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X" n >2 — compact manifold
g;; — Riemannian metric
A\ — Laplace operator

AP, = N\j¢o;, {¢;} — orthonormal basis
of eigenfunctions

O< A < X< ... — spectrum

Spectral function:

Nzy(N) = > ¢i(x)di(y)
V<A

If £ # vy, Npy(A) =0 1)



If © =y, set Ngqy(A) i= Nz(N)

Weyl’s law:

N(\) = CVol(X) A"+ R()\),

R\ =001

Local Weyl’s law:

Nz(A) = CA"+Re(A), Rz(X) = O(A"™1)

Remainder estimates are sharp (attained
on a round sphere)



MAIN RESULTS: lower bounds for
Nzy(A) and Rgz(\)
Notation: f1(A\) = Q(f2(N)), fo > 0 iff

- | f1(N)]
“&n_i%p () >0

Theorem 1 If x,y € X are not conju-
gate along any shortest geodesic joining
them, then

Ney(\) = (AnT>



On-diagonal version:

Set u;(z,z) — j-th local heat invariant

For example, ui(x,z) = 7(695), where T is
scalar curvature

Denote kgz = min{j > 1| u;(z,x) 7= 0}.
If u;(z,z) =0 for all j > 1, set ky = oco.

Theorem 2 If n — 2k, — 1 > 0 then
Re(\) = QO 2re— 1y,

Ifn—4rx,—1 < 0, and X has no conjugate
points, then

Re(\) = Q(A"2)



Example: flat square 2-torus

\ = 4203 + 1), niyn € Z

bj(x) = 2TMIIN22), g = (a1, 1)

[9j(x)| =1 = N(A) = No(A)

Gauss’s circle problem: estimate R()\)
Theorem 2 = R()\) = Q(V))
This is classical Hardy—Landau bound.

Theorem 2 = Hardy—Landau bound for
the local remainder on any surface with-
out conjugate points.



Manifolds of negative curvature
Suppose sectional curvatures satisfy
~K?2 < K(¢,m) < —K3

Theorem (Berard '77) Rg;(\) = O (—.ASQ_D

Conjecture (Randol’ 81) On a surface
of constant negative curvature

R()\) = O </\%+€>

Conjecture (attributed to ?) On a generic
negatively curved surface

R(A) = O(\%) for any € > 0.



Theorem On a negatively curved sur-
face

T his result was proved in an unpublished
Ph.D. thesis of A. Karnaukh (Princeton,
1996) under the supervision of P. Sar-
nak.

It served as a starting point and a mo-
tivation for our work.



T hermodynamic formalism

G! — geodesic flow on a unit tangent
bundle SX. Topological pressure of
f.: 85X — R:

P(f) = sup (hy + [ fdp),

u is Gt-invariant, h, — measure—theoretic
entropy.

Variational principle: P(0) = h,

h — topological entropy of GU.



On negatively curved manifolds geodesic
flows are Anosov.

U(§) — unstable subspace of T¢SX

Sinai-Ruelle-Bowen potential

d
H(E) = — In det dG*| (e

t=0

P(—H) = 0 and the equilibrium measure
(attaining the supremum) for H is the
Liouville measure uy on SX. Thus

Pup = [\ Hapr,
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Off-diagonal:

Theorem 3. If X is negatively curved
then for any 0 > 0 and z # y

Ney(A) = (A 2 (log )\)P( —H/2) 5>

Power of the logarithm is positive

P (— H/Q)
h o 2K1

and equals if curvature is constant.
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On-diagonal.

Theorem 4. X — negatively curved. If
n <5 then for any 6§ > 0

Ry(\) = (A 2 (log A)P( = 5)

If n > 6 then

Rz(\) = Q(\"73)

Note different asymptotics for small and
large n.
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Sketch of Proofs

Wave kernel on X:

ty) = 3 cos(NDsi()ai)

Let v € C3°([-1,1]), even, monotone
decreasing on [0,1], v > 0, ¥(0) = 1.
Fix A\, T'> 0, consider the function

%zp (%) cos(At)

For x,y € M, let
/OO Y (t/T)
T

kxr(z,y) = cos(At)e(t, z,y)dt
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Off-diagonal case: = #+ y.
T he following lemma is used in the proofs:

Lemma 5 If Ngy(A) = o(A%), a > O
then

kxr(z,y) = o(A?).
If Nzy(A) = O(\%(log \)?), a,b > 0 then

kx(z,y) = O(\%(log \)?).

L et us start with Theorem 3:

X — negatively curved.
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Pretrace formula. Let E(¢,z,y) be the
wave kernel on the universal cover M.

Given z,y € X, we have

e(t,z,y) = > E(t, z,wy)
well=m1(X)

Given z,y € M, define K r(z,y) by
/OO Y(t/T)
T

CoS(A)E(t, x,y)dt

Ky r(z,y) =

Then for x,y € X

kxr(z,y) = > K)r(z,wy)
wel
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Hadamard parametrix

Let z,y e M, r =d(x,y).

( 2 t2)j_nT_3_2
4T (j - "35> - 1)

E(t,z,y) = n_ 1‘t| Z uj(x Y)
T 2 =

modulo a smooth function.

Here u;(x,y) solve transport equations
along the geodesic joining x and .
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Leading term asymptotics

Proposition 6 Letz £y € M,r = d(x,vy).
Then Ky 7(x,y) satisfies as A — oo:

QN2 o (r/T)

1_1\/.9(3j y)’rn_l Sm()\"“"'ﬁbn) _I_

Ky r(z,y) =

oO\"2).

Here g = ¢detgij iIn normal coordinates
centered at z,

én =, (3~ (nmod4))

and @ #= 0.
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Proof of Theorem 3. Assume for con-
tradiction that for some é§ > O,

P(=71/2) 5)

Npy(\) = O </\ 2% (log \)

Lemma 5 implies a similar bound for
kxr(T,y).

Proposition 6 implies

_1
e
kxr(z,y) = TET T\/g(a:,wy)rg_

_sin(Are + ¢n)

+O(N"Z7) exp(O(T)),
for some A #= 0.
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Consider the sum

1
Sey(T) = >
oY ro<T \g(z,wy) ri—1

It follows from results of Parry and Pol-
licott that

Theorem 7 As T — oo,

Sy (T) > Cpet (2) T

Here P (—%) > <”_%)K2.
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Case n # 3(mod4) = ¢, = 0(mod ).

Dirichlet box principle = can choose
A large so that

eNw — 1| <€, € small,
for all v, <T'. Then
| SIN(ATw + ¢n)| = | Sin ¢pn| > O.
For Dirichlet principle need
T ~ 1 log log A\
" h

Thus, exponential bound in Theorem 7
yields log—improvement in Theorem 3.
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Case n = 3(mod4) = ¢, = 0(mod 7).

Need a separate argument to establish

T
sin(Ary) > Z, Vw: — <7, <T,
T 0"

a > 0 some constant.

Combined with Theorem 7, this contra-
dicts Lemma 5 and proves Theorem 3
in all dimensions.
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Proof of Theorem 1 Assume

Nay(A\) = o(A'2).

n—1

Lemma 5 = k) r(z,y) =o(A 2 ).

Work directly on X and adapt parametrix
construction.

Let z,y € X not conjugate along any
shortest geodesic = finitely many short-
est geodesics of length r = d(z,vy).

Also, there are no geodesics from x to
y of length [ €]r,r + €] for some ¢ > 0.
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Let T = r + 5. Sum the parametrices
along shortest geodesics and get

by (2, y) = BA"Z sin (O 4 ¢n)+O(N"Z),

where 3 is a non-zero constant.
Choose a sequence A\ — oo such that
|sin(A\gr + én)| >v >0

n—1
Contradiction with ky r(z,y) = o(A 2)
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On-diagonal case, xr = y. Theorems 2
and 4 are proved similarly to Theorems
1 and 3 using the on-diagonal counter-
parts of Lemma 5 and Proposition 6.

The O-th term of the parametrix on the
diagonal cancels out with the main term
in the Weyl's |law.

Consider Theorem 4 in more detail.
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First on-diagonal term of the parametrix:
c A3 (for n > 3).

Sum of the 0-th off-diagonal terms (by
Theorem 3):

P(-74/2)
O </\ 7 (log \) 5)

Dimension n < 4.

n—1
5

so ‘‘diagonal<off-diagonal.”

n—3<
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Dimension n = 5:
n—1
5
but “diagonal<off-diagonal” due to the
power of log.

n—3 =

Dimension n > 6.

n—1
5

so ‘‘diagonal>off-diagonal.”

n—3>

Hence different bounds in Theorem 4 for
n > 6 and n < 5.
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Concluding remarks

e R.(\) = Q(+/)\) in dimension 2. To-
gether with the prediction R(A) = O(\9)
on negatively curved surfaces this looks
intriguing!

e Can one apply our method to estimate
R()\) from below? We believe YES (in
progress).
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