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Population Genetics

Population genetics is concerned with the study of the ancestry of a partic-
ular population in terms of its genetic evolution. For this purpose, a sample
of DNA sequences from the population is analyzed.

It is assumed that all of the sequences have evolved from a common ancestral
one and genetic variation in the sample is due to a number of mutations
having occurred in its ancestry (no recombination).

The ancestral relationships in the sample are described by a genealogy.

The mutational history of the sample is model by a mutational process.
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The Problem

The population genetics problem consists of inference about the genealogical
tree and about the mutational process given the tree. It is of particular
interest to infer the times, in the past, when coalescence events occurred
and most importantly to estimate the TMRCA.

The Method

• Model-free Approach: only specifies a mutation model and makes no
assumptions about the genealogy and the demography.

• Maximum likelihood estimates and likelihood-based confidence intervals
for the coalescence times.

• Viterbi-type Algorithm which exploits the Markovian structure of the
tree to maximize the joint likelihood and calculate the profile likelihoods
of the coalescence times in a sequential manner.
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Model and Assumptions

Mutation Model: The DNA sequence data are modeled by assuming that
each site evolves independently of all others and mutations occur as events
in a Poisson process with rate 1. The mutation rate defines the scale in
which time is measured (1 mutation is expected in one unit of time).

Markov Property: Evolution is independent along different paths (lineages).

Constant Molecular Clock: The lengths of the branches connecting each
internal node to its descendent tips are identical.

Assumption: The mutation rate is sufficiently low and repeat mutations are
sufficiently rare that the number of mutations on the branches of the tree
can be inferred from the data (similar to infinitely-many-sites assumption).
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The log-Likelihood Function

We assume that, given observed DNA data for m individuals, the tree topol-
ogy and the numbers of mutations on the branches of the tree will be known.

Let ni denote the number of mutations on the ith branch and let bi

be the branch length. The log-likelihood of the “observed” data n =
(n1, . . . , n2(m−1)) and the unobserved variables b = (b1, . . . , b2(m−1)), is given
by

`(n,b) =

2(m−1)∑
i=1

gi(bi),

where gi(bi) = ni log(bi) − bi is the contribution of the data on the ith
branch, and each bi is a function of at most two coalescence times.

For ML estimation of coalescence times, the log-likelihood has to be maxi-
mized over b, subject to some constraints on the branch lengths.
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The Viterbi Algorithm: HMM

Consider a HMM where the hidden underlying process {Xt}T
t=1 is a homo-

geneous discrete-time Markov chain on a finite state-space S = {1, . . . ,m},
with transition probability matrix P = [pij] and stationary distribution
π = (π1, . . . , πm). Let gj(Yt | Xt = j), j = 1, . . . ,m denote the probability
distribution of the observed variable Yt, t = 1, . . . , T , given the unobserved
state Xt.

The Viterbi algorithm exploits the Markovian structure of the HMM to built
a reqursion for the calculation of the joint probability, δt, of (X1, . . . , Xt)
and (Y1, . . . , Yt), maximized over the states (X1, . . . , Xt−1):

δt(j) =
[
max

i
δt−1(i)pij

]
gj(yt−1 | xt−1 = j), j = 1, . . . ,m.

Maximization of the joint likelihood is achieved for the value of j that max-
imizes δT (j).
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The Viterbi Algorithm: Estimation of Coalescence Times

We construct a Viterbi-type algorithm for the estimation of coalescence times
in genealogical trees, by exploiting the Markov property in the tree: The time
at the ith node only depends on the times at its immediate neighbouring
nodes.

The numbers of mutations correspond to the observed data of the HMM,
while the branch lengths correspond to the unobserved states that need to
be restored. Given the branch lengths the coalescence times will be also
known.
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The Algorithm

A Viterbi-type algorithm can be constructed to maximize the log-likelihood
function `.

This is given by:

• Start from pairs of tips which coalesce.

• Go up the tree, iteratively computing the contribution to the log-
likelihood of the data on the subtree below the ith node, maximized
over the coalescence times at the internal nodes of this subtree.

• At the final step of the sequential procedure, the profile log-likelihood of
the time t at the root of the tree, `(t), is obtained.
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MLEs and CIs

The MLE for the TMRCA will be the value of t that maximizes `(t). Since
`(t) is convex, a unique maximum exists.

Let `∗ denote the maximum of the profile log-likelihood of t and define the
deviance of `(t) from `∗ by

D∗(t) = 2(`∗ − `(t)).

An 100(1 − α)% likelihood-based CI for t, is given by

{t : D∗(t) ≤ cα},

where cα is the uper 100(1 − α)% point of the χ2
1 distribution.

The MLEs and profile log-likelihoods for the other coalescence times can
then be obtained, going down the tree, in an annalogous manner.
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Generalizations

1 Partially known tree topologies can also be analyzed with our method.
These include ambiguous parts where the exact order of some coalescence
events is not known. When maximizing sequentially the log-likelihood,
more complicated steps are needed for the ambiguous parts in the tree.

2 The previous discussion was based on the assumption that the available
chromosomal segment was the same for all individuals and, therefore, all
the DNA sequences in the sample had the same length. Our method can
be easily adopted to analyze samples of sequences of different lengths.
In this case, the branch lengths are scaled by the mutation rates of the
respective sequences.
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Simulation Study

We have conducted several simulation experiments in order to assess the
performance of our method.

We have considered simulated data sets of different sample sizes from the
coalescent, under various assumptions for the population model (constant
population size, exponentially growing population, structured population).

We used the infinitely-many-sites model as the mutation model and consid-
ered different mutation rates.

The results have shown that the ML method is more accurate than other
model-free methods, and more robust to demographic forces generating the
data than model-based methods.

As the sequence lengths increase, the MLEs are asymptotically efficient (reg-
ular problem).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Simulation Results

We compared our method with two other model-free approaches under dif-
ferent demographic models (a Tang et al., 2002 and Thomson et al., 2000).
The comparison is with respect to the accuracy of the estimation of the
TMRCA. (Model-based approaches suffer from non-robustness.)

The results given below correspond to a simulation study where 500 genealo-
gies for samples of n = 20 sequences were generated from the coalescent,
assuming (1) constant population size, (2). exponential growth and (3)
structure: 2 migrating subpopulations.

ML Method Tang et al. Thomson et al.

(1) Relative Error 0.1106 0.1208 0.1293
Coverage probability 0.9600 0.9600 0.9980

(2) Relative Error 0.1464 0.1547 0.1530
Coverage probability 0.9440 0.9400 1.000

(3) Relative Error 0.1007 0.1064 0.1101
Coverage probability 0.9480 0.9480 0.9960
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Application to Human Y-chromosome DNA Data

We have analazed a worldwide sample of 82 DNA sequences from the human
Y chromosome (tree shown before).

The available sequences were of different lenghts. Previous studies only
analyzed a subsample of these data (43 sequences) for which the available
chromosomal segment was the same for all of the individuals.

Apart from estimating the TMRCA, it is of interest to estimate the ages
of coalescences 1 (separation from the deep African clade) and 2 (human
population expansion).

Small dataset: The subset of these data was analyzed by Thomson et al.
(2000) using genetree under the assumption of constant population and
of exponential growth, as well as using their simple model-free estimator for
the TMRCA. The results are not robust to different demographic models.
The method of Tang et al. (2002) is not able to estimate the coalescence
times at internal nodes.
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Results: Small Dataset

MLEs (in thousands of years) and 95% CIs, based on the profile likelihood,
for the times of important events are given below. Results from previous
analysis are also given for comparison purposes.

Method TMRCA CI

Maximum Likelihood 63 (40 − 100)
Tang et al. 63 (29 − 98)
Thomson et al. 70 (10 − 130)
genetree (const. pop.) 84 (55 − 149)
genetree (exp. growth) 59 (40 − 140)

Method T1 CI T2 CI

Maximum Likelihood 45 (32 − 74) 37 (27 − 67)
genetree 47 (35 − 89) 40 (31 − 79)
Segregating Sites 43 (37 − 111) 42 (36 − 109)
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Results: Full Dataset

MLEs (in thousands of years) and 95% CIs, based on the profile likelihood,
for the times of important events are given below.

MLE CI

TMRCA 55 (37 − 82)
T1 35 (25 − 49)
T2 30 (21 − 41)

Note: The estimates obtained by analyzing the full data are smaller.
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Conclusions

• We have developed a Viterbi-type algorithm for ML estimation of coa-
lescence times in genealogical trees.

• CIs for the coalescence times, based on the profile likelihood, are also
calculated.

• The ML method is more accurate than existing model-free methods and
more robust to demographic forces than model-based methods.

• Generalizations of the method to deal with partially known tree topolo-
gies and sequences of different lengths are very important for real data
applications.
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