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Abstract

We analyze the changes in the mean and variance components of a quantitative trait caused by
changes in allele frequencies, concentrating on the effects of genetic drift. We use a general
representation of epistasis and dominance that allows an arbitrary relation between genotype
and phenotype for any number of diallelic loci. We assume initial and final Hardy-Weinberg
and linkage equilibrium in our analyses of drift-induced changes. Random drift generates
transient linkage disequilibria that cause correlations between allele frequency fluctuations at
different loci. However, we show that these have negligible effects, at least for interactions
among small numbers of loci. Our analyses are based on diffusion approximations that
summarize the effects of drift in terms of F, the "inbreeding coefficient," interpreted as the
expected proportional decrease in heterozygosity at each locus. For haploids, the variance of
the trait mean after a population bottleneck is var(Az) = Y/ F k Vawk) » where n is the number
of loci contributing to the trait variance, V(1) = V4 is the additive genetic variance, and V) is
the kth-order additive epistatic variance. The expected additive genetic variance after the
bottleneck, denoted (V}), is closely related to var(A z); (Vi) = (1-F) Y{_; k F*"! V4. Thus,
epistasis inflates the expected additive variance above V4 (1 — F), the expectation under
additivity. For haploids (and diploids without dominance), the expected value of every
variance component is inflated by the existence of higher-order interactions (e.g., third-order
epistasis inflates (V3 5)). This is not true in general with diploidy, because dominance alone
can reduce (V}) below V4(1 — F) (e.g., when dominant alleles are rare). Without dominance,
diploidy produces simple expressions: var(Az) = Y7 (2F ) V) and

(Vi) =(1-F) Yi_, k2 F)*"! V4. With dominance (and even without epistasis), var(A z)
and (V) no longer depend solely on the variance components in the base population. For
small F, the expected additive variance simplifies to

(Vi)=(1=F)V4+4FVap +2FVp +2FCap, where Cap is a sum of two terms describing
covariances between additive effects and dominance and additive-by-dominance interactions.
Whether population bottlenecks lead to expected increases in additive variance depends
primarily on the ratio of nonadditive to additive genetic variance in the base population, but
dominance precludes simple predictions based solely on variance components. We illustrate
these results using a model in which genotypic values are drawn at random, allowing extreme
and erratic epistatic interactions. Although our analyses clarify the conditions under which

drift is expected to increase V4, we question the evolutionary importance of such increases.



Introduction

Epistasis, interpreted as nonadditive effects of alleles at distinct loci, has been
acknowledged as common for polygenic traits since Fisher (1918) reconciled Mendelian
inheritance with biometrical analyses of similarities between relatives. Epistasis for fitness 1s
essentially inescapable and has been explicit in every model of selection on polygenic traits
since Wright's (1935) pioneering treatment of stabilizing selection (Coyne et al. 1997, 2000).
The role of epistatic interactions in producing hybrid inviability and sterility was popularized
by Dobzhansky (1937) and Muller (1940), but was understood as important for the origin of
reproductive isolation even earlier (e.g., Poulton 1908, Ch. II). Nevertheless, there are
persistent laments that epistasis is ignored or that if its ubiquity were acknowledged,
evolutionists would embrace drift-based theories of adaptation and/or speciation in which
epistasis plays some role (e.g., Wade and Goodnight 1998, Cheverud 2000, Templeton 2000,
Wade 2000). Part of the mystique surrounding epistasis is that it remains extremely difficult to

analyze mathematically.

Recent descriptions of particular patterns of epistasis elucidate the maintenance of
variation (e.g., Hermisson et al. 2003) and patterns of postzygotic isolation (e.g., Turelli and
Orr 2000); and Barton and Turelli (1991) introduced a general mathematical framework for
analyzing epistatic selection. Yet, until some recent work by Wagner and his associates (e.g.,
Wagner et al. 1998, Hansen and Wagner 2001), the mathematical language used by
quantitative geneticists to discuss multilocus epistasis had not advanced significantly since
Cockerham (1954) and Kempthorne (1954) elaborated Fisher's (1918) original treatment.
Although Cockerham (1954) and Kempthorne (1954) treated n-locus interactions, their
notation is so complex and the resulting algebra so challenging that most applications have
reverted to extrapolations from two-loci (e.g., Cockerham and Tachida 1988). In this paper,
we describe epistasis by adapting the mathematical framework for multilocus selection
introduced by Barton and Turelli (1991) and extended by Kirkpatrick et al. (2002). We show
how this framework provides an efficient language for describing arbitrary epistatic
interactions that simplifies the algebra so that some difficult questions become analytically
tractable. Our notation for describing general patterns of epistasis for diallelic loci seems to
provide more transparent solutions for the problems we discuss than the more elaborate
notation suggested by Hansen and Wagner (2001). We illustrate our approach by analyzing
drift-induced changes in the mean and variance components of quantitative traits, even though

we remain skeptical that such changes are significant for either adaptation or speciation.



In several experiments, the estimated additive genetic variance has increased after
severe reductions in population size, N (e.g., Bryant et al. 1986, Lopez-Fanjul and Villaverde
1989, Cheverud et al. 1999; reviewed by Walsh and Lynch 1998). This has seemed paradoxical,
because genetic drift must, on average, reduce heterozygosity at the underlying loci. However,
additive genetic variance may nevertheless increase if the additive effects of alleles increase.
This may happen through dominance, because the additive effects of recessive alleles will
increase if they become more common (Robertson 1952, Willis and Orr 1993). Epistatic effects
can also lead to increasing additive variance as allele-frequency changes modify additive
effects (Cockerham 1984; Goodnight 1987, 1988; Cockerham and Tachida 1988). Drift-induced
inflation of additive genetic variance has received considerable attention, and we provide a
skeptical review of its proposed biological significance in our Discussion. However, our
mathematical framework describes the effects of arbitrary allele frequency changes on

quantitative traits, regardless of what causes those changes.

In this paper, we set out a simple analysis of how the mean phenotype and variance
components change as a result of random drift of allele frequencies. By neglecting selection,
we can reach quite general conclusions. This seems a reasonable assumption, since drift will
dominate during a brief population bottleneck. We concentrate on allele frequency changes,
assuming that the initial and final populations are at linkage equilibrium. Again, this seems
reasonable for most outcrossing organisms, since genes will usually be loosely linked, and so
for isolated populations only very strong epistasis generates significant linkage disequilibrium.
Transient linkage disequilibria will be generated by drift, but these will soon dissipate. We
argue using both analytical approximations and exact multilocus simulations that these
transient disequilibria have negligible effects on the pattern of allele frequency fluctuations,

which are of primary importance.



= Relation to previous analyses

In classical quantitative genetics, the phenotype is represented as a sum of effects, each
attributed to a certain set of genes. (Additive effects are due to single genes, dominance effects
to pairs of homologous genes in a diploid, pairwise epistatic effects involve contributions from
alleles or genotypes at pairs of loci, and so on.) These effects are defined with respect to a base
population, such that the different effects are uncorrelated (at linkage equilibrium), and the
total genotypic variance is the sum of the variances of each effect (Vg = V4 + Vp + Vaa ...).
Variances and covariances between individuals are given by a sum of terms, each term being
weighted by identity coefficients that give the probabilities that various sets of genes are
identical by descent from the base population. In certain cases, this sum involves only variance
components — for example, covariances between relatives within a base population that is in
Hardy-Weinberg and linkage equilibrium, with no linkage (Kempthorne 1954, Cockerham
1954). However, in general it involves complicated moments of the distribution of effects in

the base population.

The effects of drift have been analyzed in detail for two loci. For the general case with
linkage between the loci, and with linkage disequilibrium in the inbred population, many
different identity coefficients must be defined. Explicit formulae for these coefficients are
cumbersome, but it is straightforward to calculate them using linear recursions. Goodnight
(1987, 1988) derived the effect of a single-generation bottleneck and of continued drift on the
expected additive genetic variance, and found that this would increase for small F if the
additive genetic variance is smaller than three times the additivexadditive epistatic variance
(Va4 <3 Va4, neglecting Vp). Goodnight's results included the linkage disequilibria generated
by drift, which will contribute to genetic variance immediately after the bottleneck.
Cockerham and Tachida (1988) calculated the effects on additive genetic variance that persist
after these linkage disequilibria dissipate. They found that in the absence of dominance,
additive genetic variance will increase in the long term if V4 <4 V44. However, other
coefficients contribute, and the effects cannot be written solely in terms of variance
components. More complex population structures have been analyzed, including migration and
extinction/recolonization (Tachida and Cockerham 1989, Whitlock et al. 1993).

All these results are essentially two-locus analyses; moreover, they do not include
additivexdominance or dominancexdominance effects, and so do not give a complete analysis
even of two loci. (Cheverud and Routman (1996) do include these effects, but their approach is
wholly numerical and is restricted to intermediate initial allele frequencies.) The available

analytical results apply to multiple loci only if dominance and higher-order additive



contributions to the phenotype are neglected. The general approach based on
identity-by-descent becomes intractable beyond two loci, because it is necessary to follow
large numbers of identity coefficients. (With linkage disequilibrium, one must specify the joint
probability of identity of sets of genes at multiple loci. For example, the probability that genes
{i1, ip, i3} are identical by descent (abbreviated i.b.d.) at locus i, and that genes

{J1, Jo}butnot j3 are i.b.d. at locus j could be written Fy(;, i, i}1.((j1.jo).(s )} > S€€ Appendix 2.)
Moreover, these multilocus identity coefficients have traditionally been defined in an

idiosyncratic way, so that it is not possible to write down explicit multilocus formulas.

Our analytical approach provides a way to test simulation-based conjectures and to
explain some interesting experimental observations. For instance, in a heroic set of highly
replicated bottleneck experiments, Cheverud et al. (1999) demonstrated that although additive
variance increased rather rarely, the observed additive variance was generally in excess of the
reduced expectation under additivity. We show that without dominance, epistasis
systematically inflates (V}), expected additive genetic variance after a bottleneck, above the
additive expectation, (1 — F) V4, for all diallelic epistatic systems. In contrast, dominance can
increase or decrease (V). Our framework, which complements that of Hansen and Wagner

(2001), should facilitate additional analyses of the consequences of epistasis.

The model

Suppose a trait is determined in an arbitrary way by z diallelic loci. For simplicity, we
assume random mating and no selection. We also assume that there is no sex-dependence of
phenotypes and no effect of the parental origin of alleles (i.e., no cis-trans effects or maternal
effects). We illustrate some ideas with haploids, but our analysis includes diploidy. When
analyzing the consequences of population bottlenecks, we assume that changes in allele
frequencies can be approximated by a diffusion. This implies that the pattern of population
sizes during the bottleneck influences the final distribution of allele frequencies only through a
single parameter, the net inbreeding coefficient F. (In the diffusion approximation, time can
be rescaled relative to the current rate of drift, so that an arbitrary pattern of population size is
transformed to a standard form.) We show that this approximation is quite accurate even for

severe bottlenecks.

We begin by setting out an explicit representation of epistasis and dominance, in which
the phenotype is written as a polynomial function of variables that describe the genotype.
Assuming Hardy-Weinberg and linkage equilibrium (HWLE), we show that the coefficients of

this polynomial are just the additive, dominance, and higher-order interaction effects of



classical quantitative genetics. We next show how these effects, the mean and the variance
components change as allele frequencies change, giving general expressions that apply to
haploids and diploids. Understanding the implications of these changes is greatly simplified by
assuming that allele frequency fluctuations are independent across loci and that the initial and
final populations are in HWLE. It is reasonable to assume linkage equilibrium, because strong
selection and/or tight linkage are needed to maintain significant linkage disequilibrium in the
base population, and any disequilibrium generated by drift will quickly dissipate unless linkage
is tight. Results for haploids, or for diploids in the absence of dominance, follow directly and
depend only on the variance components in the base population. However, dominance
introduces substantial complications, so that expected values for the population mean and
additive variance no longer depend solely on the variance components. Nevertheless, we
obtain an explicit, fairly compact expression that describes how the additive variance changes
for small F. Moreover, for the general model, we show that epistasis inflates the expected
additive variance after drift above the value expected under complete additivity. To illustrate
the general results with extremely complex epistasis, we provide simulation results for a model
in which genotypic values are chosen at random (similar to Naciri-Graven and Goudet 2003).

Analytical results concerning this model will be published separately.

Even if the initial and final populations are at linkage equilibrium, transient
disequilibria do influence the final distribution of allele frequencies. For example, if there is a
large fluctuation in allele frequency at one locus, then there is likely to be a large fluctuation at
a linked locus. (That is, there is a covariance between the squared deviations of allele
frequencies at linked loci.) We derive expressions for these associations, and show that they
have little influence even with tight linkage (Appendix 2). These analytical results, together with
explicit multilocus simulations under extreme epistasis, support our assumption that the

post-bottleneck distributions of allele frequencies at different loci are statistically independent.



= Notation

Our notation follows that introduced by Barton and Turelli (1991) and extended by
Kirkpatrick et al. (2002). Loci are labelled i, j, k... In diploids, genes are denoted with
subscripts, e.g., i, i, to indicate paternal versus maternal origin. A gene and its parental
origin is termed a position, and denoted by double-struck font (e.g., i = i, ). The distinction
between genetic loci and positions is crucial when we define components of variance in
diploids. The state of each position is denoted by Xj ; for diallelic loci, we set X;= O or 1. The
corresponding frequency of allele 1 is p; = E[X;], where E[ ] denotes an expectation over the
distribution of genotypes in the population. We assume equal allele frequencies in the sexes,
so that allele frequency depends only on the locus, i, and can be written p;. (With drift, allele
frequencies differ randomly between the sexes. However, under the diffusion approximation,

these differences are negligible.)

Linkage disequilibria are defined relative to a reference point, which might be either
the allele frequencies in the initial population or the current population. Deviations from the
reference point are denoted ¢; = X; — p;, and products of those deviations over sets of
positions, U, are denoted compactly by {y. We set E[{y] = Dy. The set of all relevant

positions in an individual is denoted Z.

For example, for a trait determined by two loci in a haploid, Z = {1, 2};and a
population can be described by three variables: Dyyy, Djp, and Dy 5y. The first two are the
differences in allele frequency between the population in question and the reference population
(Dy1y = Apy, Dpy = Ap,) . Dy is a measure of linkage disequilibrium, defined with respect
to the reference allele frequencies. If we choose to change the reference point to the new allele
frequencies, then using superscript * to denote the new values, Djjy =0, Dy, =0, and
D{1 2y = Dg12y — Apy Ap, is the standard coefficient of linkage disequilibrium. For

compactness, we abbreviate variables such as Dy; j, by D;;.

In a diploid, there are two positions at each autosomal locus. Thus, for loci i and j, we
must consider sets of positions of the form Z = {i,,;, ju, ir, jr}. Inadiploid population, the
state of these two loci is defined by 15 coefficients, corresponding to the 15 non-empty subsets
of Z. However, under random union of gametes and no differences between the sexes, these

reduce to the same three variables that describe the haploid gamete pool:

Dim = Dif = Apl.’ Djm = D,]j = Ap], Din1 jm = Dif Jr = Dij’ whereas
2
D, i = (Ap))*, Dj, i = (AP_;) . D, j, =Di, j, =Ap; Ap;,
— — — — —_ N2
i g i = D,'f Jrim = D,'j Api’ D,'m Jmjr = Dif Jrm — Dij Ap]’ and D,'m Jmipjr = Dij'



= Description of epistasis and consequences of changing reference points

In general, a polygenic trait can be written as a polynomial function of the allelic states

z = 2z+ ZbUI(gUI_DUI)I (1)

P+UCZ
where £; = X; - pi, Sy =[l,.y Cis Dy = E[Ly], Zis the set of all positions in an
individual, and the sum in Eq. 1 is over all nonempty subsets U of Z with only one permutation
of any subset included in the summation (i.e., we do not count {i,;,, j,,}and {j,,, i,,}as separate
sets) . As described below, the terms by depend on both the physiological mapping from

genotypes to phenotypes (i.e., the genotypic values for all genotypes) and the allele frequencies

used as reference points. For any specific genotype, e, and assuming two alleles, each X; is 0
or 1 and Egq. 1 specifies its genotypic value. We will use the general convention that sums over
subsets include the null set (()), unless it is explicitly excluded (as in Eq. 1). In the sets U, each
position index appears at most once; and the permutations of the set of indices that appear in a
particular set do not appear as separate elements of the sum. Nevertheless, expectations over
sets involving repeated indices arise in calculations below, but the corresponding moments can
be calculated simply for diallelic loci (see Eq. 5 of Barton and Turelli 1991). With two alleles,

Di;i= p; g;. Similarly, for any set U that contains no repeated indices,

Dy = Ell];ey {]-]2] = [ljey pi gi- We denote the product [[;oy pi giby pqy -

The coefficients by in Eq. 1 depend on the reference allele frequencies. As shown
below, it is simple to go from one reference point to another, expressing the new coefficients in
terms of the old. By comparing two reference points, we can use our notation to discuss the
relationship between "physiological" or "functional" epistasis and "statistical" epistasis for any
number of loci and any pattern of gene interaction. This distinction has been used in at least
two distinct ways: by Cheverud and Routman (1995, 1996) to emphasize that epistatic variance
components may be small even when non-additive interactions among segregating loci are
extreme (e.g., Crow and Kimura 1970, Table 4.1.3; Keightley 1989) and by Hansen and
Wagner (2001) to distinguish between non-additive interactions between alleles at different
loci when effects are measured as 1) departures from the mean phenotype produced by a
reference genotype and ii) the traditional quantitative genetic definition of epistasis in which
departures are measured relative to the mean of a population segregating at several loci. It is
unquestionably important to realize that both variance components and epistatic effects depend
on population composition. However, as made clear by Eq. 3 below and by Hansen and
Wagner's (2001) Result 2.1, any quantification of epistasis is essentially arbitrary, because a

specific reference must be used to quantify the departures from additivity. Once this is

10



appreciated, it makes little difference whether one uses a fixed reference genotype, as proposed
by Hansen and Wagner (2001), a weighted average of genotypic effects, as proposed by
Cheverud and Routman (1995), or a segregating population with specific allele frequencies, as
proposed by Fisher (1918), to quantify epistatic effects. We will contrast the reference point in
which all loci are fixed for the O allele (equivalent to choosing a reference genotype with all O
alleles), so that p; = 0 for all i, with a reference point corresponding to the allele frequencies in
a polymorphic population. In the former case, the coefficients by correspond to Hansen and
Wagner's (2001) "functional" interactions between the positions in U; whereas in the latter
case, the by describe statistical effects produced by those interactions and the current allele

frequencies.

Our notation shows that the existence of particular levels of interaction, e.g.,
dominance, additive-by-additive versus additive-by-dominance epistasis, is generally
independent of the reference point chosen; whereas for a fixed level of biological interaction
(as revealed by examination of any reference point), the magnitude of lower-order effects must
be reference-point dependent. To illustrate this idea simply, consider biallelic haploids, so that
7 ={1,2, ..., n} and the by have the form b .., with all subscripts distinct. As argued by
Hansen and Wagner (2001), one way to think about physiological or functional interactions is
to focus on a specific genotype, then ask how changing each allele in turn (and changing them
in all combinations) alters the mean phenotype. Using the reference genotype with O alleles at
all loci corresponds to p; = 0 for all i in (1), and 7 is just the genotypic value for (0, 0, ..., 0),
denoted Gy. With this starting point, each b; describes the change in the mean phenotype when
allele 1 is introduced at locus i and nowhere else. The terms b;; describe the additional effect
on the mean phenotype of having 1 alleles at both loci i and j that cannot be explained by
bi +b;. Thus, b;j# 0 if and only if there is additive-by-additive interaction between loci i and
j- Similarly, b describes three-way effects not accounted for by lower-order terms (namely,
bi + bj+ by + bj; + bix + bji), etc. This representation applies to any pattern of epistasis. In the

haploid case, there are 2" genotypes and our representation has 2" free parameters: the initial
n
constant, Gy ; the n allelic effect terms, b; ; the ( 2) pairwise interaction terms, etc. (these

numbers are simply the terms in the binomial expansion of (1 + 1)"). Nevertheless, the
specific values obtained for these coefficients have no intrinsic physiological or functional

meaning because they depend on the reference point.

11
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To see this, we show for both haploids and diploids how to find the new set of
coefficients, by, that define the relation between genotype and phenotype when the reference
point is changed from p; to p; = p; + Ap;. The old deviation {; = X; — p; can be rewritten as
g = {; + Ap;. Thus, Eq. 1 implies

zZ = Z+ i bw

U+

P wa Z (%~ DX) Apy -

U+Q S+T=U

[ ] (et +ap) -E[] ] (g1 +opy) ]
1€U ieu

(2)

Because by is defined as the coefficient of £5 in the expansion of z, this shows that
by contributes to by, for all Y C U. It follows that the coefficients obtained from different sets

of reference allele frequencies are related by

bU = ZZ: bUV APV (3)
VCzZ\U

(note that this sum includes ¥V = @), where Z\U denotes the set of elements in Z but not U and
UY denotes the union of sets U and V. Expression (3) is analogous to Result 3.2 of Hansen
and Wagner (2001, p. 65). They use individual genotypes as reference points; but their
framework allows for multiple alleles under a "multilinearity" assumption, which states that
changes in genetic background modify all substitution effects at a locus by the same
proportionate factor. In contrast, our analysis is restricted to two alleles; but it uses as
reference points any set of allele frequencies and HWLE genotype frequencies. For the class
of problems we investigate, our notation, which produces the relatively simple expression (3)
for calculating the new coefficients by when the reference allele frequencies are changed,

seems to provide more general and transparent solutions.

We will show below that the values of by defined in terms of current allele frequencies
are proportional to the statistical effects, as traditionally defined, of the specified combination
of alleles. Hence, Eq. 3 shows that interactions of any specified order contribute in general to
statistical effects of the same order and all lower orders when the reference point is changed.
In particular, three-way interactions in one frame of reference will contribute to both pairwise
interaction effects and mean effects of individual alleles. However, if in any frame of
reference, we find, for instance, no interactions involving more than two alleles, then Eq. 3
shows that no such interactions will exist in any other frame of reference. In this sense, the
existence of a specific level of epistasis is "functionally" defined by the mapping of genotypes

onto average phenotypes. The converse, however, is not true. For instance, if



additive-by-additive epistasis exists, the values of lower-order terms, and in particular, whether
they are non-zero, depend on the reference point chosen. (Note that we only consider shifts of
reference point here. Nonlinear scale transformations generate higher-order interactions,

giving another sense in which measures of epistasis are arbitrary).

Mean effects

Statistical effects of specific combinations of alleles are defined in terms of deviations
from expectations based on contributions from all subsets of those alleles. For instance, the
additive effect of an allele is defined as the difference between the average phenotype of
individuals carrying that allele and the overall mean; and pairwise effects are defined as the
difference between the average phenotype of individuals carrying both alleles and the sum of
the overall mean and the average effects of the individual alleles, etc. Hence, the general
calculation of interest in defining statistical effects is the expected value of z conditional on a
specific set of alleles. Despite the change in notation, our derivation is a special case of
Kempthorne's (1957, Ch. 19), which allows multiple alleles. Like his, our treatment applies
only for Hardy-Weinberg and linkage equilibrium: with associations among loci (Dy # 0), our
by are no longer equivalent to the deviations defined in terms of conditional expectations (see
Barton and Turelli 1991, p. 249).

To calculate expected deviations for a population in HWLE, first note that
representation Eq. 1 simplifies when using the current allele frequencies as our reference point
because Dy = 0 for all U. Thus,

Z = Z+ Zb{ﬂgw. (4)

In general, we want to calculate the average deviation from the population mean of individuals
carrying allele X; = 1at the set of positions i € §;, and X; =0 for i € §¢, then ask how much
of that deviation cannot be explained by the effects of alleles associated with all subsets of
those positions. To simplify the notation, for any function f of the X; and any disjunct sets of

positions $¢ and S|, we define the conditional expectations

E[f|So, S1] =E[f|X3=0forieSy, X3 =1fories;]. (5)
Using (4),

E(z|So, S1]-2= ) byE[Cy|So, S1]. 6)

Z =
P+UcCz.

13
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Under HWLE, all of the elements in the products Cy; are independent with mean zero; hence,
E[Cy | So, S1]=0ifU contains any positions that are notin $=S¢ U $1 =S¢ S;. For any
nonempty U C $, we have U =T, T;, with Ty €So, Ty CS1and Ty T; # (. Hence,

E[z|So, 1]~ 2= ) > by (-P)y, 9r, - 7

To Cc So Tl Cc Sl
Note that this summation involves a highest-order term with Tp =S¢y and Ty =S, plus terms
associated with all subsets of positions in S¢ $;. Hence, by definition, the effect term, denoted

as, s, , associated with genotypes identified by § =S¢ S is just the highest-order term, namely

Os,s, = bsys, (-P)g, ds; = bs (-P)g, ds; - (8)
This calculation shows that Eq. 1 provides an immediate decomposition of each
genotypic value into additive effects of alleles, dominance deviations, and all of the second-
and higher-order epistatic components. For instance, the additive allelic effect associated with
So = {iw} is just —b;, p;, the dominance deviation associated with So = {i,;}, S1 = {ir}is
-b; i , Di qi, and the additive-by-additive effect associated with S; = {ij,, jr}1s b; jr4i4;-

Similarly, the effect of a substitution at locus i is just b; , assuming no sex-dependence.

We define the random variable @y as the average effect of genotypes associated with
the positions in S. It follows simply from our notation that E[ag] = 0. To see this, note that
Elas] is an average over all genotypes associated with the positions in S, i.e., all disjunct sets
Spand S| such that $ =S( S;. The particular genotype indicated by Eq. 8 occurs with
frequency gs, ps, ; hence, this genotype contributes bs (—pq)s, (P9)s, = (-~ D> by (pg)g to
Elas ]. This shows that each position in S contributes two terms to E[ag ] (corresponding to
X;=0 or 1) of equal magnitude but opposite sign, producing E[as ] =0. Thus, computing
components of variance reduces to finding E[aé] (a simple, general expression is given in

Appendix 1) and summing over the appropriate sets of positions, S.

Variance components

The trait mean in the base population is defined in Eq. 1 as E[z] = z. Using the current

allele frequencies as our reference points, the genotypic variance is

Ve =E[(z-2)?] = E[ ) ) byby Culy]
Q+UCZ Q+VCZ
(9)
= Z Z by by Dyy .

Q+UCZ Q+VCZ



With HWLE, all associations among distinct sets of positions are zero. Thus, Dyy is non-zero

only if U =YV, in which case Dyy = pqu . Hence,

2
VG = Z bU]qu]' (10)
P+UCZ

Equation 10 applies to both haploids and diploids (this is a special case of the calculations in
Barton and Turelli (1991) that allow for non-random mating and linkage disequilibrium). The
genotypic variance decomposes into components reflecting additive effects, dominance effects,
and epistasis of different orders. As shown above, the by defined in terms of the current allele
frequencies are proportional to the additive, dominance and epistatic effects defined in classical
quantitative genetics; and, as expected, the components of Eq. 10 correspond to the variance
components traditionally defined in terms of these effects. In Appendix 1, we show how the

individual variance components are identified.

For haploids, we have Z = {i, j, k...}. From Appendix 1,

Ve = Va +Vaa + Vapp ..., wWhere (11)

Vap = Z bﬁ P; 9is Vaa = Z bﬁj pagij, etc.
iez i, 3ez (12)
i<j

As noted above, we use the convention that the sums over i # j count only one of {i, j}, {J, i},
n
so that the sum in Eq. 12 for V4 is over ( 2) terms. In general, we can let V() denote the

kth-order additive interaction (V4 = V1), Vaa = Va@) ...). Then V) can be compactly

expressed as
2
Va (x) = Z by pay, (13)
U: |U| =k

where Ul denotes the number of elements in U and the sum is over all sets of distinct elements

of size k, with only one permutation of each such set considered.

For diploids, we have the standard decomposition

VG :VA+VD+VAA+VAD+VDD+VAAA+VAAD+"' (14)

In this case, several coefficients contribute to each variance component. For instance,
Va = Y, (bf + bf ) pg;. If we assume that cis and trans combinations have identical

effects and that allelic effects do not depend on parental origin, then coefficients such as
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bi, j.» bi, Jro b; T and b; L j, are identical. With this simplification and our convention about

not treating permutations of indices separately, we have, as explained in Appendix 1,

Va :zzbﬁm Pidis Vaa = 4 Z bﬁmjm Pdij
iez i,jez
i<j

2 2 2 2

Vp = Z bj i, Pdis Vpp = Z by i, 3.3, Pdij, and

icz i,3ez (15)

i<j
2 2

Vap = 2 Z b i, s, P9i PIj-

i,jez

i<j
The powers of two arise from pooling coefficients that are identical under the assumption that

cis and trans combinations are equivalent (see Eq. 16 below for further explanation).

To see the general pattern, consider the variance associated with additive effects at k
loci and dominance effects at [ loci, denoted V) pgy. This involves summing over sets S
involving k+21 distinct positions where k involve either the maternally or paternally inherited
genes at distinct loci and the remaining 2/ involve both the maternally and paternally inherited
genes at [ other loci. Let S(k,/) denote a set of positions involving only the paternally derived
genes from k loci and both the paternally and maternally derived genes at [ other loci (with all
k+1 loci distinct), and let S, (k) and S, (/) denote the sets of loci producing the additive and

dominance contributions in S(k,/). The general form of the expressions in Eq. 15 is

k 2 2
Va x)yp ) = 2 § bg (k,1) P9s_ (x) (Pds, (1)) "« (16)
(k,1)

where the sum is over all sets of the form S(k,/) described above and only one permutation of
each such set is considered. The leading term 2% arises because either the paternally or
maternally derived gene could be considered at the k loci contributing additive terms to the
interaction. Using the natural ordering, the first S(k,/) in this sum would be (1,,, 2,,,...,

km, (k+1),,, (k+ 1Dy, .(k+Dyl.
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Changes in allele frequency

= Changes in mean and genetic variance

We consider next how the variance components change with allele frequencies.
Suppose the allele frequencies change to p; = p; + Ap;. This produces a new set of
coefficients, bf), given by Eq. 3, that define the relation between genotype and phenotype with
respect to the new reference point, p; . The old deviation {; = X; — p; can be rewritten as
{; = {7 + Ap;. Taking the expectation of Eq. 2 over a population with allele frequencies

p; = pi +Ap;, we see that the change in trait mean is just

AZ

ZbU]ApU]. (17)

U+o
(To see this, note that the only non-zero terms in the expectation of Eq. 2 are those with S = ()

and T=U.) This expression applies to both haploids and diploids; in the latter case, the sets of
positions U may include two elements from the same locus (i,,, if say). We next consider how

the total genetic variance changes. If the new population is at linkage equilibrium,

Ve = ) bi’paj= ) bi’[pa-4p (p-q) - 4P ]y (18)
U+ U0

To make further progress, we must specify the distribution of allele frequency fluctuations, Ap.

n Effects of random drift on allele frequencies

Suppose now that the changes in allele frequency are generated by random drift, with
net identity coefficient F describing the expected loss of heterozygosity at each locus. We will
denote the expectation over the random fluctuations in allele frequency by ( ) to distinguish it
from the expectation over the genotypes within a population (denoted EJ ]). In general, we

have
(Api) =0, (App*) = Fpq;, and (pj gi) =(1 = F) pgi. (19)
As discussed below, we will also show that our diffusion approximation implies

(Apy? =0 (20)

for all sets U in which only one index appears for any locus (i.e., expectations are non-zero



only if all loci included in U appear at least twice). This implies that (A z) = O for haploids. In

general, the expectation of the squared trait mean is
(A2)°) = Jy 46 Xy +obu by (8Py 4Py ). 1)

This expectation depends on moments of the multivariate allele frequency distribution
within and among loci. If the diffusion approximation applies, then the distribution of changes
of allele frequencies at each locus is determined by the single parameter, F. However,
distributions at different loci may not be statistically independent if recombination and drift
occur at similar rates. This is because transient linkage disequilibria cause correlations
between the magnitudes of changes at different loci. For example, even if the initial and final
populations are at linkage equilibrium, there will be a correlation between (Ap?) and (Ap?>
Moreover, the extent of these correlations will depend on the detailed pattern of population size
during the bottleneck, rather than on the single parameter F. In Appendix 2, we give a general
expression for the moments of the multilocus allele frequency distribution, assuming a constant
rate of inbreeding (relative to recombination). Correlations between loci are strongest when
drift is faster than recombination, and at intermediate levels of inbreeding

2Nr< %, F~ % to %), but even then, associations between pairs of loci are weak: the ratio

Ap? Ap’
% is never more than 1.13 (Fig. 1). The analogous ratio can be larger for three or four
i J

loci (maximum 1.46, 2.13 respectively, Fig. 2), and so it is possible that associations among
large numbers of loci could have substantial cumulative effects on higher-order variance
components, provided that linkage is tight relative to the rate of drift. However, in the
following we will ignore such effects of linkage disequilibrium, and assume statistical
independence across loci. In particular we assume that

2 2y _ g2
We present below numerical results based on full multilocus dynamics that support this

approximation.

m Haploids

= Changes in mean

For haploids, Eq. 21 simplifies drastically. With statistical independence across
loci, (Apy Apy ) # 0 only when U =V. Thus,



Var@) =((A2)%) = 3y, , b F1°! pay = Ty F¥ Va ) (23)

where the last step follows from Eq. 13. Remarkably, for arbitrary epistasis, the variance in
mean depends only on the variance components in the base population. Unless F is large,
higher-order epistasis makes a small contribution. Nevertheless, nonadditive components do
contribute: in the limit F' = 1, a random genotype is fixed, and so necessarily the variance of

population means is equal to the variance of genotypic values, Vg = 27 Vaw) -

As a concrete example, consider the following two-locus haploid model:
l+e 1

1 l+e
is 1 +€[X; Xo +(1 —X;)(1 - Xp)]. For this model, b; = €(p2 —q2), by = €(p1 —q1), and
b1 = 2€. AtLE, the meanis 1 +€(p; p» +¢1 g2), and so the change in mean at LE is

. In terms of indicator variables X| and X, the genotypic value of (X1, X2)

e((p1 —q1) Ap, + (p2 —q2) Ap; +2 Ap, Ap,). With independent changes across loci,
(AZ%) = E[F(p1 — q1)* pq, + F(p2 — ¢2)* pq, + 4 F? pq,,]. The first two terms equal F V4,
and the last term equals F 2 VAA.-

= Changes in variance

The expected genotypic variance is given in a similar way

(Vg) = <Z { Z byy Apy
U+

VCZ\U

. Z<1_F>|quu > iy ((spy)?) (24)

U0 VCZ\U

= Z(l—m'” ), F'V! bl pauy.

VCZ\U
U+ <z

2

pq6>

This follows because (Apy, Apy,) = 0 unless V =W. Summing over all sets UV =W, then

partitioning the W by size, we can rewrite this as
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(Vg) = Zb%pqw > (1-plvipl

W#@ UvV=W
Uv=0
U+
n
=), ) bipaw ) (1-F)/UIF!Y
k-1 |W|-k uv=w
uNv=¢ (25)
U+d
n k k
= i VA(k)Z(j)[(l—F)JFk—J]
k-1 =1

n
=) Vag (1-F5) = V- ) F*Vay,
k i=1

where the binomial coefficient arises from the number of ways in which sets W of size k can be

partitioned into the components U (# ()) and V. We are now expressing the new total
genotypic variance as a sum over the original variance components. We see that the original
additive variance is deflated by 1 — F, but the higher-order components contribute relatively
more of their initial values to the final expected genetic variance. (For example,

V) contributes a fraction 1 — F 2 of its initial value to (Vg ) while V4 contributes only 1 — F.)

Next we consider the individual components of variance. Splitting (V¢ ) into

components, we have for IUl = j,

Vi =@-:7 > 5 FV b, pawy. (26)
|U|=jVvcz\U

Proceeding as in our derivation of (Vg ), we can write
X 3 WY piwi-3 2
Vi) = (1-5)3 > [0 F" b pay,
VIES J (27)

where the binomial coefficient counts the number of ways in which a specific set W can arise
from different sets U and V. Collecting the terms corresponding to specific values of IWI, we

see that
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n-j .

N . k+7]

Vi) = (1-1)3 5 ; | F* Va (50 -
k=0

(28)

It is easy to see that summing Eq. 28 over j reproduces Eq. 25. This expression provides some
justification for the idea that drift "converts" higher-order epistatic variances into lower-order
variance components. (For instance, Vaaa contributes to both (V3 ) and (Vz, ) ). However,
note that this direct relationship applies only in expectation, and only in the absence of

dominance.

Figure 3 shows how the variance components change under drift with an extreme model
of epistasis, for a haploid population with 5 loci. Genotypic values were drawn randomly from
a normal distribution with variance 1 (see Appendix 3). Throughout, most genetic variance is
additive (upper heavy curves); this increases slightly with drift up to a maximum at ' ~0.5,
while higher-order epistatic components decline (lower curves). The predictions from Eq. 28
(dashed curves) agree well with the averages over 100 simulations. This provides a check on
our assumption that allele frequencies fluctuate independently, despite transient linkage
disequilibria. However, as illustrated below, individual simulations are typically well away

from the expectation shown in Fig. 3.

For j =1, Eq.28 shows that

(Vi) = (1-F) (Va+2FVap +3F%2 Vappa + o) - (29)
Thus epistasis always inflates (V1 ) above the value, V4 (1 — F), expected with additivity.
Similarly, Eq.28 shows that the expected value of every component of variance is inflated by
contributions from higher-order epistatic components. Eq. 25 shows that drift erodes
higher-order variance components more slowly than lower-order components, and Eg. 28
shows that these higher-order components contribute to the expected post-bottleneck values of
all lower-order components. This interaction of drift and epistasis remains true with diploidy,
but its effects are confounded by dominance, which as discussed below can either increase or

decrease (V) from the additive expectation.

Although some effort is required to get the exact expression describing how epistasis
inflates (V7 ), our notation provides a simple way to understand the origin of this effect. Note

that by definition
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(Vi) =(ZL, ) (p q7))

From Eq.3, we see that by = Yycz biv Apy = bi + Xgryczy biv Apy = bi +Ab; , where
Ab; depends on changes in allele frequencies only at loci other than i. Hence, our
approximation that changes in allele frequencies at disjunct loci are independent implies that
(Ab;Y = 0 and

(Vi) =(ZL, (b + Ab;)? (pi q}))
=20 b7 (prgiy+ Xy ((Ab)Y (pFgl)

>3 b piqiy=(1~-F) YL, b? pigi=Va(l - F).

Here we see explicitly how drift "converts" epistatic interactions into an expected increase in
V4. This conversion depends critically on (Ab;) = 0 and the independence of Ab; and p; ¢; .
A similar inequality (and derivation) holds for all components of variance, the expected value
of each is inflated by contributions from higher-order variance components. In contrast, these
inequalities do not hold with dominance, because (Ab; ) # 0 and Ab; and pj g; are not

independent.

Eq. 29 shows that V4 increases on average, i.e., (V1) > V4, only if

Va< (L-F) (2Vaan +3FVaaa + 4 F2Va (4) + ov.) . (30)
For small F, this reduces to V4 < 2 Vaa. Forany F <?2/3, a necessary condition for V4 to
increase on average 1s that
\Y 2
2 (Vg-Va) > Vy or —2 <« =2, (31)
Ve 3
Thus, although epistasis always inflates (V} ), additive variance can actually increase on
average only if the epistatic components constitute at least one-third of the total genetic

variance.

From Eq. 29 and Egs. 23 and 25 we see that there is a simple relation between the

variance in mean and the expected new additive variance:

F
1-F

((b2z)?) =< (VA) 4 (32)



with equality in general only if there is no epistatic variance. However, approximate equality
holds if epistatic components are relatively small. For low levels of inbreeding,

(A*y=F (V41), implying that the variance in the change of the mean is proportional to the
new additive variance, averaged over realizations. Thus, even if the initial population has no
additive variance, the mean may still change as a result of nonadditive components. This
change, however, is proportional to the expected additive variance generated by drift. Note
that this relation is between expectations over many realizations. The correlation between Az
and V3 in any particular realization may be weak. For the model discussed below in which
diploid genotypic values are chosen at random (to produce extreme epistasis), we found that
this correlation declines from ~0.5 for small F to near zero for strong inbreeding (results not

shown).

Diploids

Changes in mean

In diploids, even when the changes across loci are independent, the expected change in
mean may be non-zero because of dominance. To understand these effects, it is useful to
distinguish coefficients by in which positions corresponding to both paternally and maternally
acting alleles at a locus appear. For each set U that includes only distinct positions, we can

write

U = A|B, (33)

where A and B do not overlap, A contains the indices for the loci that appear only once in U,
and B contains the loci that appear as both i,,,and i¢. For instance, in this notation,
by

sets U in which all loci belong to B contribute nonzero terms to (A z). Assuming statistically

inis} = Do)y - Because (Ap;) = 0 and the fluctuations are assumed to be independent, only

independent loci, the expected change in mean is
<AZ> = ZU}#@ bUI <APUI> = ZV#@bQ‘VFlv‘ pdv, (34)

where the sum is over all nonempty sets V of distinct loci. Note that the mean changes only
through pure dominance components, by, v, because only then do terms Ap? appear in the
product Apy; . The coefficient by;, ; .y = bgy;) 1s negative if recessive alleles tend to reduce the
trait (see the example described in Eq. 46 below). Similarly, by

iy i) = b(Z)I{i,j} is negative if

two recessive alleles at loci i and j, or two dominant alleles, tend to reduce the trait, and so on
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for higher-order terms. It is the sign of these pure dominance coefficients that determines
whether the trait will decrease as a result of drift — that is, whether there will be inbreeding

depression.

Next, consider the variance of the trait mean, var(A z). This is given by subtracting the
square of the mean (Eq. 34) from the mean square (Eq. 21). Because a locus i can now appear
up to four times in the expectation (Ap; Apy ) that appears in Eq. 21, we must consider third-
and fourth-order moments. Before treating this complication, we first consider the much
simpler case in which there are no dominance effects. In this case, (A z) =0. Moreover,
because byp = 0 if B # (, we need consider only terms in Eq. 21 that involve at most one
position from each locus. Thus, we can replace the sum in Eq. 21 over positions with a sum
over loci, but terms corresponding to sets of k loci must be multiplied by 2X to account for the
fact that either paternally or maternally inherited alleles could have been chosen at each locus.

Hence, Eq.21 becomes
Var(@) = (A 2%) = Sy Dveg 2V by by (Apy; Apy). 35)

As in the haploid case, our assumption that changes are independent across loci implies
that (Apy Apy) = 0 if U# V, whereas ( (Apy)?2) = FIU! pqy. Applying this simplification
and the definition of V4 for diploids, we see that

Var (z) = ((A2Z)2) = Z (2F) U1 2191 p2 pg,
U+0

= 36
= > (2F) RV, - (36)

k=1

This differs from the haploid case only by the appearance of 2F rather than F, and it serves as a

simple check for the more complex calculation below with dominance.

With dominance, we need approximations for <Ap]i< yup to k=4. From 7.4.32 and
7.4.33 of Crow and Kimura (1970),

(0p%) = Fpai,
F2
(4p3) = =~ (3-F) pas (4: -Ppi), and
2
oo B oog .
(Ap;i) = — Pdi (A+Bpai) (37)

whereA =F [15 (1-F) +6 F2 - F>], and
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B=-5(3-16F+15F>-6F>+F*) =5 (3-F-A).

Because (Ap?)and (Ap?) are not proportional to the pg;, (A Z)2> cannot be expressed solely in
terms of variance components, which depend only on sums of terms of the form pq, (see Eq.
16). (The complication would also arise in the haploid case if we had not assumed statistical
independence across loci: then, (Ap? Ap§> would contribute complicating terms in the same
way that (Ap?) and (Ap?) do here.) The leading terms in the expression for the variance in trait
mean, obtained by substituting for allele frequency moments from Eq. 37, are given in Appendix
4.

Assembling the pieces from Appendix 4, and writing terms that involve sums of the form

20U b, pqy, as variance components, we obtain

var (A2) =2FVa -F?Vp + 4 F? Vap - F* Vpp +
2 4 3
+FTVD{%+B}D+ !;F VAD{;‘—quB}AD
4 2
+§—5VDD{(%+B> ]DD
+2F% (3-F) Y;biy|pbg| (i) PGi (di - Pi)
+F2 35,5 (8b(iy o biiy () ~ Dol i) Pol3)) Pdij
+2F3 (3-F)
2iiss (4bgi, 5310 brgyigiy + oy iy +Privie beigi,gy) (38)
(di - Pi) Pd; 5
4 2
+F* (3-F)7 2iy5 (bri, 5310 Pori, 9y +oriyi3) bayiay)
(qi - pi) (dj -P3) Pd;5
3
25 2is5 P01 (i) Ppi(i, 5y PAiy (A+ (B-5)pasi)
+ 2 (3 -F)
2is5 Piri(3) Pori, gy (di - Pi) PAyy (A+Bpay) + ...

where { % + B, indicates an average across loci, weighted by contributions to the
dominance component (e.g., Zi b<21)|{i} rqi =Vp1 % Ip). Similar definitions apply to other
variance components, with Vpp { ( ;‘—q + B) 2 Ipp » for instance, a shorthand for an average
involving products of terms in which two different loci appear (see Appendix 4 for the full
expressions). There are two reasons why the variance in trait mean does not depend solely on
variance components. First, as shown by Eq. 16, variance components depend on allele
frequencies only through products of the form pqy , whereas higher moments such as Ap? and

Ap? do not depend solely on pq;. This leads to weighted averages of allele frequency, such as



% Vp { % + B|, above. Second, and more seriously, Eq. 38 includes many cross-terms,
suchas b} ¢ by (i), that can be interpreted as weighted covariances between different sorts
of effects (e.g., covariances between additive effects and dominance interactions). Such terms

cannot be expressed in terms of variance components.

Equation 38, like Eq. 36, shows that the additive variance components contribute to
changes in the mean in the same way as in the haploid case, except that the contribution of
Vawk) 1s inflated by 2k There is also a contribution from the dominance variance, which may
be relatively large if rare alleles are involved (i.e. if pg << 1, so that { % + B, is large).
However, the dominance variance itself cannot be large in that case, because it is proportional
to the squared heterozygosity at each locus. The complications attributable to dominance are

elaborated below when we discuss its effects on expected changes in additive variance.

Figure 4 shows a numerical example using the model of randomly chosen diploid
genotypic values discussed in Appendix 3. This model generates extreme epistasis. We
assume complete dominance at each locus, with homozygous phenotypes chosen randomly
from a Gaussian with mean zero and variance one. Allele frequencies in the base population
were intermediate (see figure legend), which allows a relatively high proportion of nonadditive
variance (initially, V4 = 0.40 and V5 = 1.16). The variance in the change of the mean,
averaged over 1000 replicates, is close to that predicted by Eq. 38. Part of the discrepancy is
due to deviations of the distribution of allele frequencies from the expected values (Eq. 37). If
the actual moments, calculated from the 1000 replicates, are used, the fit is closer (Fig. 4). The
remaining discrepancy arises from chance correlations between fluctuations at different loci.
As shown in Appendix 2, the effects of these correlations, which are ignored in our

approximations, are very slight, unless F is extremely large.

The first term in Eq. 38 is 2 FV4, and so dominates for small F (straight line in Fig. 4).
For large F, however, the variance in mean is greater than predicted by this leading term,
because of contributions from the nonadditive terms. These contributions are shown separately
in Fig. 5, which shows both positive and negative terms. Table 2 shows the terms that make the
largest contributions. Note, however, that at least for F' < 0.5, these additional contributions
are never large, and the fluctuations of the trait mean are predicted well from V4 in the base

population.
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= Changes in variance

We first obtain the expected values of the total genetic variance and the individual
additive components assuming no dominance. This yields simple diploid analogs of our
haploid results. We then find the expected additive variance in the general case with

dominance.

Using the general expression for Vg, and substituting for the new by from Eq. 3, we

obtain:

ey = ). (3% paj)

P+UCZ
= Z Z byy byw (Apy APy PA))
G+UCZ V,WCZ\U (39)

= Z Z byy byw (Apy APy Py ) -
Q+Ucz V,Wcz\U

Assuming no dominance, byy by =0 unless each set U, ¥V, W contains each locus at most
once. For all of the remaining sets, in which each locus appears at most once, there are 2* ways
in which a set of k positions can be allocated to the maternal or paternal genomes. Allowing
for this factor, we can sum over all sets of loci, rather than all sets of positions (i.e., our

reference now is as in the haploid case, Z = {1, 2, ... n}). This yields

Ver= )0 ) 21" by by (Apy APy PA)
¢$#UCZ V,WCZ\U (40)

where now byy refers to one of the 21UV sets of coefficients byy involving the set of loci UV.
Because U is disjunct from V and W, our independence assumption implies that
(Apy APy PAy ) = (Apy Apy, ){pqy;). Similarly, the expectation over allele frequency changes

is nonzero only when V = W. Substituting for the allele frequency moments in terms of F,

Ver= ) ) 2I"Ing ((apy)?) (pag)

$+UcZ VCZ\U

= >0 DT 2IWibd pay (1-F) U (2F) 1V, (41)
$+UcCZ VCZ\U
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Following our calculation in the haploid case, we rearrange the sum to run over sets
UV = W, partition this sum into terms ordered by IWI|, and use the additive, diploid expression

Vaw = 25 3¢ b} pqy, . to obtain

(V&) = ZZ'W bipay ), (1-F)° (2F) Y

DiW uv=w
unv=0

§£30)

(42)

Il
<
b
=
-Mw
u.
=
|
e
(e}
N
)
ol
.

D LI+ F) - (2F)%] Va (x) -

k-1
(This agrees with the expression given in Walsh and Lynch 1998, Ch. 3.) As in the haploid
case, the binomial coefficient arises from the number of combinations of V and non-empty U

that can produce a specific set W. As expected, the contribution from the additive variance
(k=1)is (1 = F) V4.

Next we consider the expected values for the individual components of additive

variance without dominance. Following the derivations above, we have

Vi) = (1-13 > > 21% pf; payy (2F) Y

|U|=7 VCZ\U
. | W | s
= a-m? )0 [ 2 b pay (27 1M1
W=3 (43)
n-j .
. k+7]
-1-13 5 | ; | (2F)% Vi (30 -
k=0

This differs from the haploid result (Eq. 28) only in that 2F replaces F. In particular, the
expected additive variance 1s

n-1
(Vi) = (1-F) ) (k+1) (2F)*Va 1) > (1—F) Va.

k=0 (44)
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Thus, just as in the haploid case, epistatic interactions, in the absence of dominance, always
inflate the expected additive variance after a bottleneck above that expected with purely
additive allelic effects. Equation 44 also shows that we expect the additive variance to increase
on average with small F only if

4 Vpan > Va. (45)

In Appendix 4, we derive the expected additive genetic variance after the bottleneck for
the general case with dominance. As found for the variance of the mean, the expected change
in additive variance cannot be expressed in terms of variance components in the base
population: the outcome depends on weighted variances and covariances among different kinds
of effects. Before discussing the general expression, we first consider dominance in the
absence of interactions across loci: as illustrated by the simple expressions derived with "pure"
epistasis, dominance is the source of the complications. Suppose that the genotypic value is
determined by additive contributions from n loci with dominance within each locus described

as follows:

n
z = Zgi, with

i-1
gi (Xi,, Xi, ) = aj Xj, Xj_+ (46)
di [Xi, (1-Xi,) +Xi, (1-X;, )] -a; (L-X4i,) (1-X;5,),

so that homozygosity for allele 1 (0) at locus i contributes a; (—a;) to z and the heterozygosity

contributes d;. Thus, if d;= 0 we have pure additivity. Under Eq. 46, the only non-zero by are

b; = b;, = aj + (d; - pi) di and

47
Bici, =bp|(iy = di. 4
In this case, the general expression in Appendix 4 reduces to
(Vi) = (1-F) VA+2FVD+%VD(D—1O)+2F(2—F)
o (48)

]DI

F
qui bi i, bi, (41 -pi) + — Vp 1
I 5 pdi

whereC = F (15-20F + 10 F? -2 F3) > 0 and
D=10 (1-8F +10F2 - 5F3 + F%) . The first term is the standard additive result. The
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second term is a positive contribution from dominance variance; but the third term, which
involves higher powers of F, is always negative. The fourth and fifth terms cannot be
expressed in terms of variance components. The fifth term is always positive, but it is
proportional to F2for small F. The fourth term can be thought of as a weighted covariance
between the additive and dominance effects at each locus. If the 1 alleles are rare (p; << 1),
this term will be positive if these alleles tend to be recessive (i.e., b; i, = di < 0) but negative
if they are generally partially dominant (d; > 0). Note that if the 1 alleles are all rare and F is
small, this "covariance" term dominates the deviation from the additive prediction (because it
depends on p;, whereas dominance variance depends on p?). Thus, unlike pure epistasis,
dominance can either increase or decrease the expected additive variance. The fact that drift
can inflate additive variance with rare recessive alleles was first noted by Robertson (1952) and
elaborated by Willis and Orr (1993) as a possible explanation of the experimental results of

Bryant et al. (1986).

In Appendix 4, we show that in general

(Va) =
F C
(1-F) |Va+ 2FVp + — Vp{ + (D-10) |p+ 4 F Vap +
5 pdi
F? C
2 —V D
5 Vw0 gy "D

+2F (2-F) ) pdibi,i, bi, (4i -pi)

1
+8F% (2-F) ) paij (bi,i, 3, big) (A1 -Pi) (49)
i#3
F
+4F quij (bimjm e b; + > (2 -F)
i#3

(Pi,icdn 5e Pig + P15, 9. Piic) (di —Pi) +

F
ﬁ (C+qul) bimirjm jF biNiF) Foee !

where C and D are as in Eq. 48. Thus, in diploids, because of the complications introduced by
dominance, there is no simple relation between the expected components of genetic variance

after drift and the variance components in the base population.
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Figure 6 shows how the expected additive variance changes under drift, for the same
genotypic values as in Fig. 4. The prediction from Eq. 49 fits with the average of 1000 replicate
simulations. On average, V4 increases up to F'~0.3, and is much greater than expected under
additivity (straight line in Fig. 6). However, as shown in Fig. 7, there is a great deal of variation

among individual realizations.

Slight inbreeding

Some insight can be gained by finding how the additive genetic variance changes as
inbreeding increases from zero. That is, we consider dr (V) at F = 0. The expressions then
simplify drastically, because higher-order moments of allele frequency are proportional to F>

(Eq. 37) and so can be neglected.

For haploids, differentiating Eq. 29 gives

3 (VL)
—= = -V 2 Van .
OF AT 4 Van (50)

Thus, the additive genetic variance is expected to increase with drift if 2Vas > Vy.

For diploids, the leading terms in F are all included in the terms shown in Eq. 49.

Differentiating and setting F to zero,

V*
M :_VA+2VD+4VAA+2CADI
OF
where Cap = (51)
2 qui (di -~ Pi) bi i, by, +2 quij bi i, 4 Pi, -
i i3

Thus, dominance variance contributes to an increase in the additive genetic variance in the
same way that additivexadditive epistasis does. In contrast, there is no leading-order
contribution from the higher-order variance components such as Vaaa nor from pairwise
components that involve dominance, such as Vapand Vpp. The last term, Cap, in Eq. 51 is
difficult to interpret. The first sum involves associations between dominance interactions and
additive effects, while the second involves associations between additive-by-dominance
interactions and additive effects. The first sum in Cap, called oZ,; in Walsh and Lynch's
(1998) discussion of Cockerham and Tachida (1988) (see Egs. 74, 76 in Appendix 5), can be
most easily interpreted if we think of the trait as a fitness component. The contribution of a
locus to inbreeding depression is b;_;, pq; . For a fitness trait, we expect that inbreeding at

the locus reduces the trait, so that b;_;_ <0. Now, if b; is positive, then the '0' allele is
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deleterious and we expect it to be rare (i.e. ¢; << p;). Hence, (g;i - pi) b;_ is expected to
be negative if the trait is under positive selection. On this argument, we expect the first
contribution to Cap to be positive if the trait is a fitness component which shows inbreeding
depression. However, the term may still be positive even if there is no overall inbreeding
depression. Suppose that alleles at each locus influence fitness, and also have a random
pleiotropic effect on the trait. Then, we will on average see no inbreeding depression for the

trait, but the first term in Cap will nevertheless be positive.

The rate of change of (V) near F' = 0 should be a good guide to whether inbreeding
can, on average, increase the additive genetic variance. However, it is possible that
higher-order terms will change the gradient, so that (V}) > V4 for some intermediate F, even if
0rp(V4)<0at F=0. In the haploid case, for example, Eq. 29 shows that this would be the case
if 2Vaa < V4, but Vaaa were sufficiently large.

Discussion

We have shown that for haploids, and for diploids without dominance, there is a simple
relation between variance components in the base population and the variance of the trait mean
and the expected values of variance components after a population bottleneck. With no
dominance, therefore, the idea that drift "converts" nonadditive to additive variance makes
sense: one can identify the contribution of each initial variance component to the expected
value of each variance component after drift (Eq. 28). Without dominance, the expected value
of every variance component is inflated by contributions from higher-order epistatic
interactions (e.g., third-order interactions add to the expected value of Va4 ). However,
dominance (even without epistasis) can reduce expected variances. For instance, the expected
additive variance can fall below V4 (1 — F), the value expected with purely additive allelic
effects. Covariances among different kinds of effects contribute and no explicit formula for the
additive variance after drift is possible in terms of variance components in the base population
(see Eq.49). Thus, it is generally misleading to think of "conversion" of nonadditive variance

components into additive variance.

Our results generalize Cockerham and Tachida's (1988) two-locus analysis to
arbitrarily many loci. Although our expressions include the terms that they identify (Appendix
5), we find extra contributions even for small F and only two loci. In particular, the rate of
change of expected additive variance with F near O (0 (V})) includes Cockerham and
Tachida's expression (1988, p. 1565), but has an extra term that arises from additivexdominance

interactions (Eq. 51). Our derivation is more restrictive than Cockerham and Tachida's (1988)



because it assumes two alleles per locus, and because it neglects linkage disequilibrium
throughout. We believe that our results can be extended to multiple alleles by using multilocus
identity probabilities (defining F,, as the probability that alleles at positions in the set U are
identical by descent). Our neglect of linkage disequilibrium is also unlikely to cause
significant error. Linkage disequilibrium makes no significant contribution for slight
inbreeding, and Tachida and Cockerham (1989) showed that with two loci, identity disequilibria
(that is, correlations of identity-by-descent across loci) have negligible effects. We extend
their analysis of identity disequilibria by showing that correlations between allele frequency
fluctuations (e.g., (Ap? Ap§>) have little effect, at least up to four loci. Correlations across loci
become stronger with more loci, and so might contribute if both inbreeding and higher-order
interactions are substantial: only then will moments such as (Ap? Ap? Api Apl2 > be

significant.

The contribution of dominance to the increase in additive variance for small F' (Eq. 51)
comes through two terms, 2 Vp and 2 Cap ; the latter consists of two sums. The first sum in
2Capis4C =4}, pq;i (9i - pi) bi, i, bi, (Cockerham and Tachida (1988) denote C by
d;). We can set bounds on the contribution of 4C by assuming complete dominance, with the
X; = 1 allele recessive. Then,b; = pi bj i (Eq.8), and we have
4C = 4y, piq; (g -pi) bf ; . Ifrecessive alleles are rare (p; << 1), then this is
approximately 4 V. Thus, this term can contribute up to twice the direct contribution of
dominance (2 Vp) if recessive alleles are rare. This does not require any overall inbreeding
depression: ), pq; bi_ i could be zero if the sign of b ;_ fluctuates across loci. Thus,
even for small F, the relative contributions of dominance and epistasis to the increase in
additive variance are difficult to predict. They depend on the relative magnitudes of Vaa and

Vp as well as the terms in Cap that can be comparable to Vp .

Experiments to date do not distinguish between dominance and epistasis as causes of
increased additive variance after bottlenecks. Bryant et al. (1986) have argued that because they
observed additive variance to increase most with intermediate inbreeding, epistasis is more
likely to have been responsible than dominance. However, Willis and Orr (1993) point out that
dominance is consistent with their observations, given the large sampling and evolutionary
variances. Moreover, our analytical results show that there is no simple relationship between F
and the relative contributions of different variance components. More recently, Wang et al.
(1998) have argued that the results of mutation accumulation experiments in Drosophila
melanogaster imply that dominance alone can account for increased additive variance in

viability after bottlenecks.
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Our theoretical results show that even in the simplest case of small F', the expected
change in variance cannot be predicted from the additive, dominance and epistatic variance
components in the base population. Moreover, higher-order variances and covariances that are
undetectably weak could make a large contribution to the expected additive variance with
strong inbreeding. (This is because in diploids, the contribution of kth-order epistasis is
multiplied by a factor 2¥; see Eq. 44.) Empirical attempts to understand the relationship
between F and either Var(Az) or (V) are inherently extremely difficult because the effects of

drift on trait means and additive variances are highly variable (Whitlock 1995).

Drift-induced inflation of additive genetic variance has received considerable attention,
because it might allow populations that survive bottlenecks to adapt more readily to new
conditions or facilitate movement to new "adaptive peaks." However, there are several
difficulties with these conjectures. First, estimates of genetic variance are notoriously
inaccurate, and the effects of drift on genetic variance are highly variable (Avery and Hill 1977,
Bulmer 1980, Lynch 1988). Thus, increases in additive variance can occur even if allelic effects
are purely additive (Whitlock 1995). Indeed, if one uses as a baseline the expected variance
from a purely additive model, then about half the time, the observed additive variance will
exceed this expectation. For example, Cheverud et al. (1999) observed that after 55 replicate
populations of mice were reduced to N = 4 individuals for four generations, the average
additive genetic variance was essentially the same as in control populations and significantly
larger (75%) than the reduced value expected with purely additive allelic effects. However,
they pointed out that there 1s a 3% chance that such an apparent increase would be seen even if
the true additive variance remained constant. Moreover, even with additivity, the underlying
additive variance might by chance increase with drift (Whitlock 1995, Whitlock and Fowler
1999).

Second, if the increased variance is due to an increased frequency of rare recessive
alleles, those alleles are likely to have been rare because they are deleterious. If so, one would
expect selection to eliminate the excess variance, so that there would be no long-term
consequences. Finally, an increased genetic variance will make little long-term difference to
the population if selection favors a single optimal phenotype. Heritable variation is usually
high enough for the response to selection to be rapid; and even if additive genetic variance is
very low, the population will eventually reach the adaptive peak. A bottleneck will have
long-term effects only if it takes the population into the domain of attraction of a new
equilibrium. Thus, we should be concerned not with the genetic variance alone, but with the
distribution of the trait mean and variance, plus whatever other variables determine the

dynamics of the population. The choice may be between alternative adaptive peaks, or it may
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be between adaptation to new conditions and extinction (Lande and Shannon 1996, Holt and
Gomulkiewicz 1997). In either case, the effect of a bottleneck should be judged by whether it
leads to a new stable state, rather than whether it leads to an immediate increase in additive
variance. Given the many alternative ways in which populations can reach different adaptive
peaks (reviewed in Coyne et al. 1997, 2000) — most obviously through changes in the
environment — and the many speciation-facilitating effects that may be experienced by isolated
populations (Turelli et al. 2001), it is unclear why so much attention has been lavished on

drift-induced changes.

For some evolutionists, descriptions of epistasis and its possible consequences have
achieved almost mystical status. Several authors seem to believe that if epistasis can be
demonstrated to be pervasive and to contribute plausibly to increased additive variance after
population bottlenecks, this will make theories of adaptation and speciation that have no
significant empirical or theoretical support more credible (e.g., Cheverud 2000, Templeton 2000,
Wade 2000). As noted in our introduction, there is plenty of empirical and theoretical evidence
that epistasis 1s pervasive. Moreover, as we and others have shown, there are plausible
circumstances under which epistasis can contribute to increases in additive variance after a
population bottleneck. However, these are necessary but far-from-sufficient conditions for the
shifting balance theory to be a credible explanation of adaptation or for drift-based theories,
such as Mayr's (1963) "genetic revolutions," to be credible explanations for the origin of
species. Indeed, these arguments are no more convincing than claiming that pigs can fly,
because parts of pigs (e.g., American footballs) have been seen in the air. As we have
repeatedly stressed (e.g., Coyne et al. 1997, 2000), there are no serious models of selection on
polygenic traits that ignore epistasis for fitness. One of the simplest models, namely stabilizing
selection on an additive polygenic trait, shows all of the central characteristics that devotees of
epistasis extol: namely, the fitness effects of alleles depend both quantitatively and
qualitatively on the genetic background, many equilibria are possible, and both initial
conditions and the effects of drift are frequently decisive in determining the genotypes
prevalent near equilibria. In general, “peak shifts” may require changes in the mean, changes
in the variance, both or neither. We don’t know enough about fitness landscapes or their
temporal dynamics to say. Hence, the enthusiasm for increases in V4 seems misplaced. There
are several fundamental areas in evolution in which epistasis clearly plays a central role, such
as the genetics of postzygotic isolation (Turelli and Orr 2000) and theories of the evolution of
sexual reproduction (Peters and Lively 2000). It is time to move beyond claims that
theoreticians ignore epistasis and that the existence of epistasis somehow buttresses theories

that are untenable for other reasons.



36

The methods that we have used to understand the effects of random drift on
quantitative traits may be useful for problems of wider evolutionary significance. We have
used a general representation of epistasis (Barton and Turelli 1991, Kirkpatrick et al. 2002) that
makes no assumptions about the pattern of gene interaction. In the tradition of quantitative
genetics, we show that, at least for small levels of inbreeding, observable quantities depend on
just a few parameters. (For haploids, or diploids with no dominance, the outcome depends
solely on the variance components, while for diploids in general, the outcome also depends on
interaction terms related to the distribution of inbreeding depression across loci.) We believe
that our description of epistasis will facilitate progress on other questions — for example, why
the additive model gives an accurate description of most quantitative variation, how epistasis
affects the maintenance of variation (cf. Hermisson et al. 2003) or how epistasis influences the

response to selection (cf. Hansen and Wagner 2001).
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Appendix 1: Conditional expectations

As demonstrated in the text, the effect associated with the genotype carrying O alleles at
positions 1 € Sp and 1 alleles at positions 1 € S, denoted as, s, , is bs(— p)So gs, with §=
S¢ S;. Because this genotype has frequency gs, ps, and E[as | =0, we see that

Var (as) = E[od] = ) [bs (-P)g, s, 1% g5, Ps,
So S1=S
= b2 (pa)s ) Ps, Gs, = b (pa)g | | (P + i) (52)
So S1=S 1eS
= b2 (pq) ¢

for every set S. Given this simple form and our general expression for Vg, it follows that
finding the components of variance reduces to identifying the sets S that contribute to the

component in question.

For example, with haploids, V4 is simply the sum of the variances associated with each

individual locus, i.e.,

Vp = Zbﬁpiqi- (53)

iez
Similarly, Vaa is the sum of Var(ay; j;) for all pairs of distinct elements {i,j}. The only
complication introduced by diploidy is recognizing that additive effects can be associated with
either paternally or maternally inherited alleles. This introduces factors of 2, as discussed in
the text.

Appendix 2: Multilocus moments

The effect of genetic drift on genotype frequencies in a population can be described by
the Dy, defined relative to the initial allele frequencies p;. The D; give the change in allele
frequency, while higher-order Ds describe the linkage disequilibria. Assuming k diallelic loci,
the sets U run over all 2¥ — 1 distinct subsets of loci, Z = {1, 2, ..., k}; for instance, they might
be ordered {{1}, {2}, ..., {k}, {1,2}, {1,3}, ..., {k-1,k}, {1,2,3}, ..., {1,2,3,...k}}. To produce a
simple recursion for the moments of the multilocus associations under recombination and drift,

define
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M[a] = (D?), where D% = D{ . (54)
ucz
Here, a is a vector of 2F — lintegers that gives the power to which each Dy is raised in the
moment M , according to a natural ordering of the subsets U, such as the one specified above.
For example, the variance in allele frequency at locus i is (D%) = M|[a] with
ay =2forU = {i}and ay =0for U # {i}. Let |a| = Xz ay. The rate at which
recombination brings together a set of genes S from one genome and 7' from the other is rgr .

We scale recombination rates relative to the rate of random drift, using Rg7 =2 Nrgr.

A differential equation for the moments can be derived from the multilocus diffusion
approximation. The forward diffusion for the multivariate distribution of D, ¢/[D], is (Ewens
1979)

where the expected change in Dy due to recombination is My = Y gt_y; Rsj7(Ds Dt — Dy),
and the covariance between fluctuations in Dy and Dy is Cyy = Dyy — Dy Dy (Turelli and
Barton, 1990, Eq. A1.22). Substituting into Eq. 55, multiplying by D¢, and integrating over

D, we obtain

O¢M[a] = JZDa
Ucz

1 0
> Z 3Dy ( (Dyv — Dy Dy) ¥)

Vcz

- ) Rg|r (Ds Dy - Dy) ¥ +

ST=U

0
8Dy

(56)
dD.

Integrating by parts, using ggy =ay gy

O M[a] = E JS—U pe
8)
ucz

1 0
5 Z 5Dy ( (Dyv — Dy Dy) ¥)

Vcz

, We obtain

) Rsjn (Ds Dr - Dy) ¥ -

ST=U

dD

VAN = IEN
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ZaUZRS\T 1_3‘11 D%:T>—M[a])_

Ucz ST=U

1 a o
- —J p? ((Dyy - Dy Dy) ¢) dD.
2 Dy 0Dy

ooz vez

Integrating by parts again to simplify the second term, we obtain

O M[a] :ZaU Z Rg|r (<Da D;[]JDT > _M[a]) +

ST=U

). (58)

with all M zero initially. The expectations in Eq. 58 are moments with different indices. The
first expectation, for example, has ag, ar each incremented by 1, and ay decremented by 1,
and could be written M[a + 65 + 07 — 0] where ¢, is a vector with 6y = 1 and all other
entries zero. The second expectation must be simplified using the assumption of two alleles

per locus.

We can apply Eq. 5 of Barton and Turelli (1991), to see that if A, B and C are disjunct

sets without repeated indices,

Dapcc = as [icc (Pgi — Ai §)) = Xxy=c P4x(=A)y Dapy, (59)

with A; = p; — g;. For any sets U and V, we can apply this reduction with C = UV, A = U\C,

and B = V\C (so that U = ACand V = BC). Hence,

Ot M = i ay ZRS‘T <Da DD >—M

ST=U

1 2
> ay (ay - ou,v)
U,V

We can show from this recursion that moments are non-zero only when every locus

+

(60)

Z pdx (-4)y <D‘11 Dasy >—M .

Dy D
XY=UNV U=V

appears more than once. To see this, consider the two terms in Eq. 58 due to recombination
and drift. The first term relates moments involving sets of multiple loci to moments with
elements that are partitions of these sets (for example, (Dy; jx) Dy;y) is related to

(Dyi.jy Dy Dyiy))- The second term involves contributions from associations between Ds

43



involving unions of two sets (for example, (Dy; jx) Dy;y) is related to (Dy;; jx))). In both cases,
the set of loci involved remains the same ({i, i, j, k} in these examples). Non-zero
contributions can arise only from disequilibria in which all indices are repeated (for example,
Dy; ;i it ), and these reduce to expressions involving products of pgs. This reduction process
can eliminate multiple entries of loci, but cannot eliminate loci that appear only once. Thus,
any moment in which any locus appears just once must depend only on other moments in
which that locus appears just once, and since all such moments are initially zero, they will

remain zero.

To illustrate the method, we set out the recursions required to solve for (Ap? Ap§>.
These recursions depend on all other moments that involve the same set of loci, {i,i,j,j}: (D,Zj> ,
(Dij Ap; Apj>, (Dii Ap§>, (Dj Ap?), (Dj;j;). The last three reduce down to depend on
(Ap?), (Ap§>, as well as moments such as (D;;;) which will be zero. We thus have recursions

for five non-zero moments:

Or (APY) = pa; - (AP)

Or (4p%) = pay - (Ap%)

Or (APF AP%) = 4 ((Dij Ap; Aps) - (ApF AP3)) - 2 (Apf Ap3)
+(2p%) pa; + (4PF) Pay

Or (Dij AP; AP5) = (Diy) - 3 (Dij Ap; APy) + Pq; (AP3)
+pgy (Ap%) +R ((Ap: Ap3) - (Dij Ap; Aps))

O <D32_j> = Pg9; Py - <D32_j> + 2R ((Dij Ap; Apy) - <D§j>) '

(61)

where R is the scaled recombination rate between loci i, j.

To understand how Egs. 61 follow from Eq. 60, consider the simplest, for O <Ap§ >
This corresponds to a;y =2, and ay =0V U # {i}. Since <Ap§ »only involves a single locus,
the first term, representing recombination, does not contribute. (Formally, there is only one
partition of {i}, with rate Rg; = 1; since <]_3‘11 % > = (D?) = M, this term contributes
nothing.) The second term represents the effect of drift. Because only U = V = {i} contribute,
and ay;) = 2, the factor 5 Yy y ay (av - Sy,v) =4 2x (2 - 1) = 1. The sum is over all
partitions XY of U (| V={i}. Recall that C = U(V={i}, so that A = U\C=(, and B = V\C=0).
Therefore, for X={i},Y=0), the sum is pqi; (-A), (D2 ngfav y = pa; . For X=0, Y={i},
D]z{iD}V > = 0. Putting all this together, we have

Op (AP?) = pq; - (Ap?), as in the first of Egs. 61.

the sum is pgy (-4) (5, (D?
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It is simplest to solve for the Laplace Transform with respect to time,

M = [ Me™<T dT, in which case O, M is replaced by —z M in Eq. 60, and constant terms are
0

multiplied by % . For a pair of loci, an explicit solution can be found:

~T
(rp2 Ap§> e ?Tdr =

2 (B+2z (1l+2))
Z

(1+z) (2+2z) B P3P

~0

~T

(0p; Apy Dij)y e T dT =
0

(3B-Ry,5 (13+32) (2+2) -2R} 5 (2+2))
z(l+z) (2+2z)B

T
J (Df;) e *TdT =
0

Pdi PJ; (62)

(B-22z (6+2)Ri,5-22zR} )
z(l+z)B

Pdi Pdj

whereB= (1+2) (3+2) (6+2) +

Ri,j (2+2) (13+3z) +2R 5 (2+2).

T _ .
AsR - oo, Jo (0p% Ap3) e T dT tends to m As R - 0, it tends to
2 (9+z)

2 (T2 (3z) (672] These limiting forms transform back to

(spf op%)
(apf) (op3)
(0pi Ap3) F (1-F) (63)

5 > :1+7(6+3F+F2)asR+0,
(Ap%) (ApP3) 15

1l asR—> o

where F=1—¢~T. Thus, when recombination is fast relative to drift (R—oo), the squared
fluctuations are independent across loci ((Ap$ Ap3)=(Ap:) (Ap3)). When linkage is tight,
we are effectively following the random drift of a single multiallelic locus, but with the
constraint that the initial genotype frequencies are those of a population at linkage equilibrium.
The maximum is only 1.13 at 7=0.829 (F = 0.563) (Fig. 1).

Explicit formulae for more than two loci are cumbersome. However, solutions can be written

down for complete linkage:
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(0pf oP3 APR)
(0p%) (Ap3) (APE)
F (1-F)
315
3977 F° - 2002 F® + 728 F7 - 182F8 + 28 F° - 2 F!0)

(0pF AP3 APE APT)
(0p%) (Ap3) (ApE) (Ap?)
F (1-F)
45045
55233607 F* - 144969539 F° + 274747213 F°® -

410742592 F’ + 505345868 F® - 523438072 F° +
462108348 F10 - 349755705 Fl! + 227246175 F1? -
126455355 F13 + 59932665 F1* - 23976342 F1° +
7992270 F® - 2179710 F7 + 473850 F!® -

78975 F1? + 9477 F20 - 729 F?1 + 27 F?2) .

1+ (630 + 756 F - 3738 F? + 5892 F°> - 5763 F* +

=1+

(180180 + 582582 F - 369798 F? - 11804793 F> +

Associations among squared fluctuations increase substantially as more loci are involved (Fig.
2).

Mathematica code for automatic generation and solution of recursions such as these is

available from http://helios.bto.ed.ac.uk/evolgen/

Appendix 3: Random genotypic values

Haploids

We have very little idea as to plausible values for the coefficients by . At one extreme,
we could assume complete additivity, and set all nonlinear terms to zero. At the other extreme,
we can assign random trait values independently to each genotype. When genotypic values are
chosen independently, we expect all levels of epistasis. To produce a normal distribution of
phenotypes, we assume a normal distribution of genotypic values. In a subsequent paper, we
will analyze the resulting distribution of the coefficients by and present analytical results that
illuminate the simulations presented by Naciri-Graven and Goudet (2003). Here we use this
model simply to illustrate some general properties of components of genetic variance and the

consequences of bottlenecks.



= Diploids

A model of gene interaction in diploids must satisfy the condition that cis and trans
combinations give the same trait values. One way to ensure this is to assume that the ith locus
has an effect Y¥; which takes values —p; + p; ¢;(2d; — 1),

- % ((pi —qi)+2d; = 1)(1 =2 pi q:)), qi + pi qi(2d; — 1) for the three genotypes

{X; , Xif} = {0, 0}, {0, 1}, {1, 1}. This choice of scaling gives pure additivity with d; = %
With d; = 0, the O allele is recessive; and with d; = 1, the 1 allele is recessive. The
relationship is scaled such that E[Y;] = 0 so that the difference between homozygotes is 1 for
all d; . Note that this model is restrictive, in that the additive and dominance effects of each
locus must participate in interactions with other loci in the same way (i.e., via a single

dominance coefficient d; ).

We assign values to diploid genotypes by drawing the homozygous values at
2

-
for the ¢y in terms of these randomly drawn homozygous values, we construct a hypothetical

random,from a Gaussian distribution with mean zero and variance o7. To find an expression
population which contains only homozygotes. Genotype frequencies are at linkage
equilibrium, and allele frequency at locus i is set to P; = p;(1 — (2d; — 1) g¢;). This choice
ensures that E[Y;] = 0, where E[] denotes an expectation over the hypothetical population of

homozygotes. The coefficient cy is the regression of the trait on the product Y.

Appendix 4: Changes in trait mean and genetic variance in diploids

Variance of the trait mean

After a bottleneck, the average of the squared change of the trait mean is
(A Z2)) =D use 2wvse Pu Py (APy APy ) (Eq. 21). However, the sum is now over all sets of
diploid positions U, V¥; and these may contain one or two contributions from each locus (e.g., U
={im, if, jm}. Weseek sets U, V for which(Ap; Apy, ) is non-zero, making the
approximation of statistical independence across loci, and assuming (Ap,) = 0. To simplify the
accounting, let by = byp, where A is the set of loci for which only one of i, or i appears and
B is the set of loci for which both i, and i; appear. Enumerating terms of successively higher

order in Eq. 21, and invoking the assumption that there is no difference between cis and trans:
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((az)%)y = 43;0%,, (opd)
+4 3 briyip by iy (APF) + 55 bE 1y (APE)
+8 355 (briyio briyirs) +bli,9y10) (4PT) (4P3)
+4 0545 (4D, 3319 Py iy +Pgr i) Prayi
+byiyip by (i,3)) (API) (AP3)
+4 05 (bei, 3310 o, 3y ~ iy 33 Pgyiay) (65)
(ap}) (op3)
+2 3,5 (20853 143 +Pg (i) Poi,57) (4P1) (L4PF)
+4 35,505y 111) bpi, 3y (OPE) (APT)
+2445 08 (1,3) (OPE) (4PF)

All terms involving one or two loci are shown. The factors of 2¥ are tricky to work out. One

im Jr» bif Jm bif Jr
asymmetric sums such as >'. b; b; ;. twice, because we could have U = {i,,;}, Y = {i},, i
y 1 1n In,1s f

must count all equivalent coefficients (e.g. b; im? b etc.) and also count

or the converse. Also, when the terms being summed are symmetrical in i and j, the double
sum over i # j effectively introduces a factor of 2. (Here, for compactness, we allow both

bii, 5119 and b5, i} ¢ to appear in the double sum and assign them the same value. This can

cause some confusion in the accounting, because now, for instance, Vaa = 2 Z .b{zl. 1o Pdij»
1+] K

instead of the expression given in (15).) As a check on our bookkeeping, all 462 distinct
components for five loci were generated symbolically, in terms of arbitrary Ap,; these summed

correctly to the total squared change in mean for a particular choice of Ap;.

Substituting for the moments of allele frequency from Egq. 37,
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((02)%) = 4F 3, b%; ) g PAs
+2F% (3-F) Y; biy|pbg| (i) P9i (i - Pi)
+ 5 3 bd i, Pai (A+BpAa;)
2 2
+8F° )li,5 (briyip brayigsy + 074,59y 19) PDij
+2F3 (3-F)
2iiz5 (4bgi, 5310 brgyigiy + Doy iy +Privie begi,gy)
(di - Pi) Pd; 5 (66)
4 2
+F* (3-F)7 2iy5 (bri, 5310 Pori, 9y +oriyi3) bayiay)
(di -Pi) (dj - Pj) Py
R Y5 (2b%5) 5, + by i) Pojri,5)) Py (A+Bpdi)
25— (3-F) 25,5003 1(4) byy(a,9) (935 -P3) PAs5 (A+Bpg;)
+3E 2i43 bé\{i,j} pd;i; (A+Bpqgi) (A+Bpgj)

where A=F (15 (1-F) +6F2 -F3) B=5(3-16F +15F2 -6 F3 +F*). Some, but

not all, terms in this expression can be written in terms of the variance components (Eq. 38).

Finally, we set Var(Az) = ((2)*) — (z)%, where (z)is given by (34). Keeping only the

terms involving one or two loci, we have

(Az) = szw{i} pq; + F? qu)u,-,j} pg;; + ..., sothat
i i#]

2 _ 2 2 2 2
(Az)” = F E by Pa; + F E,ba)m} beyjy pdij + (67)
i i#j

3 4 2 2
2F > boyiy beyij P4 Py + F* > by pap + -
i+j i+j
Note that the first term in (A z)%is F2 Vpand the fourth term is F* Vpp. Subtracting (81) from

(80) and identifying variance components, we obtain (38).

= Change in additive genetic variance

Our expressions for the additive variance (15) and for the effects of allele frequencies

changes on the by (3) imply that the expected additive genetic variance after a bottleneck is

<VZ§> = Z Z bjUI bfLV <pq:_ ApU] Ap\v>' (68)
1 U,Vcz\i

The sets U,V can each contain at most one copy of the locus i. (For example, if 1 =i,,, each of

the sets U,V can contain iy ). This can be rearranged by choosing arbitrarily the case i = iy,



and noting that the complementary case i = iy will give the same contribution. We also
separate out the cases where the sets U, ¥ do not contain the locus i, where one or the other
does, and finally where both do and substitute pg} = (pdgi + (di - Pi) APy — Apﬁ) to

obtain

Viy=2) > (bi,ubg,y ((Pai -4PE)) +

1 U,VCZ\{in,is}
(brigyubrin,ioyv + Priy,icyv Prigyv)
((qi - pi) ApF - 4p3) +
bri,icyu bin,iov (PAi AP + (Qi - Pi) AP; - APE))
(APy APy )

69
=2 (1-F) qui Z (Apy APy ) (52

n U, VCZ\ {in it}
(bi,u bi,v +

F
(bi i,vbi v +biubi iv) - (2-F) (di - pi) +

F
b i,ubi_ i,v 10 (C+qui)>r

whereC = F (15-20F +10F? - 2F3)andD =10 (1-8F+ 10F%2 -5F3 + F%).
This expression is still complicated, because there can be contributions whenever the sets U, ¥V
contain loci that appear two, three or four times. Just as for the variance in trait mean, there

will be terms that do not depend solely on the variance components.

The first few terms, corresponding to the lowest powers of F, contributed by {U,

V3={D.D}, (U Uil {Uims ) @) are:

(V) =
2 (1-F) ) pai (b}, + bi,i, by, F (2-F) (a5 -pi) +

F

imlf 10 (C+qul)>

+8 (1-F) F ) paij (bi 5, +
i+3

(70)
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+4 (1-F) F ) paij (bi, 4, 5 b, +
i

(Di,isdn 3¢ Pin + Piy3n e Pigy e )
F

- (2-F) (di - pi) +

F
Biyicsn 3c Pinic 75 (C+DPAL)) + -

Identifying those terms that can be expressed as variance components leads to Eq. 48.

Appendix 5: Relation with two-locus analyses

Walsh and Lynch (1998, Ch. 3, Table 2) summarize Cockerham and Tachida's (1988)

results for two loci. The expected additive genetic variance is:

(Vi) = (1-f) 02 + 2 (f-y-2(A-6)) of +
2 (£-vy) o3pr +2 (Y- &) ob +
2 (y-A)i*+2 (y-A) (1% -1i%) (71)

+(4f-F-2v-1R) 0Zp,

where f is equivalent to our F', and y, A and ¢ are identity coefficients among three and four
genes at a single locus. Coefficients with an overbar involve two loci; assuming linkage
equilibrium throughout, these all reduce to 2. Walsh and Lynch (1998, Ch. 3, Eq. 2.3) gives
the single-locus coefficients as functions of time. Rewriting these in terms of F, and neglecting
terms of order 1/ Ne2 or smaller, we have:

E? 2y+5 F?

- = (3-F) A= S = —A
Y 2( ) 3 5

2 3 (72)
whereA = F (15-15F+6F° -F”).
Equation 71 includes only additive, dominance and additivexadditive effects - in our notation,

only coefficients of the form b; , b b;. ;.- Thus, it does not include contributions from

[N
Vbp or Vap that would enter even with just two loci. The coefficients 0'%, 0'2D, O'i A are the
usual variance components, which we write as V4, Vp, Vaa; for two alleles per locus,

i = Vp. We relate the remaining quantities to our notation below.

Substituting i* = 0%,y = f =A = F? inEq. 71,
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(Vi) = (1-F) o2 + 2 (F-3A+26) 03
2 (F-vy) Ofpy +2 (v -6) Oy +4F (1 -F) 02a- (73)

Substituting for the identity coefficients from Eq. 72 into Eq. 71,

(Va) =
2

(1-F) o2 + %F(I—F) (5-10F+10F2 -5F> +F*) o +

F(1-F) (2-F) o3pg + (74)

2
F? (1-F) (15-20F+10F2-2F3) 02, +4F (1-F) 0%,.

We must now relate the quantities 0%, 0%y, 0%, as defined by Walsh and Lynch (1998) to
our notation. Walsh and Lynch (1998) define these in terms of additive deviations of the jth
allele at the ith locus, @;;, and dominance deviations ¢; jx between alleles j and k at the ith locus.
The three quantities are, respectively, the variance of dominance deviation, 0'2D ; the covariance
between additive and homozygous dominance deviations, 0%, ; and the variance of

homozygous dominance deviations, o3, :

OD _Zzplj Pik &2 ijks

i j,k

2
Oapr = 2 Zpij aij 6ijj ’ and
J

ODI - 2 Zplj 61]]

and p;; is the frequency of the jth allele at the ith locus. The expressions printed in Walsh and
Lynch (1998, Ch. 3, Table 2) are incorrect in two ways. First, there is a factor of 2 in the

expression for Vapy, because additive effects of each of the two copies of the allele contribute,

(75)

, whereij; = Zpij dijy
3

but there is no such factor of 2 in the expressions for o3 and o3, , since there is only one
dominance deviation per locus. Second, the sum is over all pairs of alleles j, k in the
expression for 0%, not just over distinct alleles. The definitions above agree with those given

by Cockerham (1984, Table 9.1).

In our notation, @;; = b; {; jand ik = b;, , i, j Cik, where g ; 1s the effect of allele

Im

j. We assume that genes have the same effects across the sexes, so that we can write

big &i, j» Oik = beyi &, j Sisk- The two alleles are at frequencies g;, p; for X; =0, 1
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respectively, and the effects are {j, j = {;, j = —pi, +q; for X; =0, 1 respectively.

Substituting for p;;, @;;, 6;jx we have
2 2 2
Op = Zb®|i Pqj ,
i

0§D1=22bi|@b@\ipqi (9i -pi), and (76)
3

2 2 2
Opr = mei pg; -4 0p.
i

Substituting these expressions into Eq. 74 gives a formula corresponding to Eq. 76, though

without terms arising from associations amongst more than two genes (b etc.).

im jm if

Tables



Symbol

Loci, contexts, and positions

i, J

U={, j..}
i = iy
u={,j, ...}
U\YVY
Summations
Zieu

ElUgA

Allele frequencies and associations
X;

Pi

& = Xi —pi
p; = E[X;]
P4q;

Py = iy P4;
(lU = H.ielU gﬂ
Dy = E[{y]
Phenotypes
z

Z

/A

by

Variance components
Vg
Va
Vp

Vaappp = Va2 p3)

Expectations

E[g (Xi, X;.)]
(Ap})
Vp { % +B|,
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m Table 1. Summary of notation

Meaning

loci
a set of loci

a gene at locus i that was inherited from the male parent
(double — struck font indicates positions such as this)
a set of positions

the set U with the elements of the set ¥ removed; only defined
when V is a subset of U

a sum over all positions i in the set U

asum over all subsets U of the set A, including the set A
itself and the empty set ()

indicator variable that labels the allelic state of position i
reference value for position 1

deviation of an individual at position 1 from the reference value
frequency of allele X; = 1 at position i

P; (1 - D )

product of allele frequencies over the set of positions U
product of deviations over the set of positions U

association between the set of positions U

value of a phenotypic trait

trait mean

set of all positions influencing trait Z

contribution of the set of positions U to the phenotype z

total genotypic variance
additive genetic variance
dominance variance
higher — order components

expectation over genotype frequencies
expectation of Api2 over effects of random drift

average of { % + BJ, weighted by dominance variance

Table 1



B Table 2. Components of the expected variance in mean that contribute more than 5% at
F=0.5, under the random genotype model.

Component <AZ? > <AzZ? >
atF=0.5

4. 0%, <LPT) 0.399 0.799F
16 5.5 b%i 510 (AP;) (AP}) 0.147 0.587 F?
645, 5 b%i, 5,510 (APF) (APF) (APp) 0.115 0.917 F3
8 5.3 Prarie by (opl) (Lp3) 0.087 0.437F? - 0.197 F3 +

0.052F* -0.021F° +0.003 F®
323,54 Pr,3010 Bra,sria (APF) (APS) (4py) -0.072 -0.578 F*
4% b?;, (5, <(ap?) <Ap;%> 0.065 0.717F3 -0.497F* +

0.259F° -0.103F° +0.017 F’
Z.béun (<Ap§>-<Ap§>2) 0.051 0.291F2 -0.197F3 +

0.052F* -0.021F° +0.003 F®

Table 2



Figure legends

2 2
(AP; P >> , plotted against

Figure 1. The covariance between squared fluctuations at two loci, AR A)
i Bl

F,forR=2Nr=0,0.5, 1, 2, 4 (top to bottom).

([12p2)
[1<ap?)

Figure 2. The ratio for 2, 3, 4 loci (bottom to top), plotted against F, for complete

linkage.

Figure 3. Changes in variance components with degree of drift for a haploid population.
Genotypic values were assigned randomly with 0'3 = 1; there are five unlinked loci, with initial
allele frequencies 0.1, 0.3, 0.45, 0.6, 0.7. Dashed lines show theoretical expectations from Eq.
28 (Vg withk = 1to 5 from top to bottom at right). The additive variance (k = 1) is shown by
the thicker lines. Solid curves show the average over 100 simulations, iterating genotype

frequencies for a population of 50 haploid individuals for 200 generations.

Figure 4. Variance in Z, plotted against F. The dots show the average over 1000 replicate diploid
populations of size 2 N = 50, iterated for 200 generations and held at linkage equilibrium
throughout. The smooth curve shows the prediction from Eq. 38 (a sum over 462 terms). The
dashed curve shows the prediction based on the actual moments of allele frequency, but
assuming statistical independence across loci; these are barely distinguishable. The lower
straight line shows the prediction 2 F'V 4 based on additive variance alone; this is the leading
contribution for small '. The trait is determined by five loci with complete dominance;
homozygous phenotypes are chosen independently from a standard normal distribution. Initial

frequencies of the recessive allele were {0.1, 0.3, 0.45, 0.6, 0.7}.

Figure 5. The contributions of the separate terms in Eq. 38 to the expected variance in trait mean,
plotted against inbreeding, F'. The same genotypic values are used as in the diploid five-locus
example of Fig. 4. The upper straight line shows the leading term, 2 F'V,. Components that

contribute more than 7% at F' = 0.5 are shown by thicker lines, and are tabulated in Table 2.

Figure 6. Dots show the expected additive genetic variance, averaged across 1000 replicates;
parameters as for Fig. 4. This fits closely with the expected relation, from Eq. 48. Deviations
are not statistically significant. The straight line shows the contribution from the additive

genetic variance in the base population, V4 (1 — F).

Figure 7. The average change in additive genetic variance across 1000 replicates, shown with

10 individual sample paths. Parameters are as in Fig. 4.
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var(z)
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var(z)
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