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How do large fluctuations occur?
What are optimal paths? How do
they manifest in reality? Mark Dykman (1951 – )
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Fluctuations and nonlinearity are of course universal,
affecting all macroscopic physical systems.
Rare large fluctuations are often the most important, for
e.g. –

Chemical reactions
Mutations in DNA sequences
Failures of electronic devices, lasers
Stochastic resonance
Protein transport in Brownian ratchets

Aim is it investigate large rare fluctuations, and how they
happen –

Use an experimental approach
Measure, understand, predict
Control, exploit?

Although rare, when large fluctuations arise, they occur in
an almost deterministic manner.
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Physical picture

Consider overdamped Brownian motion of a particle in the
force field K(x, t), driven by weak white noise of intensity D...

Mostly, system fluctuates near a
stable state S at x = xs (N.B. figure
from book uses A(t) as state
variable).

Very occasionally, a large rare
fluctuation takes the system to a
remote state xf – from which it may
then return.

But how does the event occur? One
idea, from the 1994 textbook by a
distinguished authority...
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Problem to be solved

Problem: to describe the form of the trajectories to and
from xf .

Assumption: the noise is weak, D → 0 (no assumption of
adiabaticity). Hamiltonian (or equivalent path-integral
approach) –

Many researchers: Cohen & Lewis (1967), Ventzell &
Freidlin (1970), Ludwig (1975), Dykman et al (1979),
Graham & Tell (1984), Jauslin (1986), Day (1987), McKane
(1989), ...and numerous others, over the last 30 years.

Start from the Fokker-Planck equation... use the weak
noise assumption...

We consider the simplest one-dimensional example – but
the formalism is easily extended.
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Finding the “auxiliary system”
Fokker-Plank equation (FPE) for probability density P(x, t) is

∂P(x, t)
∂t

= −∇ · (K(x, t) P(x, t)) +
D
2
∇2P(x, t).

Near a stable stationary state S, for D → 0, use WKB (eikonal)
approximation

P(x, t) = z(x, t) exp
(

−W (x, t)
D

)

.

where z(x, t) is a prefactor, and W (x, t) is a classical action
satisfying the Hamilton-Jacobi equation, which can be solved
by integrating the Hamiltonian equations of motion

ẋ = p + K, ṗ = −∂K
∂x

p,

H(x,p, t) = p K(x, t) +
1
2

p2, p ≡ ∇W ,

with Hamiltonian H(x,p, t) for appropriate boundary conditions.
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Minimum action solutions

In seeking extreme trajectories that minimise the action, we find
two different types of solution –

1 Set of Hamiltonian trajectories approaching S
≡ stable invarient manifold of S, with p = 0.

2 Set of Hamiltonian trajectories leaving S
≡ unstable invarient manifold of S, with p 6= 0.

Note:
The theory is now deterministic (no D).
But real physical systems have finite D.
Extremal paths are not necessarily optimal paths.
Non-equilibrium systems have singularities.
Beautiful patterns of extreme trajectories can be drawn.
Without experiments – not obvious how all this relates to
reality!
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Example of extreme paths Chinarov et al, Phys. Rev E 47, 2448 (1993).

Extreme paths
for a nearly
resonantly
driven nonlinear
oscillator.

Caustics are
clearly evident.
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Example of extreme paths Maier & Stein, J. Stat. Phys. 83, 291 (1996).

Extreme paths for
non-potential gradient
system

Kx(x , y) = x − x3 − αxy2

Ky (x , y) = −µ(1 + x2)y

Shows outgoing paths
from stable point for α =
1, 4, 5, 10.

Note focussing for
α > 4.
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Example of extreme paths Dykman et al, Phys. Lett. A 195, 53 (1994).

Periodically driven
nonlinear
oscillator.

Again, caustics
evident.

But do real
fluctuations ever
look like this?

Where do caustics
come from?

What experiments
are possible?
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Generation of singularities Dykman et al, Phys. Lett. A 195, 53 (1994).

Singularities arising from folds
in the Lagrangian manifold.

Caustics arise because paths
cannot go beyond fold.

A pair of caustics emanate
from a cusp point.

Two families of extreme paths:
1 go below cusp; 2 go round
above cusp.

Paths cannot cross switching
line, so caustics are not
experimental observables.

But cusp and switching line
should be observable.
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Experiments on large fluctuations – basic procedure

1 Build model of system –

Analogue electronic, or
Numerical

2 Apply relevant forces, e.g.
noise, periodic force...

3 Measure response –

Await arrival at xf

Record arrival path
4 Repeat, ensemble-average, to find prehistory probability

distribution Ph(x , t ; xf , tf ).

If system departs stable state at t = −∞ and arrives at x = xf
at time t = tf , then ph(x , t ; xf , tf ) gives probability of being at x at
time t .
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Very simple example

Consider overdamped double-well Duffing oscillator driven
by zero-mean white noise of intensity D.

ẋ = −U ′(x) + ξ(t),

U(x) = −1
2

x2 +
1
4

x4,

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = Dδ(t − t ′).

Interested in rare fluctuations to a particular final position
xf , far from the equilibrium state.

Catch segment of path leading to xf , build the prehistory
probability distribution ph(x , t ; xf , tf ).

Guess that ph(x , t ; xf , tf ) is closely connected to the
optimal path of the D → 0 theory.
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Examples of 2 large fluctuations in circuit model

Differs from earlier
sketch –

Symmetric in time.

Small fluctuations
similar on both
fluctuational and
relaxational parts
of path.

Construct ensemble
average to measure
prehistory (or
posthistory) probability
density.
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Observation of an optimal path Dykman et al, PRL 68, 2718 (1992).

Identify ridge
(locus of maxima)
with the optimal
path of the D → 0
Hamiltonian
fluctuation theory.

Note (unpredicted)
dispersion just
before tf .

Q: What happens to
fluctuation after
reaching xf ?

A: It dies!
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Physical significance of optimal paths

Determinism only works backwards for fluctuational paths.

Relaxational paths are deterministic.

If system is “caught” at xf then, with overwhelming
probability, it switches to relaxational path and returns to S.
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Time-reversal symmetry in equilibrium

Prehistory &
posthistory
densities.

Optimal
paths plotted
in top-plane.

Blue and red
curves are
theory.

Prediction of
time-reversal
symmetry is
verified.
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Physical significance of p?

What is the physical significance of p?

An “effective momentum” in the theory – is it just a
theoretical abstraction?

No: p represents the force provided by the noise – the rare
special noise history producing the rare fluctuation.

In electronic experiments, can measure p during
fluctuation, so can ask –

Q: Is it true that p 6= 0 during fluctuational path, and p = 0
during relaxation, as predicted by Hamiltonian theory?

A: Find out answer from experiment.

(N.B. Unclear how to measure p in a thermal system)
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Observation of the optimal force

Double-well
Duffing.

Densities
and (inset)
paths.

Lines are
theory.

Clearly
p 6= 0 in
fluctuational
path.

But p = 0
during
relaxation.
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A very simple example

Consider simplest example – system driven from
equilibrium by a periodic force –

ẋ = −U ′(x) + A cosωt + ξ(t),

U(x) = −1
2

x2 +
1
4

x4,

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = Dδ(t − t ′).

i.e. an overdamped bistable oscillator driven by zero-mean
white noise of intensity D and a periodic force of amplitude
A, frequency ω.

Interested in fluctuations to (xf , tf ), via (x , t), where the
time t now determines the phase φ of the periodic force.

The Hamiltonian fluctuation theory is easily worked out...
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Hamiltonian theory for double-well Duffing

Action surface, Lagrangian manifold, and extreme paths, calculated for periodically-driven double-well Duffing.
D G Luchinsky, Contemporary Phys. 45, 379 (2002).
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Measurements on driven double-well Duffing

(qf , tf ) on (red)
switching line.

Hence corral of
optimal paths.

Sensitive to
small
departures from
switching line.

Top-plane
shows
experiment
(green dots)
and theory
(blue lines).
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Maier and Stein system

Consider Maier & Stein’s system – an overdamped
oscillator driven from equilibrium by a stationary
nongradient field –

ẋ = x − x3 − αxy2 + fx(t)

ẏ = −µy(1 + x2) + fY (t)

〈fi(t)〉 = 0, 〈fi(s)fj(t)〉 = ǫδijδ(s − t)

A nongradient system (unless α = 1), so dynamics not
governed by detailed balance.

Investigate an electronic model.
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Maier & Stein system prehistory densities

Combination of
data from two
experiments
with ±yf , same
xf .

Points on
top-plane from
ridge of
prehistory
density.

Lines on
top-plane from
ǫ→ 0 theory.
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Maier & Stein optimal paths

Again, two experiments.

Showing both outgoing
fluctuational paths (red)
and returning
relaxational paths (blue).

Lines are Maier & Stein
theory, points are
Lancaster experiment.

Rotational flow of the
probability density
(predicted by Onsager).
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Fluctuational escape from a chaotic attractor

Escape from point attractors and limit cycles has been
intensively studied over many years.

But how does fluctuational escape take place from a
chaotic attractor?

No theory exists – but experiments are entirely feasible.

Have used both digital and analogue simulation.

So far, we have studied –

- Tilted Duffing oscillator.
- Lorenz attractor.
- Class-B laser equations (control).

Summarise results from the tilted Duffing...
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Tilted Duffing oscillator (TDO)

Consider the periodically-driven, tilted, underdamped, Duffing
oscillator,

ẍ + 2Γẋ + ω2
0x + βx2 + γx3 = A cos(Ωt) + ξ(t),

〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = 4kTΓδ(t),

Γ ≪ ωf ,
9

10
<

β2

γω2
0

< 4.

For the chosen parameter range –

Chaos appears at relatively small driving amplitude,
A ≃ 0.1.

A quasi-attractor then coexists with a stable limit cycle.

We examine fluctuational escape from the quasi-attractor.
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Basins of attraction

Basins of stable
limit cycle SC1
(shaded) and
chaotic attractor
(white).

The unstable
saddle cycle of
period 1 (UC1)
marks the
boundary between
the basins.

Saddle cycle of
period 3 is marked
with +s.
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Existence of an optimal escape path
Analogue
simulation,
showing a
bunch of
escape paths.

They are nearly
coincident,
implying
existence of an
optimal path for
escape.

Red triangles
show calculated
saddle cycle of
period 1.
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Escape goes via saddle cycles

Escape evidently
goes via saddle
cycles
UC5 (green) UC3
(black) and UC1
(red).

Driven by optimal
force (inset).

Once on UC1, no
more force is
required to reach
stable cycle SC1
(blue).
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Control of noise-free system??
Does the experimentally-determined
optimal force (1) cause escape in the
noise-free system?

Yes! (1) is applied at increasing
amplitude until escape occurs.

Approximations to (1) also cause
escape, but cost extra energy –

Approximated with sine-waves (2).
And with rectangular pulses (3).
Optimal force distorted by an arbitrary
perturbation (4).
Standard open-plus-closed-loop
(OPCL) control (5).

The measured optimal force really does
seem to be energy-optimal.
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Laser – single-mode rate equations

We consider the single-mode rate equations -
{ du

dt = vu(y − 1),
dy
dt = q + k cos(ωt) − y − yu + f (t),

where –

u ∝ density of radiation

y ∝ carrier inversion

v is ratio of photon damping and carrier inversion rates

Cavity loss is normalised to unity

Pumping rate has constant term q + periodic component

f (t) is an additive unconstrained control function
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Map

For class-B lasers, v ∼ 103 − 104; get spiking regimes for
deep modulation of pumping rate.

Obtain solutions from corresponding 2-D Poincaré map –
{

ci+1 = q + G(ci , ψi)e−T + K cos(ωT + ψi) + fi ,
ϕi+1 = ϕi + ωT ,mod 2π,

G(ci , ψi) = ci − g − q − K cosψi , K = k(1 + ω2)−1/2, and
ψi = ϕi − arctan(ω).

Control function fi is now defined in discrete time.

g = g(ci) is positive root of
g − ci(1 − exp(−g)) = 0
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Map and its range of validity

T = T (ci , ϕi) is positive root of

(q−1)T+G(ci , ψi)(1−e−T )+Kω−1[sin(ωT+ψi)−sinψi ] = 0.

ci , ϕi correspond to the inversion of population y(ti) and to
the phase of modulation ϕi = ωti ,mod 2π at the moments
ti of pulse onset when u(ti) = 1, u̇(ti) > 0.

g(ci) denotes the energy of the pulse.

T (ci , ϕi) gives the time interval between sequential pulses.

Map was derived by asymptotic integration to accuracy
O(v−1), so it is valid for –

q, k , ω ≪ v
ci > 1+ O(v−1)
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Generalized multistability of map

Fixed points of the map determine spiking solutions at
multiples of the driving period, at Tn = nTM , where
TM = 2π/ω is the driving period.

They are born through a saddle node bifurcation at
modulation threshold

ksn =
√

1 + ω2[q − Cn − gn(eTn − 1)−1].

The stable cycles undergo period-doubling bifurcations
beyond

kpd =

√
1 + ω2

ω
(q − 1)

[

1 + 2π
(

qnTn

12

)2

+ O(T 4
n )

]

.

Hence we determine analytically regions of generalized
multistability, numbers of coexisting cycles, and
approximatel locations of the saddles and stable cycles.
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Basin of attraction for flow system

Study controlled
migration from stable
cycle C3 to saddle
cycle S3.

After reaching S3,
system no longer
needs an applied
force.

Two kinds of force are
considered –

Continuous
Impulses

0 1 2 3 4 5 6
1

1.05

1.1

1.15

 ϕ
i

 y
i

(a) 

C
3
 

S
3
 

C
2
 

S
2
 

C
1
 

S
1
 

S
1
 S

1
 C

4
 

C
4
 

C
4
 

Khovanov Luchinsky McClintock Experiments on Large Fluctuations



Introduction
Experimental results

Conclusion

Equilibrium systems
Nonequilibrium systems
Chaotic systems & control

The control problem

Consider the energy-optimal control problem –

How can system with unconstrained control function fc(t) or
fd (t) be steered between coexisting states such that its
“cost” functional

Jc = inf
f∈F

1
2

∫ t1

t0

f 2(t)dt , or Jd = inf
f∈F

1
2

N
∑

i=1

f 2
i

is minimized? Here t1, N are unspecified and F is the set of
control functions.
In general, a very challenging problem.

Tackled it via ideas from optimal escape – correspondence
of Wentzel-Freidlin Hamiltonian in fluctuation theory with
Pontryagin’s Hamiltonian in control theory.
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Continuous control results

Problem was solved by prehistory
approach and numerical solution of
boundary value problem.

Variation of the coordinate x(t)
during migration from stable cycle
C3 to saddle cycle S3.

Variation of the control force f (t)
during the migration.

In noise-free system, showed that
direct application of the optimal
force as a control force does cause
C3 → S3 migration.
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Summary

1 Large fluctuations do occur via optimal paths
2 Patterns of optimal paths and some singularities (not

caustics) are physical observables.
3 For electronic models, the optimal force can be measured.
4 In equilibrium, fluctuations display time-reversal symmetry

(if the p-dimension is ignored).
5 Fluctuations in nonequilibrium systems are irreversible.
6 Escape from chaotic attractors also occurs via optimal

paths.
7 Intimate connection between the optimal fluctuational force

and the energy-optimal control force in the noise-free
system.
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