

Introduction sG Stability DNA Discussion

Kink equations for the symmetric solutions:

 $\begin{aligned} \psi_{zz} &= \kappa_p \sin \psi - \sigma \psi_z, & |z| > \widehat{d}; \\ \psi_{zz} &= [\kappa_p - \kappa_r] \sin \psi - \sigma \psi_z, & |z| < \widehat{d}. \end{aligned}$

Damped symmetric travelling kinks

Introduction sG Stability DNA Discussion

Kink equations for the symmetric solutions:

$$\psi_{zz} = \kappa_p \sin \psi - \sigma \psi_z, \qquad |z| > \hat{d};$$

$$\psi_{zz} = [\kappa_p - \kappa_r] \sin \psi - \sigma \psi_z, \quad |z| < \hat{d}.$$

Damped ($\sigma > 0$), $\kappa_r < \kappa_p$:

Damped symmetric travelling kinks

Introduction sG Stability DNA Discussion

Kink equations for the symmetric solutions:

$$\begin{aligned} \psi_{zz} &= \kappa_p \sin \psi - \sigma \psi_z, & |z| > d; \\ \psi_{zz} &= [\kappa_p - \kappa_r] \sin \psi - \sigma \psi_z, & |z| < \hat{d}. \end{aligned}$$

Anti-symmetric travelling kinks

Introduction sG Stability DNA Discussion

Equations for the anti-symmetric solutions:

$$\chi_{zz} = \kappa_p \sin \chi (1 - \cos \chi) - \sigma \psi_z, \qquad |z| > \hat{d}_z$$

$$\chi_{zz} = \sin \chi \left[(\kappa_p - \kappa_r) - \kappa_p \cos \chi \right] - \sigma \psi_z, \quad |z| < \hat{d}_z$$

• Undamped kinks exist for any $\widehat{d} > 0$;

• Damped kinks exist for \widehat{d} not too small

Undamped travelling solitons

Introduction sG Stability DNA Discussion

New soliton solutions:

• In the symmetric section (left), solitons exist for $\kappa_r > \kappa_p$ and any $\hat{d} > 0$;

- In the anti-symmetric section (right), these solitons exist always.
- Middle plot show the soliton shapes, the dashed curve is the symmetric one, the solid curve the anti-symmetric one.

Kink stability

Introduction sG Stability DNA Discussion

 Without the RNAP the symmetric and anti-symmetric kinks are stable in their own invariant sub space, but unstable under symmetry breaking perturbations.

Introduction sG Stability DNA Discussion

- Without the RNAP the symmetric and anti-symmetric kinks are stable in their own invariant sub space, but unstable under symmetry breaking perturbations.
- The RNAP and dissipation have a stabilising effect on the symmetric and anti-symmetric kink.

Introduction sG Stability DNA Discussion

- Without the RNAP the symmetric and anti-symmetric kinks are stable in their own invariant sub space, but unstable under symmetry breaking perturbations.
- The RNAP and dissipation have a stabilising effect on the symmetric and anti-symmetric kink.
- The a-symmetric stable kink undergoes a tiny modification due to the RNAP and stays stable.

[Derks, Gaeta (2011)]

Conclusion and discussion

Introduction sG Stability DNA Discussion

- For the Josephson junctions we showed existence and stability of stationary fluxons for one and more inhomogeneities. The stability results are valid for general inhomogeneous wave equations.
- In the Josephson junctions, how do travelling fluxons interact with the stationary ones or an inhomogeneity?

Projecting onto families of sine-Gordon-type fluxons could be a good avenue.

Introduction sG Stability DNA Discussion

- For the Josephson junctions we showed existence and stability of stationary fluxons for one and more inhomogeneities. The stability results are valid for general inhomogeneous wave equations.
- In the Josephson junctions, how do travelling fluxons interact with the stationary ones or an inhomogeneity? Some results can be derived by projecting onto families of sine-Gordon-type fluxons.
- Can we extend the theory to the existence and stability of pinned fronts in coupled inhomogeneous wave equations? This is needed in the DNA-RNAP models.

Some other researchers in the UK

Introduction sG Stability DNA Discussion

Some other researchers at UK universities working in related areas:

Aston: Sergei Turitsyn

Bath: Karsten Matthies, Johannes Zimmer

Heriott Watt: Margot Beck, Simon Malham, Noel Smyth

Loughborough: Gennady El, Roger Grimshaw, Karima Khusnutdinova

Nottingham: Hadi Susanto

Oxford: Mason Porter

Warwick: Claude Baesens, Robert MacKay

And many others

Thank you!

