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D is the unit disk in C,

Lo (D) with the Lebesgue plane measure du(z) = dzdy,
Bergman space A?(ID) consists of analytic functions in I,
Bergman orthogonal projection By of La (D) onto A?(D):

Boo)(e) = 1 [ ZEAE

Toeplitz operator T, with symbol a = a(z):

T, :pc A*(D) — Bpayp € A*(D).



Unit Disk as a Hyperbolic Plane

Consider the unit disk D endowed with the hyperbolic
metric

A geodesic, or a hyperbolic straight line, in D is (a part
of) an Euclidian circle or a straight line orthogonal to

the boundary S = 9D.

Each pair of geodesics, say L1 and Lo, lie in a geometri-
cally defined object, one-parameter family P of geodes-
ics, which is called the pencil determined by L, and L.
Each pencil has an associated family C of lines, called
cycles, the orthogonal trajectories to geodesics forming
the pencil.



The pencil P determined by L; and L- is called

parabolic if L1 and Lo are parallel, in this case P is
a set of all geodesics parallel to both L and Ls, and
cycles are called horocycles;

elliptic if L, and Lo are intersecting, in this case P is

a set of all geodesics passing through the common point
of L1 and Lo;

hyperbolic if L1 and Lo are disjoint, in this case P is a
set of all geodesics orthogonal to the common orthogonal
of L1 and L




Each Mobius transformation g € Mob(ID) is a
movement of the hyperbolic plane, determines a certain
pencil of geodesics P, and its action is as follows:

each geodesic L from the pencil P, determined by g,
moves along the cycles in C to the geodesic g(L) € P,
while each cycle in C is invariant under the action of g.




Theorem 1 Given a pencil P of geodesics, consider the
set of symbols which are constant on corresponding cy-
cles. The C*-algebra generated by Toeplitz operators
with such symbols is commutative.

That is, each pencil of geodesics generates a commutative
(C'*-algebra of Toeplitz operators.

Theorem 2 Given a Mobius transformation g € Mob(D),
consider the set of symbols which are invariant with re-
spect to the one-parameter group generated by g. The
C*-algebra generated by Toeplitz operators with such sym-
bols is commutative.

That is, each one-parameter group of Mobius transfor-
mations (= maximal commutative subgroup of Mob(ID))
generates a commutative C'*-algebra of Toeplitz operators.



Model cases:




Parabolic case

Consider the upper half-plane II in C. Introduce the
unitary operators

Uy = FRI : Ly(Il) = Ly(R)®Lo(Ry) — Lo(R)®Lo (R, ),

where F': Lo(R) — Lo(R) is the Fourier transform
1 |
F(u)= — [ e ™ dg,
(Fh@w) == [ e p)de
and

U2 . LQ(H) = LQ(R) % LQ(R_|_) — LQ(R) X LQ(R+)
which is defined by the rule

1 y)

Us : o(u,v) — T, —

Letting ¢o(y) = e ¥/2, we have {o(y) € La(R,) and
140(y)|| = 1. Denote by Ly the one-dimensional sub-
space of Lo(R, ) generated by ¢y(y).

Theorem 3 The unitary operator U = UsUq 1S an iso-

metric isomorphism of the space Lo(1l) = Lo(R)® Lo (R4 )
under which the Bergman space A?(I1) is mapped onto

Ly(Ry) ® Lo,

U: A*(TI) — Ly(Ry) ® Lo.



Introduce the isometric imbedding
RO . LQ(R_l_) — LQ(R) X LQ(R_l_)

by the rule  (Rof)(z,y) = x+(z) f(x) lo(y),
where y (x) is the characteristic function of R .

Now the operator R = R5U maps the space Lo (II) onto
Lo(R.y ), and the restriction

R g2(my : A*(TT) — La(R4)
is an isometric isomorphism. The adjoint operator
R*=U"Ry: Ly(Ry) — A?(II) C Lyo(1)

is an isometric isomorphism of Ly (R ) onto the subspace
AZ(II) of the space Lo(IT). Moreover,

RR* =1 L2(R+) — LQ(R+),
R*R=Bn : Lo(II) — A%(II).

Theorem 4 Let a = a(v) be a measurable function on
R,. Then the Toeplitz operator T, acting on A?(II) is
unitary equivalent to the multiplication operator v,I =
RT,R*, acting on Lo(Ry). The function v,(x) is given
by

Ya() = / o(Lyevdy, weR,.
Ry

2x



Berezin quantization on the hyperbolic plane

We consider the pair (D,w), where D is the unit disk
and
1 dx N dy 1 dzAdz
T U212 2mi(1-|2P)2

Poisson brackets:

OJa Ob Oa Ob
_ 1 _ (22 2N\ 2 B

, 9 (0a 0b  Oa Ob
= 2mi(1 — 2%)* (55 — 55) .

Laplace-Beltrami operator:

A = w- @) (o + o)
oxr?  0y?
) O
0207
Introduce weighted Bergman spaces A3 (D) with the scalar

= A4n(1 — 2%2)

product

)= (5 -1) [puE0- )

The weighted Bergman projection has the form

Boare) = (7-1) [0 (F22) w0

|~

w(z).

[




Let £ = (O,%), for each i = % € F, and conse-
quently h € (0,1), introduce the Hilbert space Hp as
the weighted Bergman space A7 (D).

For each function a = a(z) € C°°(D) consider the fam-
ily of Toeplitz operators 7" with (anti-Wick) symbol
a acting on A%(D), for h € (0,1), and denote by 7
the *-algebra generated by Toeplitz operators Téh) with

symbols a € C*°(DD).

The Wick symbols of the Toeplitz operator T, éh) has the
form

o [ (A= RO
(22 = (=) [0 (TR ) et

For each h € (0,1) define the function algebra

A = {an(2,2) : a € C°(D)}

with point wise linear operations, and with the multipli-
cation law defined by the product of Toeplitz operators:

o [ (Y

10



The correspondence principle is given by

o an(z,z) = a(z,z)+ O(h),
(@p *x by, — by *xan)(2,2) = ih{a,b} + O(R?).

Three term asymptotic expansion:

(@p * by, — b, xan)(2, %)

= ih{a,b}
+ihz2 (A{a,b} + {a, Ab} + {Aa,b} + 87{a,b})

+ig [{Aa, Ab} + {a, A%b} + {A%a, b} + A*{a, b}
+A{a, Ab} + A{Aa,b}
+287 (A{a, b} + {a, Ab} + {Aa, b})

+ 967°{a,b}] + o(h?)

Corollary 5 Let A(D) be a subspace of C°°(D) such
that for each h € (0,1) the Toeplitz operator algebra
Th(A(D)) is commutative.
Then for all a, b € A(D) we have
{CL?b} = 0,
{a, Ab} + {Aa,b} = 0,
{Aa, Ab} + {a, A%b} + {A%a,b} = 0.

11



Let A(ID) be a linear space of smooth functions which

generates for each h € (0, 1) the commutative C*-algebra
71 (A(D)) of Toeplitz operators.

First term: {a,b} = 0:

Lemma 6 All functions in A(D) have (globally) the same
set of level lines and the same set of gradient lines.

Second term: {a, Ab} + {Aa,b} = 0:

Theorem 7 The space A(D) consists of functions whose
common gradient lines are geodesics in the hyperbolic
geometry of the unit disk D.

Third term: {Aa, Ab} + {a, A%b} + {A%a,b} = 0:

Theorem 8 The space A(ID) consists of functions whose
common level lines are cycles.
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Dynamics of spectra of Toeplitz operators

Let D be either the unit disk D, or the upper half-plane
IT in C.

For a symbol a = a(z), z € D, the Toeplitz operator
T acts on A3 (D) as follows

A
Tcg)‘)gp = Bé)ago, © € Ai(D).

Theorem 9 Given any model pencil and a symbol a €
L (D), constant on corresponding cycles, the Toeplitz
operator T, y‘) 18 unitary equivalent to the multiplication
operator g x1I, where

in the parabolic case: a = a(y), y € Ry,

Yarl + La(Ry) — La(Ry),

()= 2 [ atwr2evay
'Va,AZU—F(A_'_l) . aly Yy € Y,

in the elliptic case: a =a(r), r € [0,1), ol :la — o,
1 1

/ a(+/r) (1 — ) r"dr;
Bn+1,A+1) J, ’
in the hyperbolic case: a = a(#), 6 € (0,7),
’7a7)\[ . L2 (R) — LQ(R),
DCE g
7(A+42)ems

YaA () =

Va)\(f) = 27 (>‘+1)

/ a(f) e 2% sin* 6 db.
0
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Spectra

Continuous symbols

Let E be a subset of R having +oc as a limit point, and
let for each A € E there is a set M, C C. Define the
set M., as the set of all z € C for which there exists a
sequence of complex numbers {z, },en such that

(i) for each n € N there exists A\,, € E such that
Zn € My,

(ii) lim, oo A = 00,

(iii)) z = limy o0 2n-

We will write

M., = lim My,
A——+00

and call M, the (partial) limit set of a family { M)} cg
when A\ — +o0.

The a prior: spectral information for L..-symbols:

spTMN C conv(ess-Rangea).
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Given a symbol a € L. (D), constant on cycles, the
Toeplitz operator T, CEM is unitary equivalent to the mul-
tiplication operator v, xI. Thus

spTN = My (a), where M) (a) = Range v, .

Theorem 10 Let a be a continuos symbol constant on
cycles. Then

)\lim spTN = M. (a) = Range a.
— 400

The set Range a coincides with the spectrum sp al of the
operator of multiplication by a = a(y), thus the another
form of the above is

lim sp Ty‘) =spal.
A— 400
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Two continuous symbol (both are hypocycloids)

ai(r) = %(r—l—i\/l—7“2)8—|—(r—z'\/1—7“2)4
CL2(¢9) _ 264i9—|—6_2i0.

0.5

i i i i i E| -1.5 i i i
-0.5 0 0.5 1 1.5 -0.5 0 0.5

The images of 7,4, A and 74, A for A = 0.

-0.5

i i i i i E -1.5 i i i i i
-0.5 0 0.5 1 15 -0.5 0 0.5 1 1.5

The images of 4, x» and 4, x for A = 5.
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i i i i i E i i i i i
-0.5 0 0.5 1 15 -0.5 0 0.5 1 1.5

The images of 7,4, » and 7,4, x for A = 12.

i i i i i E i i i i i
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5

The images of 74, » and 74, x for A = 200.
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Piecewise continuous symbols

Let a be a piecewise continuous symbol constant on cy-
cles and having a finite number m of jump points. De-
note by (J;_, I;(a) the union of the straight line seg-
ments connecting the one-sided limit values of a at the
jump points. Introduce

R(a) = Rangea U U Ii(a)

g=1

Theorem 11 Let a be a piecewise continuous symbol
constant on cycles. Then

lim spy T\ = My (a) = R(a).

A— 00
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Piecewise continuous symbol

e~ re[0,1/V2]
e re (1/V2,1]

0.8} 0.8

o6l 06}
0.4} 0.4+
02l 02
of of
-0.21 -0.21
0.4} -0.4F

-0.6[ -0.61

-0.8r -0.8F

-1 i i i i i i i i -1 i i i i i i i i
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

The sequence Y40 = {Va,x(n)} for A\ =0 and A = 4.

0.4}

0.2 0.2

oF : 1 oF

-0.2F -0.2F
-0.4F -0.4F

-0.6f -0.6f

-0.8F -0.8F

-1 i i i i i i i i 1 i i i i i i i i

1 -08 -06 -04 -02 0 02 04 06 08 1 1 -08 -06 -04 -02 0 02 04 06 08 1

The sequence Y4, = {7Va,a(n)} for A =40 and A = 200.
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1

1

0.8 0.8

06F 0.6
0.4 0.4
02 02
0 or
-02 -02
-0.4f -0.4f
-0.6 -0.6

-0.8 -0.8

-1 i i i i i i -1 i i i I I I I
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

The symbol a(6) and the function 7, x for A = 1.

0.8 0.8

0.6 0.6
0.4r 0.4
0.2 0.2
or o
~02 -0.2
-04f _04k

-0.6 -0.6

-0.8 -0.8

-1 i i i i i i i -1 i i i T I I I
-1 -0.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

The function 4 » for A =10 and A = 70.

1

0.8 0.8

0.6 0.6

0.4+ 0.4

0.2 0.2

0 0

-0.2 -0.2

-0.4 -0.4

0.6 -0.6

-0.8 -0.81

-1 i i i i i i -1 i i i I I I
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

The function 7y, for A = 500 and the limit set M (a).
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Oscillating symbols

a1(y) = (1+y)" = &' M0+

0.8

0.6

0.4

0.2

oh

-0.2

—0.4}

-0.6}

-0.8f

1

0.8

0.6

0.4

0.2

0

-0.2

—04}
-0.6}

-0.8f

-1
-1

The functions 74, A and ~4,,x for A equals to 0, 10, and 1000.

-1
-1

I I I
-08 -06 -04 -0.2

I
0

I I I
0.2 0.4 0.6 0.8

1

I I I
-08 -06 -04 -0.2

I
0

I I I
0.2 0.4 0.6 0.8

1

I I I
-08 -06 -04 -0.2

0

I I I
0.2 0.4 0.6 0.8

1

21

0.8

0.6

0.4

0.2

oh

-0.2

1

0.8

0.6

0.4

0.2

oh

-0.2

1

0.8

0.6

0.4

0.2

0

-0.2

-1

-1
-1

-1
-1

—04}

-0.6}

-0.8f

I I I
-08 -06 -04 -0.2

I I I I
0 0.2 0.4 0.6 0.8 1

—0.4}

-0.6}

-0.8f

I I I
-08 -06 -04 -0.2

I I I I
0 0.2 0.4 0.6 0.8 1

—04}

-0.6}

-0.8f

-1

I I I
-08 -06 -04 -0.2

I I I
0 0.2 0.4 0.6 0.8 1



