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Xn, n ≥ 2 — compact manifold

gij — Riemannian metric

∆ — Laplace operator

∆φi = λiφi, {φi} — orthonormal basis

of eigenfunctions

0 < λ1 ≤ λ2 ≤ . . . — spectrum

Spectral function:

Nx,y(λ) =
∑

√
λi≤λ

φi(x)φi(y)

If x 6= y, Nx,y(λ) = O(λn−1)
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If x = y, set Nx,y(λ) := Nx(λ)

Weyl’s law:

N(λ) = C V ol(X)λn +R(λ),

R(λ) = O(λn−1)

Local Weyl’s law:

Nx(λ) = Cλn+Rx(λ), Rx(λ) = O(λn−1)

Remainder estimates are sharp (attained

on a round sphere)
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MAIN RESULTS: lower bounds for

Nx,y(λ) and Rx(λ)

Notation: f1(λ) = Ω(f2(λ)), f2 > 0 iff

lim sup
λ→∞

|f1(λ)|
f2(λ)

> 0

Theorem 1 If x, y ∈ X are not conju-

gate along any shortest geodesic joining

them, then

Nx,y(λ) = Ω
(
λ
n−1
2

)
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On-diagonal version:

Set uj(x, x) — j-th local heat invariant

For example, u1(x, x) = τ(x)
6 , where τ is

scalar curvature

Denote κx = min{j ≥ 1| uj(x, x) 6= 0}.

If uj(x, x) = 0 for all j ≥ 1, set κx = ∞.

Theorem 2 If n− 2κx − 1 > 0 then

Rx(λ) = Ω(λn−2κx−1).

If n−4κx−1 < 0, and X has no conjugate

points, then

Rx(λ) = Ω(λ
n−1
2 )
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Example: flat square 2-torus

λj = 4π2(n2
1 + n2

2), n1, n2 ∈ Z

φj(x) = e2πi(n1x1+n2x2), x = (x1, x2)

|φj(x)| = 1 ⇒ N(λ) ≡ Nx(λ)

Gauss’s circle problem: estimate R(λ)

Theorem 2 ⇒ R(λ) = Ω(
√
λ)

This is classical Hardy–Landau bound.

Theorem 2 ⇒ Hardy–Landau bound for

the local remainder on any surface with-

out conjugate points.
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Manifolds of negative curvature

Suppose sectional curvatures satisfy

−K2
1 ≤ K(ξ, η) ≤ −K2

2

Theorem (Berard ’77) Rx(λ) = O
(
λn−1

logλ

)

Conjecture (Randol’ 81) On a surface

of constant negative curvature

R(λ) = O

(
λ

1
2+ε

)

Conjecture (attributed to ?) On a generic

negatively curved surface

R(λ) = O(λε) for any ε > 0.
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Theorem On a negatively curved sur-

face

Rx(λ) = Ω(
√
λ).

This result was proved in an unpublished

Ph.D. thesis of A. Karnaukh (Princeton,

1996) under the supervision of P. Sar-

nak.

It served as a starting point and a mo-

tivation for our work.
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Thermodynamic formalism

Gt — geodesic flow on a unit tangent

bundle SX. Topological pressure of

f : SX → R:

P (f) = sup
µ

(
hµ +

∫
fdµ

)
,

µ is Gt-invariant, hµ — measure–theoretic

entropy.

Variational principle: P (0) = h,

h — topological entropy of Gt.
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On negatively curved manifolds geodesic

flows are Anosov.

U(ξ) — unstable subspace of TξSX

Sinai-Ruelle-Bowen potential

H(ξ) =
d

dt

∣∣∣∣∣
t=0

ln det dGt|U(ξ)

P (−H) = 0 and the equilibrium measure

(attaining the supremum) for H is the

Liouville measure µL on SX. Thus

hµL =
∫
SX

HdµL

10



Off-diagonal:

Theorem 3. If X is negatively curved

then for any δ > 0 and x 6= y

Nx,y(λ) = Ω
(
λ
n−1
2 (logλ)

P (−H/2)
h −δ

)

Power of the logarithm is positive

P (−H/2)

h
≥

K2

2K1
,

and equals 1
2 if curvature is constant.
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On-diagonal:

Theorem 4. X — negatively curved. If

n ≤ 5 then for any δ > 0

Rx(λ) = Ω
(
λ
n−1
2 (logλ)

P (−H/2)
h −δ

)

If n ≥ 6 then

Rx(λ) = Ω(λn−3)

Note different asymptotics for small and

large n.
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Sketch of Proofs

Wave kernel on X:

e(t, x, y) =
∞∑
i=0

cos(
√
λit)φi(x)φi(y)

Let ψ ∈ C∞0 ([−1,1]), even, monotone

decreasing on [0,1], ψ ≥ 0, ψ(0) = 1.

Fix λ, T � 0, consider the function

1

T
ψ

(
t

T

)
cos(λt)

For x, y ∈M , let

kλ,T(x, y) =
∫ ∞
−∞

ψ(t/T )

T
cos(λt)e(t, x, y)dt
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Off-diagonal case: x 6= y.

The following lemma is used in the proofs:

Lemma 5 If Nx,y(λ) = o(λa), a > 0

then

kλ,T(x, y) = o(λa).

If Nx,y(λ) = O(λa(logλ)b), a, b > 0 then

kλ,T(x, y) = O(λa(logλ)b).

Let us start with Theorem 3:

X — negatively curved.
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Pretrace formula. Let E(t, x, y) be the

wave kernel on the universal cover M .

Given x, y ∈ X, we have

e(t, x, y) =
∑

ω∈Γ=π1(X)
E(t, x, ωy)

Given x, y ∈M , define Kλ,T(x, y) by

Kλ,T(x, y) =
∫ ∞
−∞

ψ(t/T )

T
cos(λt)E(t, x, y)dt

Then for x, y ∈ X

kλ,T(x, y) =
∑
ω∈Γ

Kλ,T(x, ωy)
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Hadamard parametrix

Let x, y ∈M , r = d(x, y).

E(t, x, y) =
1

π
n−1
2

|t|
∞∑
j=0

uj(x, y)
(r2 − t2)

j−n−3
2 −2

−
4jΓ(j − n−3

2 − 1)

modulo a smooth function.

Here uj(x, y) solve transport equations

along the geodesic joining x and y.
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Leading term asymptotics

Proposition 6 Let x 6= y ∈M, r = d(x, y).

Then Kλ,T(x, y) satisfies as λ→∞:

Kλ,T(x, y) =
Qλ

n−1
2 ψ(r/T )

T
√
g(x, y)rn−1

sin(λr+φn) +

O(λ
n−3
2 ).

Here g =
√
det gij in normal coordinates

centered at x,

φn =
π

4
(3− (nmod4))

and Q 6= 0.
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Proof of Theorem 3. Assume for con-

tradiction that for some δ > 0,

Nx,y(λ) = O

(
λ
n−1
2 (logλ)

P (−H/2)
h −δ

)
.

Lemma 5 implies a similar bound for

kλ,T(x, y).

Proposition 6 implies

kλ,T (x, y) =
∑
rω<T

λ
n−1
2 Aψ

(
rω
T

)
T
√
g(x, ωy)rn−1

ω

sin(λrω + φn)

+O(λ
n−3
2 ) exp(O(T )),

for some A 6= 0.
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Consider the sum

Sx,y(T ) =
∑

rω≤T

1√
g(x, ωy) rn−1

ω

It follows from results of Parry and Pol-

licott that

Theorem 7 As T →∞,

Sx,y(T ) ≥ C0e
P
(
−H2

)
·T

Here P
(
−H2

)
≥ (n−1)K2

2 .
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Case n 6= 3(mod4) ⇒ φn 6= 0(modπ).

Dirichlet box principle ⇒ can choose

λ large so that

|eiλrω − 1| < ε, ε small,

for all rω ≤ T . Then

| sin(λrω + φn)| ≈ | sinφn| > 0.

For Dirichlet principle need

T ≈
1

h
log logλ

Thus, exponential bound in Theorem 7

yields log–improvement in Theorem 3.
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Case n = 3(mod4) ⇒ φn = 0(mod π).

Need a separate argument to establish

sin(λrω) >
ν

T
, ∀ω :

T

α
≤ rω ≤ T,

α > 0 some constant.

Combined with Theorem 7, this contra-

dicts Lemma 5 and proves Theorem 3

in all dimensions.
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Proof of Theorem 1 Assume

Nx,y(λ) = o(λ
n−1
2 ).

Lemma 5 ⇒ kλ,T(x, y) = o(λ
n−1
2 ).

Work directly on X and adapt parametrix

construction.

Let x, y ∈ X not conjugate along any

shortest geodesic ⇒ finitely many short-

est geodesics of length r = d(x, y).

Also, there are no geodesics from x to

y of length l ∈]r, r+ ε] for some ε > 0.
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Let T = r + ε
2. Sum the parametrices

along shortest geodesics and get

kλ,T(x, y) = βλ
n−1
2 sin (λr+ φn)+O(λ

n−3
2 ),

where β is a non-zero constant.

Choose a sequence λk →∞ such that

| sin(λkr+ φn)| > ν > 0

Contradiction with kλ,T(x, y) = o(λ
n−1
2 )
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On-diagonal case, x = y. Theorems 2

and 4 are proved similarly to Theorems

1 and 3 using the on-diagonal counter-

parts of Lemma 5 and Proposition 6.

The 0-th term of the parametrix on the

diagonal cancels out with the main term

in the Weyl’s law.

Consider Theorem 4 in more detail.
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First on-diagonal term of the parametrix:

c λn−3 (for n > 3).

Sum of the 0-th off-diagonal terms (by

Theorem 3):

O

(
λ
n−1
2 (logλ)

P (−H/2)
h −δ

)

Dimension n ≤ 4:

n− 3 <
n− 1

2
,

so “diagonal<off-diagonal.”
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Dimension n = 5:

n− 3 =
n− 1

2
,

but “diagonal<off-diagonal” due to the

power of log.

Dimension n ≥ 6:

n− 3 >
n− 1

2
,

so “diagonal>off-diagonal.”

Hence different bounds in Theorem 4 for

n ≥ 6 and n ≤ 5.
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Concluding remarks

• Rx(λ) = Ω(
√
λ) in dimension 2. To-

gether with the prediction R(λ) = O(λε)

on negatively curved surfaces this looks

intriguing!

• Can one apply our method to estimate

R(λ) from below? We believe YES (in

progress).
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