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1. Introduction

● Fluctuation-Dissipation Theorem 
(Near equilibrium: Transport coefficients and fluctuation correlations)

● Onsager-Machlup Fluctuation Theory 
(Near equilibrium: Relaxation process → average decay of a fluctuation 
away from equilibrium follows linear macroscopic law; Onsager’s principle 
of minimum energy dissipation; the most probable path)

● Fluctuation Theorems
(“Far” from equilibrium: Asymmetric property of probability 
distribution functions of fluctuations)

?

1.1. Past : Fluctuation Theories in Nonequilibrium 
Physics
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Energy conservation law
(for any fluctuation)

Work, Internal energy 

• Nonequilibrium detailed balance relations

1.2. New : Contents of This Talk

1.  Generalization of  Onsager-Machlup Fluctuation Theory 
to Nonequilibrium Steady States

Heat 

Entropy production Second law of thermodynamics
(for average)

2.   Fluctuation Theorems by a Functional Integral Approach

• Extended fluctuation theorem for heat 

• Fluctuation theorems for work and friction

Onsager-Machlup Lagrangian Transition probability
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1.3. Model: Dragged Brownian Particle 
(for a nonequilibrium steady state)
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FIG. 2: Comparison of the work fluctuation theorem and the
heat fluctuation theorem by plotting the function Gw(X) for
the work distribution and the function Gq(X) for the heat
distribution in the long time limit. Here, we used the asymp-
totic form (75) of the heat distribution function in the case
of W t = 70. In the small X region, the values of the two
functions Gw(X) and Gq(X) coincide, while Gw(X) is X and
Gq(X) is 2 in the large X region.

Now, we introduce the normalized variables Ẇ and Q̇
of W and Q by W t as Ẇ ≡ W/W t and Q̇ ≡ Q/W t , and
consider the functions Gw(Ẇ ) and Gq(Q̇) defined by

Gw(Ẇ ) ≡ 1
W t

ln
Pw(ẆW t, t)

Pw(−ẆW t, t)
, (76)

Gq(Q̇) ≡ 1
W t

ln
Pq(Q̇W t, t)

Pq(−Q̇W t, t)
(77)

for the work distribution function Pw(W, t) and the heat
distribution function Pq(Q, t). By Eq. (73) the function
Gw(Ẇ ) is given simply by Gw(Ẇ ) t→+∞∼ Ẇ in the long
time limit, characterizing the work fluctuation theorem
in a proper way to compare it with the heat fluctuation
theorem characterized by the function Gq(Q̇). Figure 2)
is plots of the functions Gw(X) (broken line) and Gq(X)
using Eq. (75) (solid line) in the case of W t = 70. In
this figure we plotted in the positive region of Ẇ and
Q̇, because their values in the negative region is simply
given by Gw(−X) = −Gw(X) and Gq(−X) = −Gq(X).
It is clear from Fig. 2) that the values of the functions
Gw(X) and Gq(X) coincide with each other in small X,
meaning that the heat fluctuation theorem coincides the
work fluctuation theorem in this region. The difference
between the heat and work fluctuation theorems appears
in large X region, where the function Gw(X) keeps to be
X but the function Gq(X) take the constant value 2 for
X > 3 in the long time limit.

VII. INERTIA EFFECTS

So far, we have concentrated our discussions in the
over-damped case, and have neglected the inertia effect.
A generalization of our discussions to the ones including
the inertia is almost straightforward. One of the features
caused by introducing the inertia is the kinetic term in

the equilibrium and nonequilibrium steady state distribu-
tion functions. The kinetic term depends on which frame,
namely the comoving frame or the laboratory frame, we
use. The inertia force, like the d’Alemberto’s force, also
appears as an inertia effect. In this section we discuss
briefly these effects beyond the over-damped case.

The Langevin equation including inertia is expressed
as

m
d2xt

dt2
= −α

dxt

dt
− κ (xt − vt) + ζt (78)

with the particle mass m, in the laboratory frame. [For
the inertia case we use the same notations for the parti-
cle position like xt and yt as for the over-damped case.]
Here, the first, second, and last terms on the right-hand
side of Eq. (78) are the friction, harmonic, and random
forces, respectively. The term md2xt/dt2 on the left-
hand side of Eq. (78) is the inertia term, and Eq. (78)
is attributed into the Langevin equation (1) under the
over-damped assumption by neglecting this inertia term.
Like in the over-damped case, we can convert Eq. (78)
for the laboratory frame to

m
d2yt

dt2
= −α

dyt

dt
− κ (yt + vτ) + ζt (79)

for the comoving frame, which is attributed into Eq. (5)
for the over-damped case m = 0.

We introduce the canonical type distribution function
as

f (ϑ)
eq (y, ẏ) ≡ Ξ−1 exp [−βH (y, ẏ + ϑv)] (80)

where ẏ is the time-derivative of y and H (y, ẏ) is defined
by H (y, ẏ) ≡ mẏ2/2+κy2/2, and Ξ is the normalization
constant for the distribution function f (ϑ)

eq (y, ẏ). It is im-
portant to note that the particle velocity depends on the
frame, and is given by ẏ for the comoving frame and by
ẏ + v for the laboratory frame. By this fact, the canon-
ical distribution function f (ϑ)

eq (y, ẏ) including the kinetic
energy depends on the frame, so that f (0)

eq (y, ẏ) is for the
comoving frame and f (1)

eq (y, ẏ) is for the laboratory frame.
By a similar way to the over-damped case, the func-

tional probability density for path {ys}s∈[t0,t] is given by
exp[

∫ t
t0

ds L(v)(ÿs, ẏs, ys)] with the Lagrangian

L(v)(ÿs, ẏs, ys) ≡ − 1
4D

(
ẏs + +

1
τ

ys + v +
m

α
ÿs

)2

(81)

using ÿs ≡ d2ys/ds2, which is attributed into the La-
grangian (8) in the over-damped case m = 0. Using Eqs.
(80) and (81) we obtain

e
R t

t0
ds L(v)(ÿs,ẏs,ys)f (ϑ)

eq (yt0 , ẏt0)

= f (ϑ)
eq (yt, ẏt) e

R t
t0

ds L(±v)(ÿs,−ẏs,ys)

×eβ
R t

t0
ds F±(ys,ẏs,ÿs,ϑ)v, (82)

where F±(ys, ẏs, ÿs,ϑ) is a modified “force” defined by

F±(ys, ẏs, ÿs,ϑ) ≡ −mÿs

(
1 ∓ 1

2
− ϑ

)

−αẏs
1 ± 1

2
− κys

1 ∓ 1
2

. (83)

● Langevin Equation 

Friction force

Harmonic force
U(x) = 1

2
κx2 Gaussian-white noise
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FIG. 1: Schematic illustration for a particle trapped by a har-
monic potential to drag it by a velocity v in a reservoir. The
work W is required to keep the system in a nonequilibrium
steady state, and the heat Q is released from the dragged par-
ticle to the heat reservoir. Here, x and y are the axes for the
laboratory and comoving frame, respectively, in the direction
of movement of the particle. The particle is at the position yt

(xt) at time t in the comoving (laboratory) frame, which are
related by yt = xt − vt.

in which the dynamics of this system is expressed as a
Langevin equation

dxt

dt
= −1

τ
(xt − vt) +

1
α

ζt (1)

for the particle position xt at time t in the laboratory
frame. Here, τ is given by α/κ with the friction constant
α and the spring constant κ to drag the particle, and
ζt is a Gaussian-white random force by coupling to the
reservoir, whose first two auto-correlations are given by

〈ζt〉 = 0, (2)

〈ζt1ζt2〉 =
2α

β
δ(t1 − t2) (3)

with the inverse temperature β of the reservoir and the
notation 〈· · · 〉 for the initial ensemble average. Equa-
tion (1) comes from the Langevin equation for the fric-
tion force −αdxt/dt and the harmonic force −κ(xt − vt)
and the random force ζt, neglecting the inertia term
md2xt/dt2 with the particle mass m, namely, under the
over-damping assumption. The coefficient 2α/β in Eq.
(3) is determined by the fluctuation-dissipation theorem,
so that in a simple relaxation case v = 0 to the equilib-
rium state the asymptotic distribution function is given
by the canonical distribution for the dynamics (1). A
schematic illustration for this system is given in Fig. 1.

The Langevin equation (1) is well-known as one of the
simplest and exactly-solvable nonequilibrium model [1].
It is also used to discuss the fluctuation theorem [2–6].
It should be emphasized that this model was used to
describe experiments for a colloidal particle captured in
an optical trap moving inside surrounding water [7, 8],
and also for an electric circuit consisting of a resister and
capacitor in parallel [9, 10].

Eq. (1) is for the position xt in the laboratory frame.
On the other hand, it is often convenient or simple to

discuss nonequilibrium dynamics by the comoving frame
[5, 11]. The position yt in the comoving frame for the
particle in our model is simply introduced as

yt ≡ xt − vt. (4)

Using this position yt, Eq. (1) is rewritten as

dyt

dt
= −1

τ
yt − v +

1
α

ζt, (5)

whose dynamics is invariant under the change yt → −yt

and v → −v noting that the Gaussian-white property
of ζt does not be changed by ζt → −ζt. Note that in
the comoving Langevin equation (5) there is no explicit
t-dependent term in the dynamical equation, while the
laboratory Langevin equation (1) has an t-dependence
through the term vt.

The system described by the Langevin equation (5),
or equivalently Eq. (1), is in a nonequilibrium steady
state, because the particle is forced to move steadily by
an external force to drag it. The external force to drag
the particle is given by −κyt, so the work rate ẇv(y) to
keep the particle in a steady state is expressed as

Ẇ(v)(y) = −κyv. (6)

Noting ẇ(0)(y) = 0, this characteristic distinguishes the
non-equilibrium steady state case v &= 0 and the relax-
ation case v = 0 to an equilibrium state physically, al-
though the v-dependence in the Langevin equation (5)
can formally be removed by changing the variable yt by
yt + vτ .

We can use various analytical techniques, like the
Fokker-Planck equation technique [12, 13], to analyze a
stochastic process represented by the Langevin equation
(5). As one of such techniques to stochastic processes, by
motivated by Ref. [14, 15], in this paper we use the func-
tional integral technique [13]. For example, using this

technique, the transition probability F(y
t
|y0

t0
) from y0 at

time t0 to y at time t is represented as

F

(
y
t

∣∣∣∣
y0

t0

)
=

∫ yt=y

yt0=y0

Dys exp
[∫ t

t0

ds L(v)(ẏs, ys)
]

(7)

where L(v)(ẏs, ys) is the Lagrangian for this stochastic
process, defined by

L(v)(ẏs, ys) ≡ − 1
4D

(
ẏs +

1
τ

ys + v

)2

, (8)

where D is defined by D ≡ 1/(αβ). [We outline a deriva-
tion of Eq. (7) from Eq. (5) in Appendix A.] Here, the
functional integral on the right-hand side of Eq. (7) is
introduced as
∫ yt=y

yt0=y0

Dys Xt({ys})

= lim
N→+∞

1√
4πD∆tN

∫
dyN√

4πD∆tN

×
∫

dyN−1√
4πD∆tN

· · ·
∫

dy1√
4πD∆tN

Xt({ys})

x

~~ ~

~

~

~

~

0
(Laboratory frame)

4



Nonequilibrium effect

Laboratory experiments (e.g. a Brownian particle captured in an optical 
trap, or an electric circuit consisting of a resister and capacitor, etc.)

Neglect inertial effect:  m d2xt/dt2 ≈ 0 (or simply m≈0)

● Over-Damped Assumption
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FIG. 1: Schematic illustration for a particle trapped by a har-
monic potential to drag it by a velocity v in a reservoir. The
work W is required to keep the system in a nonequilibrium
steady state, and the heat Q is released from the dragged par-
ticle to the heat reservoir. Here, x and y are the axes for the
laboratory and comoving frame, respectively, in the direction
of movement of the particle. The particle is at the position yt

(xt) at time t in the comoving (laboratory) frame, which are
related by yt = xt − vt.

in which the dynamics of this system is expressed as a
Langevin equation

dxt

dt
= −1

τ
(xt − vt) +

1
α

ζt (1)

for the particle position xt at time t in the laboratory
frame. Here, τ is given by α/κ with the friction constant
α and the spring constant κ to drag the particle, and
ζt is a Gaussian-white random force by coupling to the
reservoir, whose first two auto-correlations are given by

〈ζt〉 = 0, (2)

〈ζt1ζt2〉 =
2α

β
δ(t1 − t2) (3)

with the inverse temperature β of the reservoir and the
notation 〈· · · 〉 for the initial ensemble average. Equa-
tion (1) comes from the Langevin equation for the fric-
tion force −αdxt/dt and the harmonic force −κ(xt − vt)
and the random force ζt, neglecting the inertia term
md2xt/dt2 with the particle mass m, namely, under the
over-damping assumption. The coefficient 2α/β in Eq.
(3) is determined by the fluctuation-dissipation theorem,
so that in a simple relaxation case v = 0 to the equilib-
rium state the asymptotic distribution function is given
by the canonical distribution for the dynamics (1). A
schematic illustration for this system is given in Fig. 1.

The Langevin equation (1) is well-known as one of the
simplest and exactly-solvable nonequilibrium model [1].
It is also used to discuss the fluctuation theorem [2–6].
It should be emphasized that this model was used to
describe experiments for a colloidal particle captured in
an optical trap moving inside surrounding water [7, 8],
and also for an electric circuit consisting of a resister and
capacitor in parallel [9, 10].

Eq. (1) is for the position xt in the laboratory frame.
On the other hand, it is often convenient or simple to

discuss nonequilibrium dynamics by the comoving frame
[5, 11]. The position yt in the comoving frame for the
particle in our model is simply introduced as

yt ≡ xt − vt. (4)

Using this position yt, Eq. (1) is rewritten as

dyt

dt
= −1

τ
yt − v +

1
α

ζt, (5)

whose dynamics is invariant under the change yt → −yt

and v → −v noting that the Gaussian-white property
of ζt does not be changed by ζt → −ζt. Note that in
the comoving Langevin equation (5) there is no explicit
t-dependent term in the dynamical equation, while the
laboratory Langevin equation (1) has an t-dependence
through the term vt.

The system described by the Langevin equation (5),
or equivalently Eq. (1), is in a nonequilibrium steady
state, because the particle is forced to move steadily by
an external force to drag it. The external force to drag
the particle is given by −κyt, so the work rate ẇv(y) to
keep the particle in a steady state is expressed as

Ẇ(v)(y) = −κyv. (6)

Noting ẇ(0)(y) = 0, this characteristic distinguishes the
non-equilibrium steady state case v &= 0 and the relax-
ation case v = 0 to an equilibrium state physically, al-
though the v-dependence in the Langevin equation (5)
can formally be removed by changing the variable yt by
yt + vτ .

We can use various analytical techniques, like the
Fokker-Planck equation technique [12, 13], to analyze a
stochastic process represented by the Langevin equation
(5). As one of such techniques to stochastic processes, by
motivated by Ref. [14, 15], in this paper we use the func-
tional integral technique [13]. For example, using this

technique, the transition probability F(y
t
|y0

t0
) from y0 at

time t0 to y at time t is represented as

F

(
y
t

∣∣∣∣
y0

t0

)
=

∫ yt=y

yt0=y0

Dys exp
[∫ t

t0

ds L(v)(ẏs, ys)
]

(7)

where L(v)(ẏs, ys) is the Lagrangian for this stochastic
process, defined by

L(v)(ẏs, ys) ≡ − 1
4D

(
ẏs +

1
τ

ys + v

)2

, (8)

where D is defined by D ≡ 1/(αβ). [We outline a deriva-
tion of Eq. (7) from Eq. (5) in Appendix A.] Here, the
functional integral on the right-hand side of Eq. (7) is
introduced as
∫ yt=y

yt0=y0

Dys Xt({ys})

= lim
N→+∞

1√
4πD∆tN

∫
dyN√

4πD∆tN

×
∫

dyN−1√
4πD∆tN

· · ·
∫

dy1√
4πD∆tN

Xt({ys})

τ ≡

α

κr
r,

● Comoving Frame y : Frame Moving with Velocity v
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FIG. 1: Schematic illustration for a particle trapped by a har-
monic potential to drag it by a velocity v in a reservoir. The
work W is required to keep the system in a nonequilibrium
steady state, and the heat Q is released from the dragged par-
ticle to the heat reservoir. Here, x and y are the axes for the
laboratory and comoving frame, respectively, in the direction
of movement of the particle. The particle is at the position yt

(xt) at time t in the comoving (laboratory) frame, which are
related by yt = xt − vt.

in which the dynamics of this system is expressed as a
Langevin equation

dxt

dt
= −1

τ
(xt − vt) +

1
α

ζt (1)

for the particle position xt at time t in the laboratory
frame. Here, τ is given by α/κ with the friction constant
α and the spring constant κ to drag the particle, and
ζt is a Gaussian-white random force by coupling to the
reservoir, whose first two auto-correlations are given by

〈ζt〉 = 0, (2)

〈ζt1ζt2〉 =
2α

β
δ(t1 − t2) (3)

with the inverse temperature β of the reservoir and the
notation 〈· · · 〉 for the initial ensemble average. Equa-
tion (1) comes from the Langevin equation for the fric-
tion force −αdxt/dt and the harmonic force −κ(xt − vt)
and the random force ζt, neglecting the inertia term
md2xt/dt2 with the particle mass m, namely, under the
over-damping assumption. The coefficient 2α/β in Eq.
(3) is determined by the fluctuation-dissipation theorem,
so that in a simple relaxation case v = 0 to the equilib-
rium state the asymptotic distribution function is given
by the canonical distribution for the dynamics (1). A
schematic illustration for this system is given in Fig. 1.

The Langevin equation (1) is well-known as one of the
simplest and exactly-solvable nonequilibrium model [1].
It is also used to discuss the fluctuation theorem [2–6].
It should be emphasized that this model was used to
describe experiments for a colloidal particle captured in
an optical trap moving inside surrounding water [7, 8],
and also for an electric circuit consisting of a resister and
capacitor in parallel [9, 10].

Eq. (1) is for the position xt in the laboratory frame.
On the other hand, it is often convenient or simple to

discuss nonequilibrium dynamics by the comoving frame
[5, 11]. The position yt in the comoving frame for the
particle in our model is simply introduced as

yt ≡ xt − vt. (4)

Using this position yt, Eq. (1) is rewritten as

dyt

dt
= −1

τ
yt − v +

1
α

ζt, (5)

whose dynamics is invariant under the change yt → −yt

and v → −v noting that the Gaussian-white property
of ζt does not be changed by ζt → −ζt. Note that in
the comoving Langevin equation (5) there is no explicit
t-dependent term in the dynamical equation, while the
laboratory Langevin equation (1) has an t-dependence
through the term vt.

The system described by the Langevin equation (5),
or equivalently Eq. (1), is in a nonequilibrium steady
state, because the particle is forced to move steadily by
an external force to drag it. The external force to drag
the particle is given by −κyt, so the work rate ẇv(y) to
keep the particle in a steady state is expressed as

Ẇ(v)(y) = −κyv. (6)

Noting ẇ(0)(y) = 0, this characteristic distinguishes the
non-equilibrium steady state case v &= 0 and the relax-
ation case v = 0 to an equilibrium state physically, al-
though the v-dependence in the Langevin equation (5)
can formally be removed by changing the variable yt by
yt + vτ .

We can use various analytical techniques, like the
Fokker-Planck equation technique [12, 13], to analyze a
stochastic process represented by the Langevin equation
(5). As one of such techniques to stochastic processes, by
motivated by Ref. [14, 15], in this paper we use the func-
tional integral technique [13]. For example, using this

technique, the transition probability F(y
t
|y0

t0
) from y0 at

time t0 to y at time t is represented as

F

(
y
t

∣∣∣∣
y0

t0

)
=

∫ yt=y

yt0=y0

Dys exp
[∫ t

t0

ds L(v)(ẏs, ys)
]

(7)

where L(v)(ẏs, ys) is the Lagrangian for this stochastic
process, defined by

L(v)(ẏs, ys) ≡ − 1
4D

(
ẏs +

1
τ

ys + v

)2

, (8)

where D is defined by D ≡ 1/(αβ). [We outline a deriva-
tion of Eq. (7) from Eq. (5) in Appendix A.] Here, the
functional integral on the right-hand side of Eq. (7) is
introduced as
∫ yt=y

yt0=y0

Dys Xt({ys})

= lim
N→+∞

1√
4πD∆tN

∫
dyN√

4πD∆tN

×
∫

dyN−1√
4πD∆tN

· · ·
∫

dy1√
4πD∆tN

Xt({ys})

r
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FIG. 1: Schematic illustration for a particle trapped by a har-
monic potential to drag it by a velocity v in a reservoir. The
work W is required to keep the system in a nonequilibrium
steady state, and the heat Q is released from the dragged par-
ticle to the heat reservoir. Here, x and y are the axes for the
laboratory and comoving frame, respectively, in the direction
of movement of the particle. The particle is at the position yt

(xt) at time t in the comoving (laboratory) frame, which are
related by yt = xt − vt.

in which the dynamics of this system is expressed as a
Langevin equation

dxt

dt
= −1

τ
(xt − vt) +

1
α

ζt (1)

for the particle position xt at time t in the laboratory
frame. Here, τ is given by α/κ with the friction constant
α and the spring constant κ to drag the particle, and
ζt is a Gaussian-white random force by coupling to the
reservoir, whose first two auto-correlations are given by

〈ζt〉 = 0, (2)

〈ζt1ζt2〉 =
2α

β
δ(t1 − t2) (3)

with the inverse temperature β of the reservoir and the
notation 〈· · · 〉 for the initial ensemble average. Equa-
tion (1) comes from the Langevin equation for the fric-
tion force −αdxt/dt and the harmonic force −κ(xt − vt)
and the random force ζt, neglecting the inertia term
md2xt/dt2 with the particle mass m, namely, under the
over-damping assumption. The coefficient 2α/β in Eq.
(3) is determined by the fluctuation-dissipation theorem,
so that in a simple relaxation case v = 0 to the equilib-
rium state the asymptotic distribution function is given
by the canonical distribution for the dynamics (1). A
schematic illustration for this system is given in Fig. 1.

The Langevin equation (1) is well-known as one of the
simplest and exactly-solvable nonequilibrium model [1].
It is also used to discuss the fluctuation theorem [2–6].
It should be emphasized that this model was used to
describe experiments for a colloidal particle captured in
an optical trap moving inside surrounding water [7, 8],
and also for an electric circuit consisting of a resister and
capacitor in parallel [9, 10].

Eq. (1) is for the position xt in the laboratory frame.
On the other hand, it is often convenient or simple to

discuss nonequilibrium dynamics by the comoving frame
[5, 11]. The position yt in the comoving frame for the
particle in our model is simply introduced as

yt ≡ xt − vt. (4)

Using this position yt, Eq. (1) is rewritten as

dyt

dt
= −1

τ
yt − v +

1
α

ζt, (5)

whose dynamics is invariant under the change yt → −yt

and v → −v noting that the Gaussian-white property
of ζt does not be changed by ζt → −ζt. Note that in
the comoving Langevin equation (5) there is no explicit
t-dependent term in the dynamical equation, while the
laboratory Langevin equation (1) has an t-dependence
through the term vt.

The system described by the Langevin equation (5),
or equivalently Eq. (1), is in a nonequilibrium steady
state, because the particle is forced to move steadily by
an external force to drag it. The external force to drag
the particle is given by −κyt, so the work rate ẇv(y) to
keep the particle in a steady state is expressed as

Ẇ(v)(y) = −κyv. (6)

Noting ẇ(0)(y) = 0, this characteristic distinguishes the
non-equilibrium steady state case v &= 0 and the relax-
ation case v = 0 to an equilibrium state physically, al-
though the v-dependence in the Langevin equation (5)
can formally be removed by changing the variable yt by
yt + vτ .

We can use various analytical techniques, like the
Fokker-Planck equation technique [12, 13], to analyze a
stochastic process represented by the Langevin equation
(5). As one of such techniques to stochastic processes, by
motivated by Ref. [14, 15], in this paper we use the func-
tional integral technique [13]. For example, using this

technique, the transition probability F(y
t
|y0

t0
) from y0 at

time t0 to y at time t is represented as

F

(
y
t

∣∣∣∣
y0

t0

)
=

∫ yt=y

yt0=y0

Dys exp
[∫ t

t0

ds L(v)(ẏs, ys)
]

(7)

where L(v)(ẏs, ys) is the Lagrangian for this stochastic
process, defined by

L(v)(ẏs, ys) ≡ − 1
4D

(
ẏs +

1
τ

ys + v

)2

, (8)

where D is defined by D ≡ 1/(αβ). [We outline a deriva-
tion of Eq. (7) from Eq. (5) in Appendix A.] Here, the
functional integral on the right-hand side of Eq. (7) is
introduced as
∫ yt=y

yt0=y0

Dys Xt({ys})

= lim
N→+∞

1√
4πD∆tN

∫
dyN√

4πD∆tN

×
∫

dyN−1√
4πD∆tN

· · ·
∫

dy1√
4πD∆tN

Xt({ys})
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● Transition Probability of  Particle Position in Time

F

(

yt

t

∣

∣

∣

∣

∣

y0

t0

)

=

∫ yt

y0

Dys exp

[
∫ t

t0

ds L(v)(ẏs, ys)

]

y0, t0

yt, t
ys, s

path

= −
1

2kB

[

α

2T
(ẏs + v)2 +

α

2T

(ys

τ

)2
− Ṡ

(v)(ẏs, ys)

]

r

● Onsager-Machlup Lagrangian function 
Einstein
relationD ≡

kBT

α
L(v)(ẏs, ys) ≡ −

1

4D

(

ẏs + v +
ys

τ

)2

r

Functional
integral

Probability functional
for a path {ys}

2. Onsager-Machlup Theory for 
Nonequilibrium Steady States

Entropy production rate, because: 

● Connection with Thermodynamics 

Ṡ
(v)(ẏs, ys) ≡ −

1

T
κys(ẏs + v)
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[ii] Energy Conservation Law  (holds for any fluctuation)

Ṡ(v)(〈ẏt〉, 〈yt〉) ≥ 0

Nonequilibrium effect 
(zero in equilibrium: v=0)

Entropy production rate
Heat

3

for any functional Xt({ys}), with tn ≡ t0 + n∆tN and
∆tN ≡ (t − t0)/N , n = 1, 2, · · · , N , the initial time t0,
the final time tN = t, the initial position y0 = yt0 , and the
final position y = yt. It is important to note that from the

representation (7) of the transition probability F(y
t
|y0

t0
)

the functional exp[
∫ t

t0
ds L(v)(ẏs, ys)] can be regarded as

the functional probability density of the path {ys}s∈[t0,t].
For the Lagrangian (8), the functional integral on the

right-hand side of Eq. (7) can actually be carried out,
and we obtain

F

(
y
t

∣∣∣∣
y0

t0

)
=

1√
4πDTt

× exp

{
− [(y + vτ) − (y0 + vτ) bt]

2

4DTt

}
,

(9)

where bt and Tt are defined by bt ≡ exp[−(t− t0)/τ ] and
Tt ≡ (τ/2){1 − exp[−2(t − t0)/τ ]} so that Tt = t − t0 +
O((t − t0)2). Eq. (9) is simply a well known form of the
transition probability for the Smoluchowski process [13].

Using the transition probability F(y
t
|y0

t0
), the probability

distribution f(y, t) of the position y at time t is given by

f(y, t) =
∫

dy0 F

(
y
t

∣∣∣∣
y0

t0

)
f(y0, t0) (10)

with the initial distribution f(y0, t0). It is shown from
Eqs. (9) and (10) that for arbitral initial distribution
f(y0, t0), the probability distribution f(y, t) approaches
to

fss(y) ≡ lim
t→+∞

f(y, t) = feq (y + vτ) (11)

in the long time limit. Here, feq(y) is the equilibrium
distribution function given by

feq(y) =
√

κβ

2π
exp [−βU(y)] (12)

with the harmonic potential energy U(y) ≡ κy2/2. Eq.
(11) implies that the steady state distribution fss(y) is
simply given from the equilibrium canonical distribution
feq(y) by shifting the position y to y+vτ , as illustrated in
Fig. 1. [Note that there is no term for kinetic energy in
the canonical distribution (12) under the over-damped
assumption.] Eq. (11) implies that the stable position
of the particle is shifted from the bottom y = 0 of the
harmonic potential to the position y = −vτ by dragging
the particle.

The functional integral approach has already been used
to describe relaxation processes to a thermal equilibrium
with fluctuations and its thermodynamics by Onsager
and Machlup [14, 15]. In the next section, we gener-
alize their argument to non-equilibrium steady states us-
ing our model, and construct nonequilibrium steady-state
thermodynamics. The results in Refs. [14, 15] is always
reproduced from our results in Sec. III by taking v = 0,
i.e. in the relaxation case to an equilibrium state. In

this generalization, we integrate the work to sustain the
nonequilibrium steady state in the Onsager-Machlup the-
ory, and also give a direct connection between the entropy
production rate in the Onsager-Machlup theory and the
heat discussed in Ref. [4, 6].

III. ONSAGER-MACHLUP THEORY FOR
NONEQUILIBRIUM STEADY STATES

Following to the Onsager-Machlup theory [14, 15], we
represent the Lagrangian L(v)(ẏs, ys) as

L(v)(ẏ, y) = − 1
2kB

[
Φ(v)(ẏs) + Ψ(ys) − Ṡ(v)(ẏs, ys)

]
(13)

where kB is the Boltzmann constant, and Φ(v)(ẏs), Ψ(ys)
and Ṡ(v)(ẏs, ys) are defined by

Φ(v)(ẏs) ≡ kB

2D
(ẏs + v)2, (14)

Ψ(ys) ≡ kB

2Dτ2
y2

s , (15)

Ṡ(v)(ẏs, ys) ≡ −kBβκys(ẏs + v). (16)

These functions Φ(v)(ẏs) and Ψ(ys) are called dissipation
functions, while we call Ṡ(v)(ẏs, ys) the entropy produc-
tion rate. In the next subsections IIIA and III B, we
discuss physical meanings of these quantities, and justify
these names.

A. Heat and the energy balance equation

Using the entropy production rate Ṡ(v)(ẏs, ys), we in-
troduce the heat Qt({ys}) produced by the system in the
time-interval [t0, t] as

Qt({ys}) ≡ T

∫ t

t0

ds Ṡ(v)(ẏs, ys) (17)

with the temperature T ≡ kBβ. (Here, we use the symbol
{ys} in Qt({ys}) to show that the heat Qt({ys}) is a
functional of {ys} in s ∈ [t0, t].) On the other hand, the
work W(v)

t ({ys}) done on the system to sustain it in a
steady state is given by

W(v)
t ({ys}) ≡

∫ t

t0

ds Ẇ(v)(ys). (18)

using the work rate (6). The heat (17) and the work (18)
are related by

Qt({ys}) = W(v)
t ({ys}) − ∆U(yt, y0) (19)

with the (potential) energy difference

∆U(yt, y0) ≡ U(yt) − U(y0) (20)

at times t and t0. The relation (19) is nothing but the en-
ergy conservation law satisfied even by fluctuating quan-
tities. It may be noted that Eq. (19) is used as a “defini-
tion” of heat in Ref. [4, 6], and here on the other hand we
“derived” this equation. In other words, our generaliza-
tion of the Onsager-Machlup theory gives a justification
of the heat used in Ref. [4, 6].

Harmonic Force
Work W(v)

t
({ys}) ≡

∫
t

t0

ds (−κys)v

Functional

U(y) = 1

2
κy2Potential

Internal Energy
Difference

3

for any functional Xt({ys}), with tn ≡ t0 + n∆tN and
∆tN ≡ (t − t0)/N , n = 1, 2, · · · , N , the initial time t0,
the final time tN = t, the initial position y0 = yt0 , and the
final position y = yt. It is important to note that from the

representation (7) of the transition probability F(y
t
|y0

t0
)

the functional exp[
∫ t

t0
ds L(v)(ẏs, ys)] can be regarded as

the functional probability density of the path {ys}s∈[t0,t].
For the Lagrangian (8), the functional integral on the

right-hand side of Eq. (7) can actually be carried out,
and we obtain

F

(
y
t

∣∣∣∣
y0

t0

)
=

1√
4πDTt

× exp

{
− [(y + vτ) − (y0 + vτ) bt]

2

4DTt

}
,

(9)

where bt and Tt are defined by bt ≡ exp[−(t− t0)/τ ] and
Tt ≡ (τ/2){1 − exp[−2(t − t0)/τ ]} so that Tt = t − t0 +
O((t − t0)2). Eq. (9) is simply a well known form of the
transition probability for the Smoluchowski process [13].

Using the transition probability F(y
t
|y0

t0
), the probability

distribution f(y, t) of the position y at time t is given by

f(y, t) =
∫

dy0 F

(
y
t

∣∣∣∣
y0

t0

)
f(y0, t0) (10)

with the initial distribution f(y0, t0). It is shown from
Eqs. (9) and (10) that for arbitral initial distribution
f(y0, t0), the probability distribution f(y, t) approaches
to

fss(y) ≡ lim
t→+∞

f(y, t) = feq (y + vτ) (11)

in the long time limit. Here, feq(y) is the equilibrium
distribution function given by

feq(y) =
√

κβ

2π
exp [−βU(y)] (12)

with the harmonic potential energy U(y) ≡ κy2/2. Eq.
(11) implies that the steady state distribution fss(y) is
simply given from the equilibrium canonical distribution
feq(y) by shifting the position y to y+vτ , as illustrated in
Fig. 1. [Note that there is no term for kinetic energy in
the canonical distribution (12) under the over-damped
assumption.] Eq. (11) implies that the stable position
of the particle is shifted from the bottom y = 0 of the
harmonic potential to the position y = −vτ by dragging
the particle.

The functional integral approach has already been used
to describe relaxation processes to a thermal equilibrium
with fluctuations and its thermodynamics by Onsager
and Machlup [14, 15]. In the next section, we gener-
alize their argument to non-equilibrium steady states us-
ing our model, and construct nonequilibrium steady-state
thermodynamics. The results in Refs. [14, 15] is always
reproduced from our results in Sec. III by taking v = 0,
i.e. in the relaxation case to an equilibrium state. In

this generalization, we integrate the work to sustain the
nonequilibrium steady state in the Onsager-Machlup the-
ory, and also give a direct connection between the entropy
production rate in the Onsager-Machlup theory and the
heat discussed in Ref. [4, 6].

III. ONSAGER-MACHLUP THEORY FOR
NONEQUILIBRIUM STEADY STATES

Following to the Onsager-Machlup theory [14, 15], we
represent the Lagrangian L(v)(ẏs, ys) as

L(v)(ẏ, y) = − 1
2kB

[
Φ(v)(ẏs) + Ψ(ys) − Ṡ(v)(ẏs, ys)

]
(13)

where kB is the Boltzmann constant, and Φ(v)(ẏs), Ψ(ys)
and Ṡ(v)(ẏs, ys) are defined by

Φ(v)(ẏs) ≡ kB

2D
(ẏs + v)2, (14)

Ψ(ys) ≡ kB

2Dτ2
y2

s , (15)

Ṡ(v)(ẏs, ys) ≡ −kBβκys(ẏs + v). (16)

These functions Φ(v)(ẏs) and Ψ(ys) are called dissipation
functions, while we call Ṡ(v)(ẏs, ys) the entropy produc-
tion rate. In the next subsections IIIA and III B, we
discuss physical meanings of these quantities, and justify
these names.

A. Heat and the energy balance equation

Using the entropy production rate Ṡ(v)(ẏs, ys), we in-
troduce the heat Qt({ys}) produced by the system in the
time-interval [t0, t] as

Qt({ys}) ≡ T

∫ t

t0

ds Ṡ(v)(ẏs, ys) (17)

with the temperature T ≡ kBβ. (Here, we use the symbol
{ys} in Qt({ys}) to show that the heat Qt({ys}) is a
functional of {ys} in s ∈ [t0, t].) On the other hand, the
work W(v)

t ({ys}) done on the system to sustain it in a
steady state is given by

W(v)
t ({ys}) ≡

∫ t

t0

ds Ẇ(v)(ys). (18)

using the work rate (6). The heat (17) and the work (18)
are related by

Qt({ys}) = W(v)
t ({ys}) − ∆U(yt, y0) (19)

with the (potential) energy difference

∆U(yt, y0) ≡ U(yt) − U(y0) (20)

at times t and t0. The relation (19) is nothing but the en-
ergy conservation law satisfied even by fluctuating quan-
tities. It may be noted that Eq. (19) is used as a “defini-
tion” of heat in Ref. [4, 6], and here on the other hand we
“derived” this equation. In other words, our generaliza-
tion of the Onsager-Machlup theory gives a justification
of the heat used in Ref. [4, 6].

[i] Second Law of  Thermodynamics (holds for average)

3

for any functional Xt({ys}), with tn ≡ t0 + n∆tN and
∆tN ≡ (t − t0)/N , n = 1, 2, · · · , N , the initial time t0,
the final time tN = t, the initial position y0 = yt0 , and the
final position y = yt. It is important to note that from the

representation (7) of the transition probability F(y
t
|y0

t0
)

the functional exp[
∫ t

t0
ds L(v)(ẏs, ys)] can be regarded as

the functional probability density of the path {ys}s∈[t0,t].
For the Lagrangian (8), the functional integral on the

right-hand side of Eq. (7) can actually be carried out,
and we obtain

F

(
y
t

∣∣∣∣
y0

t0

)
=

1√
4πDTt

× exp

{
− [(y + vτ) − (y0 + vτ) bt]

2

4DTt

}
,

(9)

where bt and Tt are defined by bt ≡ exp[−(t− t0)/τ ] and
Tt ≡ (τ/2){1 − exp[−2(t − t0)/τ ]} so that Tt = t − t0 +
O((t − t0)2). Eq. (9) is simply a well known form of the
transition probability for the Smoluchowski process [13].

Using the transition probability F(y
t
|y0

t0
), the probability

distribution f(y, t) of the position y at time t is given by

f(y, t) =
∫

dy0 F

(
y
t

∣∣∣∣
y0

t0

)
f(y0, t0) (10)

with the initial distribution f(y0, t0). It is shown from
Eqs. (9) and (10) that for arbitral initial distribution
f(y0, t0), the probability distribution f(y, t) approaches
to

fss(y) ≡ lim
t→+∞

f(y, t) = feq (y + vτ) (11)

in the long time limit. Here, feq(y) is the equilibrium
distribution function given by

feq(y) =
√

κβ

2π
exp [−βU(y)] (12)

with the harmonic potential energy U(y) ≡ κy2/2. Eq.
(11) implies that the steady state distribution fss(y) is
simply given from the equilibrium canonical distribution
feq(y) by shifting the position y to y+vτ , as illustrated in
Fig. 1. [Note that there is no term for kinetic energy in
the canonical distribution (12) under the over-damped
assumption.] Eq. (11) implies that the stable position
of the particle is shifted from the bottom y = 0 of the
harmonic potential to the position y = −vτ by dragging
the particle.

The functional integral approach has already been used
to describe relaxation processes to a thermal equilibrium
with fluctuations and its thermodynamics by Onsager
and Machlup [14, 15]. In the next section, we gener-
alize their argument to non-equilibrium steady states us-
ing our model, and construct nonequilibrium steady-state
thermodynamics. The results in Refs. [14, 15] is always
reproduced from our results in Sec. III by taking v = 0,
i.e. in the relaxation case to an equilibrium state. In

this generalization, we integrate the work to sustain the
nonequilibrium steady state in the Onsager-Machlup the-
ory, and also give a direct connection between the entropy
production rate in the Onsager-Machlup theory and the
heat discussed in Ref. [4, 6].

III. ONSAGER-MACHLUP THEORY FOR
NONEQUILIBRIUM STEADY STATES

Following to the Onsager-Machlup theory [14, 15], we
represent the Lagrangian L(v)(ẏs, ys) as

L(v)(ẏ, y) = − 1
2kB

[
Φ(v)(ẏs) + Ψ(ys) − Ṡ(v)(ẏs, ys)

]
(13)

where kB is the Boltzmann constant, and Φ(v)(ẏs), Ψ(ys)
and Ṡ(v)(ẏs, ys) are defined by

Φ(v)(ẏs) ≡ kB

2D
(ẏs + v)2, (14)

Ψ(ys) ≡ kB

2Dτ2
y2

s , (15)

Ṡ(v)(ẏs, ys) ≡ −kBβκys(ẏs + v). (16)

These functions Φ(v)(ẏs) and Ψ(ys) are called dissipation
functions, while we call Ṡ(v)(ẏs, ys) the entropy produc-
tion rate. In the next subsections IIIA and III B, we
discuss physical meanings of these quantities, and justify
these names.

A. Heat and the energy balance equation

Using the entropy production rate Ṡ(v)(ẏs, ys), we in-
troduce the heat Qt({ys}) produced by the system in the
time-interval [t0, t] as

Qt({ys}) ≡ T

∫ t

t0

ds Ṡ(v)(ẏs, ys) (17)

with the temperature T ≡ kBβ. (Here, we use the symbol
{ys} in Qt({ys}) to show that the heat Qt({ys}) is a
functional of {ys} in s ∈ [t0, t].) On the other hand, the
work W(v)

t ({ys}) done on the system to sustain it in a
steady state is given by

W(v)
t ({ys}) ≡

∫ t

t0

ds Ẇ(v)(ys). (18)

using the work rate (6). The heat (17) and the work (18)
are related by

Qt({ys}) = W(v)
t ({ys}) − ∆U(yt, y0) (19)

with the (potential) energy difference

∆U(yt, y0) ≡ U(yt) − U(y0) (20)

at times t and t0. The relation (19) is nothing but the en-
ergy conservation law satisfied even by fluctuating quan-
tities. It may be noted that Eq. (19) is used as a “defini-
tion” of heat in Ref. [4, 6], and here on the other hand we
“derived” this equation. In other words, our generaliza-
tion of the Onsager-Machlup theory gives a justification
of the heat used in Ref. [4, 6].
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Probability for
a backward path

3. Fluctuation Theorems

Probability for
 a forward path

Boltzmann factor
for work done

3

for any functional Xt({ys}), with tn ≡ t0 + n∆tN and
∆tN ≡ (t − t0)/N , n = 1, 2, · · · , N , the initial time t0,
the final time tN = t, the initial position y0 = yt0 , and the
final position y = yt. It is important to note that from the

representation (7) of the transition probability F(y
t
|y0

t0
)

the functional exp[
∫ t

t0
ds L(v)(ẏs, ys)] can be regarded as

the functional probability density of the path {ys}s∈[t0,t].
For the Lagrangian (8), the functional integral on the

right-hand side of Eq. (7) can actually be carried out,
and we obtain

F

(
y
t

∣∣∣∣
y0

t0

)
=

1√
4πDTt

× exp

{
− [(y + vτ) − (y0 + vτ) bt]

2

4DTt

}
,

(9)

where bt and Tt are defined by bt ≡ exp[−(t− t0)/τ ] and
Tt ≡ (τ/2){1 − exp[−2(t − t0)/τ ]} so that Tt = t − t0 +
O((t − t0)2). Eq. (9) is simply a well known form of the
transition probability for the Smoluchowski process [13].

Using the transition probability F(y
t
|y0

t0
), the probability

distribution f(y, t) of the position y at time t is given by

f(y, t) =
∫

dy0 F

(
y
t

∣∣∣∣
y0

t0

)
f(y0, t0) (10)

with the initial distribution f(y0, t0). It is shown from
Eqs. (9) and (10) that for arbitral initial distribution
f(y0, t0), the probability distribution f(y, t) approaches
to

fss(y) ≡ lim
t→+∞

f(y, t) = feq (y + vτ) (11)

in the long time limit. Here, feq(y) is the equilibrium
distribution function given by

feq(y) =
√

κβ

2π
exp [−βU(y)] (12)

with the harmonic potential energy U(y) ≡ κy2/2. Eq.
(11) implies that the steady state distribution fss(y) is
simply given from the equilibrium canonical distribution
feq(y) by shifting the position y to y+vτ , as illustrated in
Fig. 1. [Note that there is no term for kinetic energy in
the canonical distribution (12) under the over-damped
assumption.] Eq. (11) implies that the stable position
of the particle is shifted from the bottom y = 0 of the
harmonic potential to the position y = −vτ by dragging
the particle.

The functional integral approach has already been used
to describe relaxation processes to a thermal equilibrium
with fluctuations and its thermodynamics by Onsager
and Machlup [14, 15]. In the next section, we gener-
alize their argument to non-equilibrium steady states us-
ing our model, and construct nonequilibrium steady-state
thermodynamics. The results in Refs. [14, 15] is always
reproduced from our results in Sec. III by taking v = 0,
i.e. in the relaxation case to an equilibrium state. In

this generalization, we integrate the work to sustain the
nonequilibrium steady state in the Onsager-Machlup the-
ory, and also give a direct connection between the entropy
production rate in the Onsager-Machlup theory and the
heat discussed in Ref. [4, 6].

III. ONSAGER-MACHLUP THEORY FOR
NONEQUILIBRIUM STEADY STATES

Following to the Onsager-Machlup theory [14, 15], we
represent the Lagrangian L(v)(ẏs, ys) as

L(v)(ẏ, y) = − 1
2kB

[
Φ(v)(ẏs) + Ψ(ys) − Ṡ(v)(ẏs, ys)

]
(13)

where kB is the Boltzmann constant, and Φ(v)(ẏs), Ψ(ys)
and Ṡ(v)(ẏs, ys) are defined by

Φ(v)(ẏs) ≡ kB

2D
(ẏs + v)2, (14)

Ψ(ys) ≡ kB

2Dτ2
y2

s , (15)

Ṡ(v)(ẏs, ys) ≡ −kBβκys(ẏs + v). (16)

These functions Φ(v)(ẏs) and Ψ(ys) are called dissipation
functions, while we call Ṡ(v)(ẏs, ys) the entropy produc-
tion rate. In the next subsections IIIA and III B, we
discuss physical meanings of these quantities, and justify
these names.

A. Heat and the energy balance equation

Using the entropy production rate Ṡ(v)(ẏs, ys), we in-
troduce the heat Qt({ys}) produced by the system in the
time-interval [t0, t] as

Qt({ys}) ≡ T

∫ t

t0

ds Ṡ(v)(ẏs, ys) (17)

with the temperature T ≡ kBβ. (Here, we use the symbol
{ys} in Qt({ys}) to show that the heat Qt({ys}) is a
functional of {ys} in s ∈ [t0, t].) On the other hand, the
work W(v)

t ({ys}) done on the system to sustain it in a
steady state is given by

W(v)
t ({ys}) ≡

∫ t

t0

ds Ẇ(v)(ys). (18)

using the work rate (6). The heat (17) and the work (18)
are related by

Qt({ys}) = W(v)
t ({ys}) − ∆U(yt, y0) (19)

with the (potential) energy difference

∆U(yt, y0) ≡ U(yt) − U(y0) (20)

at times t and t0. The relation (19) is nothing but the en-
ergy conservation law satisfied even by fluctuating quan-
tities. It may be noted that Eq. (19) is used as a “defini-
tion” of heat in Ref. [4, 6], and here on the other hand we
“derived” this equation. In other words, our generaliza-
tion of the Onsager-Machlup theory gives a justification
of the heat used in Ref. [4, 6].

Equilibrium distribution

Equilibrium detailed
balance

for
v=0

feq(y0) F

(

yt

t

∣

∣

∣

∣

∣

y0

t0

)
∣

∣

∣

∣

∣

v=0

= feq(yt) F

(

y0

t

∣

∣

∣

∣

∣

yt

t0

)
∣

∣

∣

∣

∣

v=0

feq(y0) e
R

t

t0
ds L(v)(ẏs,ys)

e−βW(v)
t

({ys})

= feq(yt) e
R

t

t0
ds L(−v)(−ẏs,ys)

● Nonequilibrium Detailed Balance (I)      
  [Due to non-zero v: nonequilibrium effect]
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● Distribution function of (dimensionless) work

5

functional [20]. The functional integral technique can be
an especially powerful tool to discuss the distributions of
this functional.

A. Violation of the equilibrium detailed balance in
nonequilibrium steady states

The equilibrium detailed balance condition expresses a
reversibility of the transition probability between any two
states in the equilibrium state, and is known as a physical
condition for the system to relax to an equilibrium state
in relaxation processes [12, 13]. This condition has to
be modified for the nonequilibrium steady state, because
the system does not relax to an equilibrium state but is
sustained in an nonequilibrium state by an external force
[25, 26]. This modification, or violation, of the equilib-
rium detailed balance in the nonequilibrium steady state
is expressed quantitatively as

e−βW(v)
t ({ys})e

R t
t0

ds L(v)(ẏs,ys)feq(y0)

= feq(yt) e
R t

t0
ds L(−v)(−ẏs,ys) (32)

in our path-integral approach, which is derived from Eqs.
(8), (12) and (18). Eq. (32) is attributed into the equi-
librium detailed balance condition in the relaxation case
v = 0 to an equilibrium state, because from Eq. (32) we
can derive the well-known detailed balance condition

F

(
y
t

∣∣∣∣
y0

t0

)∣∣∣∣
v=0

feq(y0) = F

(
y0

t

∣∣∣∣
y
t0

)∣∣∣∣
v=0

feq(y) (33)

in the case of v = 0, for the transition probability F(y
t
|y0

t0
),

noting W(0)
t ({ys}) = 0 and Eq. (7).

As discussed in Sec. II, the term exp[
∫ t

t0
ds L(v)(ẏs, ys)]

on the left-hand side of Eq. (32) is the probability func-
tional for the forward path {ys}s∈[t0,t]. On the other
hand, the term exp[

∫ t
t0

ds L(−v)(−ẏs, ys)] on the right-
hand side of Eq. (32) is the probability functional of
the time-reversed path. Therefore, Eq. (32) means that
we need the work W(v)

t ({ys}) so that the particle start
from an equilibrium state and move along to the path
{ys}s∈[t0,t] and return back to the equilibrium state along
its time-reversed path with the reversed dragging velocity
−v. Such an additional work appears as a canonical dis-
tribution type’s barrier exp[−βW(v)

t ({ys})] for the trans-
mission probability on the left-hand side of Eq. (32). It
should be emphasized that Eq. (32) is satisfied not only
for the most probable path but for any path {ys}s∈[t0,t],
which is crucial for the derivation of the fluctuation the-
orem as we will discuss in the next subsection IVB.

B. Work fluctuation theorem

Now, we discuss the distribution of work. For sim-
plicity of notation, we consider the dimensionless work
βW(v)

t ({ys}) and its distribution Pw(W, t), which is given

by

Pw(W, t) =
〈〈

δ
(
W − βW(v)

t ({ys})
)〉〉

t
. (34)

Here, 〈〈· · ·〉〉t means the average over all possible paths
{ys}s∈[t0,t], the initial and final ensemble averages,
namely

〈〈 Xt({ys}) 〉〉t ≡
∫

dyt

∫
Dys

∫
dy0 e

R t
t0

ds L(v)(ẏs,ys)

× f(y0, t0) Xt({ys}) (35)

for any functional Xt({ys}). It is convenient to express
the work distribution Pw(W, t) as a Fourier transform

Pw(W, t) =
1
2π

∫ +∞

−∞
dλ eiλWtE(v)

w (iλ, t) (36)

using the function E(v)
w (λ, t) defined by

E(v)
w (λ, t) ≡

〈〈
e−λW(v)

t ({ys})
〉〉

t
, (37)

which may be regarded as a generating functional of the
dimensionless work. It may be noted that the function
E(v)

w (λ, t) is invariant under the change v → −v, namely

E(−v)
w (λ, t) = E(v)

w (λ, t), (38)

simply as an invariance under space inversion for our
model, if the initial distribution f(y0, t0) is invariant un-
der the changes y0 → −y0 and v → −v, namely, the
spatial reflection.

It is essential to note that the modified detailed balance
condition (32) imposes the relation E(v)

w (λ, t) = E(−v)
w (1−

λ, t) to the function E(v)
w (λ, t), whose combination with

Eq. (38) leads to

E(v)
w (λ, t) = E(v)

w (1 − λ, t) (39)

for the equilibrium initial distribution f(y0, t0) = feq(y0),
as a form discussed in Ref. [26]. Eq. (39) is equivalent
to the relation

Pw(W, t)
Pw(−W, t)

= exp(W ). (40)

for the work distribution Pw(W, t), which is known as the
transient fluctuation theorem [5, 24].

As shown in Eq. (40), the transient fluctuation the-
orem is satisfied for any time, but it requires that the
system is in the equilibrium state at the initial time t0.
Therefore, one may ask what happens in the fluctuation
theorem if we choose a nonequilibrium steady state, or
any other state, as the initial condition. In the next sub-
section IVC, we calculate the work distribution function
Pw(W, t) explicitly by carrying out the functional inte-
gral on the right-hand side of Eq. (34) via Eq. (35), in
order to answer to this question.

3.1. Fluctuation Theorem for Work

Functional average

〈〈X({ys})〉〉t ≡

∫
dyt

∫ yt

y0

Dys

∫
dy0 e

R

t

t0
ds L(v)(ẏs,ys)

f(y0, t0) X({ys})

Distribution of y0 at t0

● Work fluctuation theorem

lim
t→+∞

Pw(W, t)

Pw(−W, t)
= exp(W )

7

derived from Eqs. (8), (12) and (52). It is important to
notice the difference between Eq. (53) and Eq. (32) in
the change (or unchange) of sign of the dragging velocity
v in their time-reversed movement. In other words, Eq.
(53) can be interpreted as that the energy loss Rt(yt, y0)
is required to move the particle from y0 to yt via the path
{ys}st0,t and to return back from yt to y0 via its reversed
path without changing the dragging velocity v. Using
Eq. (7) and (53) we obtain

e−βRt(y,y0)F

(
y
t

∣∣∣∣
y0

t0

)
feq(y0) = F

(
y0

t

∣∣∣∣
y
t0

)
feq(y), (54)

which is attributed into the equilibrium detailed balance
(33) in the case of v = 0 noting Rt(y, y0)|v=0 = 0. There-
fore, Eq. (53) is another kind of modification of the de-
tailed balance condition for the nonequilibrium steady
state, like Eq. (32).

We introduce the distribution function Pr(R, t) of the
dimensionless friction loss R in the time-interval [t0, t] as

Pr(R, t) = 〈〈 δ (R − βRt(yt, y0)) 〉〉t (55)

Like in the work distribution function, we represent the
distribution function of friction loss in the form

Pr(R, t) =
1
2π

∫ +∞

−∞
dλ eiλREr(iλ, t) (56)

with the Fourier transformation Er(λ, t) given by

Er(λ, t) ≡
〈〈

e−λβRt(yt,y0)
〉〉

t
(57)

=
∫

dy

∫
dy0 F

(
y
t

∣∣∣∣
y0

t0

)
e−λβRt(yt,y0)

×f(y0, t0). (58)

It follows from Eqs. (54), (58) and Rt(y0, yt) =
−Rt(yt, y0) that

Er(1 − λ, t) = Er(λ, t) (59)

if f(y, t0) = feq(y). Or equivalently, for the distribution
function Pr(R, t) of the dimensionless friction loss we ob-
tain

Pr(R, t)
Pr(−R, t)

= exp(R) (60)

for the equilibrium initial condition, namely, the tran-
sient fluctuation theorem for friction loss satisfied for any
time t.

Now, we investigate what happens if the system at the
initial time is not in the equilibrium state. Inserting Eqs.
(9) and (52) into Eq. (58), then using Eq. (56) we obtain

Pr(R, t) =
1√

2παβv2τ (1 − b2
t )

∫
dy f(y, t0)

× exp

{
− [R − αβv(y + vτ) (1 − bt)]

2

2αβv2τ (1 − b2
t )

}

(61)

for any initial distribution f(y, t0). [A derivation of Eq.
(61) is in Appendix C.] To get more concrete results, we
concentrate into the initial distribution

f(y0, t0) = feq(y0 + vτφ), (62)

for a constant parameter φ, meaning the equilibrium ini-
tial distribution for φ = 0 and the non-equilibrium steady
state initial distribution φ = 1. In this case, using Eq.
(61) it is shown that

lim
t→+∞

Pr(R, t)
Pr(−R, t)

= exp[(1 − φ)R] (63)

in the infinite time limit, which does not have the form of
the fluctuation theorem for φ &= 0. [we give derivation of
Eq. (63) in Appendix C.] In other words, the distribution
function of friction loss satisfies the transient fluctuation
theorem, but not the steady state fluctuation theorem.
Actually, for the initial condition of the nonequilibrium
steady state, its distribution Pr(R, t) is Gaussian with
its peak at R = 0, therefore Pr(−R, t) = Pr(R, t) at any
time.

VI. FLUCTUATION THEOREM FOR HEAT

As the next topic of this paper, we consider the distri-
bution function of heat, which was a quantity discussed
in Sec. IIIA, and then discuss its fluctuation theorem
briefly in the long time limit.

The distribution function of the dimensionless heat Q
corresponding to βQt({ys}) using Eq. (17) is given by

Pq(Q, t) = 〈〈 δ (Q − βQt({ys})) 〉〉t . (64)

The heat distribution function Pq(Q, t) can be calculated
like in the distribution function of work or friction loss,
namely by representing it as

Pq(Q, t) =
1
2π

∫ +∞

−∞
dλ eiλQEq(iλ, t) (65)

where Eq(λ, t) is given by

Eq(λ, t) ≡
〈〈

e−λβQt({ys})
〉〉

t
(66)

=
∫

dy

∫
dy0 eλβU(y)F(y, y0;λ)e−λβU(y0)

×f(y0, t0) (67)

using the function F(y, y0;λ) given by Eq. (42). Using
Eq. (46) with Eqs. (44) and (47), Eq. (67) is rewritten
as

for any

Nonequilibrium
detailed balance
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● Nonequilibrium detailed balance (II)

feq(y0)e
R

t

t0
ds L(v)(ẏs,ys)

e−βR
(v)
t

(yt,y0) = feq(yt) e
R

t

t0
ds L(v)(−ẏs,ys)

● Energy loss by friction

R
(v)
t

(yt, y0) =

∫
t

t0

ds (−αẏs) v

● Distribution function of (dimensionless) friction

Pr(R, t) =
〈〈

δ
(

R − βR
(v)
t

(yt, y0)
) 〉〉

t

No change ofthe sign of v

Friction force

3.2. Fluctuation Theorem for Friction 

● Friction fluctuation theorem

7

derived from Eqs. (8), (12) and (52). It is important to
notice the difference between Eq. (53) and Eq. (32) in
the change (or unchange) of sign of the dragging velocity
v in their time-reversed movement. In other words, Eq.
(53) can be interpreted as that the energy loss Rt(yt, y0)
is required to move the particle from y0 to yt via the path
{ys}st0,t and to return back from yt to y0 via its reversed
path without changing the dragging velocity v. Using
Eq. (7) and (53) we obtain

e−βRt(y,y0)F

(
y
t

∣∣∣∣
y0

t0

)
feq(y0) = F

(
y0

t

∣∣∣∣
y
t0

)
feq(y), (54)

which is attributed into the equilibrium detailed balance
(33) in the case of v = 0 noting Rt(y, y0)|v=0 = 0. There-
fore, Eq. (53) is another kind of modification of the de-
tailed balance condition for the nonequilibrium steady
state, like Eq. (32).

We introduce the distribution function Pr(R, t) of the
dimensionless friction loss R in the time-interval [t0, t] as

Pr(R, t) = 〈〈 δ (R − βRt(yt, y0)) 〉〉t (55)

Like in the work distribution function, we represent the
distribution function of friction loss in the form

Pr(R, t) =
1
2π

∫ +∞

−∞
dλ eiλREr(iλ, t) (56)

with the Fourier transformation Er(λ, t) given by

Er(λ, t) ≡
〈〈

e−λβRt(yt,y0)
〉〉

t
(57)

=
∫

dy

∫
dy0 F

(
y
t

∣∣∣∣
y0

t0

)
e−λβRt(yt,y0)

×f(y0, t0). (58)

It follows from Eqs. (54), (58) and Rt(y0, yt) =
−Rt(yt, y0) that

Er(1 − λ, t) = Er(λ, t) (59)

if f(y, t0) = feq(y). Or equivalently, for the distribution
function Pr(R, t) of the dimensionless friction loss we ob-
tain

Pr(R, t)
Pr(−R, t)

= exp(R) (60)

for the equilibrium initial condition, namely, the tran-
sient fluctuation theorem for friction loss satisfied for any
time t.

Now, we investigate what happens if the system at the
initial time is not in the equilibrium state. Inserting Eqs.
(9) and (52) into Eq. (58), then using Eq. (56) we obtain

Pr(R, t) =
1√

2παβv2τ (1 − b2
t )

∫
dy f(y, t0)

× exp

{
− [R − αβv(y + vτ) (1 − bt)]

2

2αβv2τ (1 − b2
t )

}

(61)

for any initial distribution f(y, t0). [A derivation of Eq.
(61) is in Appendix C.] To get more concrete results, we
concentrate into the initial distribution

f(y, t0) = feq(y + vτφ), (62)

for a constant parameter φ, meaning the equilibrium ini-
tial distribution for φ = 0 and the non-equilibrium steady
state initial distribution φ = 1. In this case, using Eq.
(61) it is shown that

lim
t→+∞

Pr(R, t)
Pr(−R, t)

= exp[(1 − φ)R] (63)

in the infinite time limit, which does not have the form of
the fluctuation theorem for φ &= 0. [we give derivation of
Eq. (63) in Appendix C.] In other words, the distribution
function of friction loss satisfies the transient fluctuation
theorem, but not the steady state fluctuation theorem.
Actually, for the initial condition of the nonequilibrium
steady state, its distribution Pr(R, t) is Gaussian with
its peak at R = 0, therefore Pr(−R, t) = Pr(R, t) at any
time.

VI. FLUCTUATION THEOREM FOR HEAT

As the next topic of this paper, we consider the distri-
bution function of heat, which was a quantity discussed
in Sec. IIIA, and then discuss its fluctuation theorem
briefly in the long time limit.

The distribution function of the dimensionless heat Q
corresponding to βQt({ys}) using Eq. (17) is given by

Pq(Q, t) = 〈〈 δ (Q − βQt({ys})) 〉〉t . (64)

The heat distribution function Pq(Q, t) can be calculated
like in the distribution function of work or friction loss,
namely by representing it as

Pq(Q, t) =
1
2π

∫ +∞

−∞
dλ eiλQEq(iλ, t) (65)

where Eq(λ, t) is given by

Eq(λ, t) ≡
〈〈

e−λβQt({ys})
〉〉

t
(66)

=
∫

dy

∫
dy0 eλβU(y)F(y, y0;λ)e−λβU(y0)

×f(y0, t0) (67)

using the function F(y, y0;λ) given by Eq. (42). Using
Eq. (46) with Eqs. (44) and (47), Eq. (67) is rewritten
as

5

functional [20]. The functional integral technique can be
an especially powerful tool to discuss the distributions of
this functional.

A. Violation of the equilibrium detailed balance in
nonequilibrium steady states

The equilibrium detailed balance condition expresses a
reversibility of the transition probability between any two
states in the equilibrium state, and is known as a physical
condition for the system to relax to an equilibrium state
in relaxation processes [12, 13]. This condition has to
be modified for the nonequilibrium steady state, because
the system does not relax to an equilibrium state but is
sustained in an nonequilibrium state by an external force
[25, 26]. This modification, or violation, of the equilib-
rium detailed balance in the nonequilibrium steady state
is expressed quantitatively as

e−βW(v)
t ({ys})e

R t
t0

ds L(v)(ẏs,ys)feq(y0)

= feq(yt) e
R t

t0
ds L(−v)(−ẏs,ys) (32)

in our path-integral approach, which is derived from Eqs.
(8), (12) and (18). Eq. (32) is attributed into the equi-
librium detailed balance condition in the relaxation case
v = 0 to an equilibrium state, because from Eq. (32) we
can derive the well-known detailed balance condition

F

(
y
t

∣∣∣∣
y0

t0

)∣∣∣∣
v=0

feq(y0) = F

(
y0

t

∣∣∣∣
y
t0

)∣∣∣∣
v=0

feq(y) (33)

in the case of v = 0, for the transition probability F(y
t
|y0

t0
),

noting W(0)
t ({ys}) = 0 and Eq. (7).

As discussed in Sec. II, the term exp[
∫ t

t0
ds L(v)(ẏs, ys)]

on the left-hand side of Eq. (32) is the probability func-
tional for the forward path {ys}s∈[t0,t]. On the other
hand, the term exp[

∫ t
t0

ds L(−v)(−ẏs, ys)] on the right-
hand side of Eq. (32) is the probability functional of
the time-reversed path. Therefore, Eq. (32) means that
we need the work W(v)

t ({ys}) so that the particle start
from an equilibrium state and move along to the path
{ys}s∈[t0,t] and return back to the equilibrium state along
its time-reversed path with the reversed dragging velocity
−v. Such an additional work appears as a canonical dis-
tribution type’s barrier exp[−βW(v)

t ({ys})] for the trans-
mission probability on the left-hand side of Eq. (32). It
should be emphasized that Eq. (32) is satisfied not only
for the most probable path but for any path {ys}s∈[t0,t],
which is crucial for the derivation of the fluctuation the-
orem as we will discuss in the next subsection IVB.

B. Work fluctuation theorem

Now, we discuss the distribution of work. For sim-
plicity of notation, we consider the dimensionless work
βW(v)

t ({ys}) and its distribution Pw(W, t), which is given

by

Pw(W, t) =
〈〈

δ
(
W − βW(v)

t ({ys})
)〉〉

t
. (34)

Here, 〈〈· · ·〉〉t means the average over all possible paths
{ys}s∈[t0,t], the initial and final ensemble averages,
namely

〈〈 Xt({ys}) 〉〉t ≡
∫

dyt

∫
Dys

∫
dy0 e

R t
t0

ds L(v)(ẏs,ys)

× f(y0, t0) Xt({ys}) (35)

for any functional Xt({ys}). It is convenient to express
the work distribution Pw(W, t) as a Fourier transform

Pw(W, t) =
1
2π

∫ +∞

−∞
dλ eiλWtE(v)

w (iλ, t) (36)

using the function E(v)
w (λ, t) defined by

E(v)
w (λ, t) ≡

〈〈
e−λW(v)

t ({ys})
〉〉

t
, (37)

which may be regarded as a generating functional of the
dimensionless work. It may be noted that the function
E(v)

w (λ, t) is invariant under the change v → −v, namely

E(−v)
w (λ, t) = E(v)

w (λ, t), (38)

simply as an invariance under space inversion for our
model, if the initial distribution f(y0, t0) is invariant un-
der the changes y0 → −y0 and v → −v, namely, the
spatial reflection.

It is essential to note that the modified detailed balance
condition (32) imposes the relation E(v)

w (λ, t) = E(−v)
w (1−

λ, t) to the function E(v)
w (λ, t), whose combination with

Eq. (38) leads to

E(v)
w (λ, t) = E(v)

w (1 − λ, t) (39)

for the equilibrium initial distribution f(y0, t0) = feq(y0),
as a form discussed in Ref. [26]. Eq. (39) is equivalent
to the relation

Pw(W, t)
Pw(−W, t)

= exp(W ). (40)

for the work distribution Pw(W, t), which is known as the
transient fluctuation theorem [5, 24].

As shown in Eq. (40), the transient fluctuation the-
orem is satisfied for any time, but it requires that the
system is in the equilibrium state at the initial time t0.
Therefore, one may ask what happens in the fluctuation
theorem if we choose a nonequilibrium steady state, or
any other state, as the initial condition. In the next sub-
section IVC, we calculate the work distribution function
Pw(W, t) explicitly by carrying out the functional inte-
gral on the right-hand side of Eq. (34) via Eq. (35), in
order to answer to this question.

for

(The friction FT is not correct for the steady state initial condition even for t ➝ ∞.)

Boltzmann factor 
for energy loss 

by friction
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● Heat fluctuation theorem (scaled)

G(Q, t) ≡ ln
Pq(Q, t)

Pq(−Q, t)

● Heat distribution function

Pq(Q, t)
t→+∞

∼

∫
dW

∫
d∆U Pw(W, t) P∆e(∆U , t) δ(Q − W + ∆U)

Energy-difference
distribution (Exponential)

Exponential tail

Work distribution
(Gaussian)

8

Eq(λ, t) =
1√

1 − λ (1 − b2
t )

exp
[
−λ(1 − λ)αβv2

(
t − t0 − 2τ

1 − bt

1 + bt

)]

×
∫

dy0 f(y0, t0) exp

[
−βκ

2
λ(1 − λ)

(
1 − b2

t

)

1 − λ (1 − b2
t )

(
y0 − vτ

1 − bt

1 + bt

)2
]

. (68)

for any initial distribution f(y0, t0). [We give a derivation
of Eq. (68) in Appendix D.]

The calculation of the heat distribution function
Pq(Q, t) from its Fourier transformation like Eq(iλ, t) has
already done in Ref. [6] in detail, for the initial condi-
tion of the equilibrium and nonequilibrium steady state,
and led to the heat fluctuation theorem [4, 6]. We do
not repeat their calculations and argument in this paper.
Instead, in the remaining of this section we discuss the
heat distribution function and its fluctuation theorem by
less rigorous but much simpler argument than in Ref.
[6]. This discussion is restricted for case of the long time
limit, in which time-correlations of some quantities may
be neglected with allowing to simplify arguments for dis-
tribution functions. The heat fluctuation theorem is also
discussed in Refs. [27–29].

In the remaining part of this section, we consider the
case of the initial condition (62). First, we consider the
distribution function Pe(E) of dimensionless potential
energy E for the case of feq(y + vτφ), which is given
by

P (φ)
e (E) ≡

∫
dy feq(y + vτφ)δ(βU(y) − E)

=
θ(E)
2
√

πE

[
e
−

“√
E+vτφ

√
βκ
2

”2

+e
−

“√
E−vτφ

√
βκ
2

”2]
(69)

We consider a large E case in Eq. (69), and approximate
the distribution function Pe(E) as

P (φ)
e (E) ≈ θ(E) exp(−E), (70)

neglecting the power dependence E−1/2 in Eq. (69),
which should be less strong than the exponential depen-
dence exp(−E). [Note that on the right-hand side of Eq.
(70) the normalization condition

∫
dEPe(E) = 1 is still

satisfied.] Second, we consider the distribution function
Pde(∆E, t) of the dimensionless energy difference ∆E at
the initial time t0 and the final time t, which is given by

Pde(∆E, t) t→+∞∼
∫

dE0 P (φ)
e (E0)P (1)

e (E0 + ∆E) (71)

under the initial condition (62). Here, we assumed that
the energy E0 at the initial time t0 and the energy
Et ≡ E0 + ∆E at the final time t are uncorrelated in
the long time limit t → +∞, so that the distribution
function Pde(∆E, t) is given by the integral of the simple
multiplication P (φ)

e (E0)P
(1)
e (Et) of the initial distribu-

tion function P (φ)
e (E0) of energy and the final distribu-

tion function P (1)
e (E0) of energy (noting the asymptotic

state to be φ = 1) over all possible values of E0 and Et

under the constraint ∆E = Et − E0. Inserting Eq. (70)
into Eq. (71) we obtain

Pde(∆E, t) t→+∞∼ 1
2

exp(−|∆E|), (72)

meaning that the distribution function Pde(∆E, t) of the
energy difference ∆E decays exponentially. [Note again
that the right-hand side of (72) satisfies the normalization
condition

∫
d∆EPde(∆E, t) = 1.]

On the other hand, we have already calculated the dis-
tribution function Pw(W, t) of work W in Sec. IVC, and
from Eq. (50) we derive

Pw(W, t) t→+∞∼ 1

2
√

πW t

exp

[
−

(
W − W t

)2

4W t

]
(73)

for any initial distribution including the case (62). Here,
W t is the average of the (dimensionless) work W on the
distribution Pw(W, t) and given by W t

t→+∞∼ αβv2t in
the long time limit.

By the argument in Sec. IIIA, the heat Q is given
by Q = W − ∆E using the work W and energy differ-
ence ∆E, and its distribution function Pq(Q, t) should be
represented as

Pq(Q, t) t→+∞∼
∫

dW Pw(W, t)Pde(W − Q, t) (74)

in the long time limit. Here, we used a similar argument
to Eq. (71) in order to justify Eq. (74), namely, it is
the integral of the multiplication of the work distribution
Pw(W, t) and the energy-difference distribution function
Pde(∆E, t) over all possible values of W and ∆E under
the restriction Q = W − ∆E for a given ∆E. Noncorre-
lation of the work and the energy difference in the long
time limit, which is assumed in Eq. (74), may be justified
by the fact that the work depend on the particle position
all over the time interval [t0, t] by Eqs. (6) and (18) (in
which the effects at the times t0 and t are negligible in the
long time limit) while the energy difference depends on
the particle position at the times t0 and t only. Inserting
Eq. (72) and (73) into Eq. (74) we obtain

Pq(Q, t) t→+∞∼ 1
4

[
e−Q+2W terfc

(
−Q − 3W t

2
√

W t

)

+eQerfc

(
Q + W t

2
√

W t

)]
(75)

with the complimentary error function erfc(x) defined by
erfc(x) ≡ (2/

√
π)

∫ +∞
x dz exp(−z2). Eq. (75) gives the

asymptotic form of the heat distribution function.
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Eq(λ, t) =
1√

1 − λ (1 − b2
t )

exp
[
−λ(1 − λ)αβv2

(
t − t0 − 2τ

1 − bt

1 + bt

)]

×
∫

dy0 f(y0, t0) exp

[
−βκ

2
λ(1 − λ)

(
1 − b2

t

)

1 − λ (1 − b2
t )

(
y0 − vτ

1 − bt

1 + bt

)2
]

. (68)

for any initial distribution f(y0, t0). [We give a derivation
of Eq. (68) in Appendix D.]

The calculation of the heat distribution function
Pq(Q, t) from its Fourier transformation like Eq(iλ, t) has
already done in Ref. [6] in detail, for the initial condi-
tion of the equilibrium and nonequilibrium steady state,
and led to the heat fluctuation theorem [4, 6]. We do
not repeat their calculations and argument in this paper.
Instead, in the remaining of this section we discuss the
heat distribution function and its fluctuation theorem by
less rigorous but much simpler argument than in Ref.
[6]. This discussion is restricted for case of the long time
limit, in which time-correlations of some quantities may
be neglected with allowing to simplify arguments for dis-
tribution functions. The heat fluctuation theorem is also
discussed in Refs. [27–29].

In the remaining part of this section, we consider the
case of the initial condition (62). First, we consider the
distribution function Pe(E) of dimensionless potential
energy E for the case of feq(y + vτφ), which is given
by

P (φ)
e (E) ≡

∫
dy feq(y + vτφ)δ(βU(y) − E)

=
θ(E)
2
√

πE

[
e
−

“√
E+vτφ

√
βκ
2

”2

+e
−

“√
E−vτφ

√
βκ
2

”2]
(69)

We consider a large E case in Eq. (69), and approximate
the distribution function Pe(E) as

P (φ)
e (E) ≈ θ(E) exp(−E), (70)

neglecting the power dependence E−1/2 in Eq. (69),
which should be less strong than the exponential depen-
dence exp(−E). [Note that on the right-hand side of Eq.
(70) the normalization condition

∫
dEPe(E) = 1 is still

satisfied.] Second, we consider the distribution function
Pde(∆E, t) of the dimensionless energy difference ∆E at
the initial time t0 and the final time t, which is given by

Pde(∆E, t) t→+∞∼
∫

dE0 P (φ)
e (E0)P (1)

e (E0 + ∆E) (71)

under the initial condition (62). Here, we assumed that
the energy E0 at the initial time t0 and the energy
Et ≡ E0 + ∆E at the final time t are uncorrelated in
the long time limit t → +∞, so that the distribution
function Pde(∆E, t) is given by the integral of the simple
multiplication P (φ)

e (E0)P
(1)
e (Et) of the initial distribu-

tion function P (φ)
e (E0) of energy and the final distribu-

tion function P (1)
e (E0) of energy (noting the asymptotic

state to be φ = 1) over all possible values of E0 and Et

under the constraint ∆E = Et − E0. Inserting Eq. (70)
into Eq. (71) we obtain

Pde(∆E, t) t→+∞∼ 1
2

exp(−|∆E|), (72)

meaning that the distribution function Pde(∆E, t) of the
energy difference ∆E decays exponentially. [Note again
that the right-hand side of (72) satisfies the normalization
condition

∫
d∆EPde(∆E, t) = 1.]

On the other hand, we have already calculated the dis-
tribution function Pw(W, t) of work W in Sec. IVC, and
from Eq. (50) we derive

Pw(W, t) t→+∞∼ 1

2
√

πW t

exp

[
−

(
W − W t

)2

4W t

]
(73)

for any initial distribution including the case (62). Here,
W t is the average of the (dimensionless) work W on the
distribution Pw(W, t) and given by W t

t→+∞∼ αβv2t in
the long time limit.

By the argument in Sec. IIIA, the heat Q is given
by Q = W − ∆E using the work W and energy differ-
ence ∆E, and its distribution function Pq(Q, t) should be
represented as

Pq(Q, t) t→+∞∼
∫

dW Pw(W, t)Pde(W − Q, t) (74)

in the long time limit. Here, we used a similar argument
to Eq. (71) in order to justify Eq. (74), namely, it is
the integral of the multiplication of the work distribution
Pw(W, t) and the energy-difference distribution function
Pde(∆E, t) over all possible values of W and ∆E under
the restriction Q = W − ∆E for a given ∆E. Noncorre-
lation of the work and the energy difference in the long
time limit, which is assumed in Eq. (74), may be justified
by the fact that the work depend on the particle position
all over the time interval [t0, t] by Eqs. (6) and (18) (in
which the effects at the times t0 and t are negligible in the
long time limit) while the energy difference depends on
the particle position at the times t0 and t only. Inserting
Eq. (72) and (73) into Eq. (74) we obtain

Pq(Q, t) t→+∞∼ 1
4

[
e−Q+2W terfc

(
−Q − 3W t

2
√

W t

)

+eQerfc

(
Q + W t

2
√

W t

)]
(75)

with the complimentary error function erfc(x) defined by
erfc(x) ≡ (2/

√
π)

∫ +∞
x dz exp(−z2). Eq. (75) gives the

asymptotic form of the heat distribution function.

=

[

e−Q+2W terfc

(

−

Q − 3W t

2
√

W t

)

+ eQerfc

(

Q + W t

2
√

W t

)]

,

3.3. Extended Fluctuation Theorem for Heat
( in the long time limit )
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Experimental check of the heat FT using an 
electric circuit (Garnier and Ciliberto, 2005)

11



• Generalization of  Onsager-Machlup Theory to 
Nonequilibrium Steady States

• Thermodynamics and fluctuations from the Onsager-Machlup 
Lagrangian function (the second law of thermodynamics, the 
energy conservation law, etc.)

• Fluctuation Theorems using a                 
Functional Integral Approach

• Usage of nonequilibrium detailed balance relations for derivation 
of fluctuation theorems for work and friction

• Simple argument for the extended fluctuation theorem for heat

4. Conclusion

Onsager-Machlup
Lagrangian function

Reference: T. Taniguchi and E. G. D. Cohen, e-print cond-mat/0605548
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Appendix: Notations in This Talk

• m: mass
• α: friction coefficient
• κ: spring constant
• T: temperature
• kB: Boltzmann constant
• β=1/(kBT): inverse temperature
• v: velocity to drag the particle
• τr= α/κ: relaxation time 

• ζt: Gaussian white random force
• <...>: ensemble average
• D=1/(αβ): diffusion constant
• U(y): harmonic potential

• L(v) (y,y): Lagrangian function
• S(v)(y,y): entropy production rate
• Q: heat
• W: work
• ΔU: internal energy difference
• feq(y): equilibrium distribution 

function
• f(y,t): distribution of position y at 

time t
• Pw(W,t): work distribution
• Pr(R,t): friction distribution
• Pq(Q,t): heat distribution
• <<...>>t: functional average

..
.
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