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Introduction
Multiresolution quad-trees are
used in image analysis. For
example: given a layer of pixels
at finest resolution, successively
aggregate blocks of pixels to
produce coarser layers. A sim-
ple model then stipulates the
black/white value of a pixel
depends on its neighbours in the
same layer and (with a different
interaction strength) on its parent
and daughters.

This talk describes initial steps in understanding the qualitative
behaviour of this algorithm, addressing the following question:

“What do phase transitions look like when the finest
layer of pixels is unconstrained (“free boundary”)?”

For details, seeKendall and Wilson (2002).

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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1. Image analysis

Wilson and Li (2002): Segmentation of noisy shapes.
Bhalerao et al. (2001), Thönnes et al. (2002): application to MCMC
in medical imaging.

Multiresolution MAP algorithm, 1.3% misclassification:

⇐⇒

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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Quad-tree formed by successive averaging using “decimation”:

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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Multiresolution: pros and cons

+ FAST since low resolution “steers” high resolution;

+ adapted to some kinds ofHIGH-LEVEL objects;

− can produce“BLOCKY ” reconstructions:
resolution hierarchy mediates all spatial interactions.

Possible solution

Add further explicitlyspatial interactions?

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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2. Generalized quad-trees

DefineQd as graph whose vertices are cells of all dyadic tessellations
of Rd, with edges connecting each cell to its2d neighbours, and also
its parent (covering cell in tessellation at next resolution down) and
its 2d daughters (cells which it covers in next resolution up).

Cased = 1:

[0,1)[0,1)

[0,1/2)[0,1/2) [1/2,1)[1/2,1)

[−1,0)[−1,0)

Neighbours at same level also are connected.

Remark: No spatial symmetry!

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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Further define:

• Qd;r as subgraph ofQd at res-
olution levels ofr or higher;

• Qd(o) as subgraph formed by
o and all its descendants.

• Remark: there are many graph-isomorphisms betweenQd;r

andQd;s, with naturalZd-action;

• Remark: there are graph homomorphisms injectingQ(o) into
itself, sendingo to x ∈ Q(o) (semi-transitivity).

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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Simplistic analysis

DefineJλ to be strength of neighbour interaction,Jτ to be strength
of parent interaction. IfSx = ±1 then probability of configuration is
proportional toexp(−H) where

H = −1

2

∑
〈x,y〉∈E(G)

J〈x,y〉(SxSy − 1) , (1)

for J〈x,y〉 = Jλ, Jτ as appropriate.

If Jλ = 0 then the free Ising model onQd(o) is abranching process
(Preston 1977; Spitzer 1975); if Jτ = 0 then the Ising model on
Qd(o) decomposes into sequence ofd-dimensional classical (finite)
Ising models. So weknow there is a phase change at(Jλ, Jτ ) =
(0, ln(5/3)) (branching processes), andexpectone whenλ = 0+,
indeed at(Jλ, Jτ ) = (ln(1 +

√
2), 0+) (2-dimensional Ising).

But is this all that there is to say?

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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3. Random clusters

A similar problem, concerning Ising models on products of trees
with Euclidean lattices, is treated byNewman and Wu (1990). We
follow them by exploiting the celebratedFortuin-Kasteleyn random
cluster representation(Fortuin and Kasteleyn 1972; Fortuin 1972a;
Fortuin 1972b):

The Ising model is the marginal site process atq = 2 of a site/bond
process derived from a dependent bond percolation model with con-
figuration probabilityPq,p proportional to

qC ×
∏

〈x,y〉∈E(G)

(
(p〈x,y〉)

b〈x,y〉 × (1− p〈x,y〉)
1−b〈x,y〉

)
.

(whereb〈x,y〉 indicates whether or not〈x, y〉 is closed, andC is the
number of connected clusters of vertices). Site spins are chosen to be
the same in each cluster independently of other clusters with equal
probabilities for±1.

http://http://www.warwick.ac.uk/statsdept/Staff/WSK


Image analysis

Generalized quad-trees

Random clusters

Percolation

Comparison

Simulation

Future work

References

Home Page

Title Page

JJ II

J I

Page 10 of 29

Go Back

Full Screen

Close

Quit

Random cluster facts

• (Representation of Ising model.) The marginal bond process
is Ising with

p〈x,y〉 = 1− exp(−J〈x,y〉) ; (2)

• (FK-comparison inequalities.) Ifq ≥ 1 andA is anincreasing
event then

Pq,p(A) ≤ P1,p(A) (3)

Pq,p(A) ≥ P1,p′(A) (4)

where

p′〈x,y〉 =
p〈x,y〉

p〈x,y〉 + (1− p〈x,y〉)q
=

p〈x,y〉

q − (q − 1)p〈x,y〉
.

SinceP1,p is bond percolation (bonds open or not independently
of each other), we can find out about phase transitions by studying
independentbond percolation.

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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4. Percolation

Independent bond percolation on products of trees with Euclidean
lattices have been studied byGrimmett and Newman (1990), and
these results were used in theNewman and Wuwork on the Ising
model. So we can make good progress by studying independent bond
percolation onQd, usingpτ for parental bonds,pλ for neighbour
bonds.

Theorem 1 There is almost surely no infinite cluster inQd;0 (and
consequently inQd(o)) if

2dτXλ

(
1 +

√
1−X−1

λ

)
< 1 ,

whereXλ is the mean size of the percolation cluster at the origin for
λ-percolation inZd.

ModelledonGrimmett and Newman (1990,§3 and§5).

Get

(
1 +

√
1−X−1

λ

)
from matrix spectral asymptotics.

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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00 11

00

11

ττ

λλ

NoNo
infiniteinfinite
clustersclusters
herehere

Infinite clusters hereInfinite clusters here

(may or may not be unique)(may or may not be unique)

??

22
−d−d

The story so far: smallλ, small to moderateτ .

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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Case of smallτ

Needd = 2 for mathematical convenience. Use Borel-Cantelli argu-
ment and planar duality to show, for supercriticalλ > 1/2 (that is,
supercritical with respect to planar bond percolation!), all but finitely
many of the resolution layersLn = [1, 2n] × [1, 2n] of Q2(o) have
just one large cluster each of diameter larger than constant× n.

Hence . . .

Theorem 2 Whenλ > 1/2 and τ is positive there is one and only
one infinite cluster inQ2(o).

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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00 11

00

11

ττ

λλ

NoNo
infiniteinfinite
clustersclusters
herehere

Infinite clusters hereInfinite clusters here

1/41/4

1/21/2

Just one unique infinite cluster hereJust one unique infinite cluster here

(may or may not be unique)(may or may not be unique)

??

The story so far: adds smallτ for cased = 2.

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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Uniqueness of infinite clusters

TheGrimmett and Newman (1990)work was remarkable in pointing
out that asτ increases so there is afurther phase change, from many
to just one infinite cluster forλ > 0. The work ofGrimmett and
Newmancarries through forQd(o). However the relevant bound is
improvedby a factor of

√
2 if we take into account the hyperbolic

structure ofQd(o)!

Theorem 3 If τ < 2−(d−1)/2 and λ > 0 then there cannot be just
one infinite cluster inQd;0.

Method: sum weights of “up-paths” inQd;0

starting, ending at level0. For fixeds and
start point there are infinitely many such up-
paths containings λ-bonds; but no more than
(1 + 2d + 2d)s which cannot be reduced by
“shrinking” excursions. Hence control the
mean number of open up-paths stretching
more than a given distance at level0.

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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Contribution to upper bound on second phase transition:

Theorem 4 If τ >
√

2/3 then the infinite cluster ofQ2:0 is almost
surely unique for all positiveλ.

Method:prune bonds, branching processes, 2-dim comparison . . .

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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00 11

00

ττ

λλ

NoNo
infiniteinfinite
clustersclusters
herehere

Infinite clusters hereInfinite clusters here

1/41/4

1/21/2

(may or may not be unique)(may or may not be unique)
??

0.8160.8160.7070.707

Just one unique infinite cluster hereJust one unique infinite cluster here

1

Many infinite clustersMany infinite clusters

The story so far: includes uniqueness transition for cased = 2.

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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5. Comparison

We need to apply the Fortuin-Kasteleyn comparison inequalities (3)
and (4). The event “just one unique infinite cluster” isnot increas-
ing, so we need more.Newman and Wu (1990)show it suffices to
establish afinite island propertyfor the site percolation derived under
adjacency when all infinite clusters are removed.Thus:

00 11

00

ττ

λλ

1/41/4

1/21/2

0.8160.8160.7070.707

1

finite islandsfinite islands

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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Comparison arguments then show the following schematic phase
diagram for the Ising model onQ2(o):

ττ

λλ

0.707

JJ

JJ 0.2880.288 0.5110.511

0.6930.693

1.0991.099

1.2281.228 2.2922.292

UniqueUnique

GibbsGibbs
Root influencedRoot influenced

by wired boundaryby wired boundary

All nodes substantiallyAll nodes substantially

correlated with eachcorrelated with each

other in case of freeother in case of free

boundary conditionsboundary conditions

Free boundary conditionFree boundary condition

is mixture of the two extremeis mixture of the two extreme

Gibbs states (spin 1 atGibbs states (spin 1 at

boundary, spin −1 at boundary)boundary, spin −1 at boundary)

statestate

1.1901.1900.7620.762

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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6. Simulation

Approximate simulations confirm the general story:

http://www.dcs.warwick.ac.uk/˜rgw/sira/sim.html

(1) Only 200 resolution levels;

(2) At each level, 1000 sweeps in scan order;

(3) At each level, simulate square sub-region of128 × 128 pixels
conditioned by mother64× 64 pixel region;

(4) Impose periodic boundary conditions on128× 128 square re-
gion;

(5) At the coarsest resolution, all pixels set white. At subsequent
resolutions, ‘all black’ initial state.

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
http://www.dcs.warwick.ac.uk/~rgw/sira/sim.html
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(a)Jλ = 1, Jτ = 0.5 (b) Jλ = 1, Jτ = 1 (c) Jλ = 1, Jτ = 2

(d) Jλ = 0.5, Jτ = 0.5 (e)Jλ = 0.5, Jτ = 1 (f) Jλ = 0.5, Jτ = 2

(g) Jλ = 0.25, Jτ = 0.5 (h) Jλ = 0.25, Jτ = 1 (i) Jλ = 0.25, Jτ = 2

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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7. Future work

This is about thefree Ising model onQ2(o). Image analysis more
naturally concerns the case of prescribed boundary conditions (say,
image at finest resolution level . . . ).

Question: will boundary conditions at “infinite fineness” propagate
back to finite resolution?

Series and Sinaı̆ (1990)show answer is yes for analogous prob-
lem on hyperbolic disk (2-dim, all bond probabilities the same).

Gielis and Grimmett (2001)point out (eg, in Z3 case) these bound-
ary conditions translate to aconditioningfor random cluster model,
and investigate using large deviations.

Project: do same forQ2(o) . . . and get quantitative bounds?

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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A. Notes on proof ofTheorem 1

Mean size of cluster ato bounded above by

∞∑
n=0

∑
t:|t|=n

Xλτ
n(Xλ − 1)T (t)X n−T (t)

λ

≤
∞∑

n=0

Xλ(τXλ)
n

∑
t:|t|=n

(1−X−1
λ )T (t)

≤
∞∑

n=0

Xλ(2
dτXλ)

n
∑

j :|j |=n

(1−X−1
λ )T (j)

≈
∞∑

n=0

Xλ(2
dτXλ)

n

(
1 +

√
1−X−1

λ

)n

.

For last step, use spectral analysis of matrix representation∑
j :|j |=n

(1−X−1
λ )T (j) =

[
1 1

] [
1 1

1−X−1
λ 1

]n [
1
1

]
.

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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B. Notes on proof ofTheorem 2

Uniqueness: For negative exponentξ(1 − λ) of dual connectivity
function, set

`n = (n log 4 + (2 + ε) log n) ξ(1− λ) .

More than one “̀n-large” cluster inLn forces existence of open path
in dual lattice longer thaǹn. Now use Borel-Cantelli . . . .

On the other hand super-criticality will meansomedistant points in
Ln are inter-connected.

Existence:consider4n−[n/2] points inLn−1 and specified daughters
in Ln. Study probability that

(a) parent percolates more than`n−1,

(b) parent and child are connected,

(c) child percolates more thaǹn.

Now use Borel-Cantelli again . . . .

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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C. Notes on proof ofTheorem 3

Two relevant lemmas:

Lemma 1 Consideru ∈ Ls+1 ⊂ Qd and v = M(u) ∈ Ls ⊂ Qd.
There are exactly2d solutions inLs+1 of

M(x) = Su;v(x) .

One isx = u. The others are the remaining2d − 1 verticesy such
that the closure of the cell representingy intersects the vertex shared
by the closures of the cells representingu andM(u). Finally, if
x ∈ Ls+1 does not solveM(x) = Su;v(x) then

‖Su;v(x)− Su;v(u)‖s,∞ > ‖M(x)−M(u)‖s,∞ . (5)

Lemma 2 Givendistinctv andy in the same resolution level. Count
pairs of verticesu, x in the resolution level one step higher, such that

(a) M(u) = v; (b) M(x) = y; (c) Su;v(x) = y.

There are at most2d−1 such vertices.

http://http://www.warwick.ac.uk/statsdept/Staff/WSK
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D. Notes on proof ofTheorem 4

Prune! Then a direct connection is certainly established across the
boundary between the cells corresponding to two neighbouring ver-
ticesu, v in L0 if

(a) theτ -bond leading fromu to the relevant boundary is open;

(b) aτ -branching process (formed by usingτ -bonds mirrored across
the boundary) survives indefinitely, where this branching pro-
cess has family-size distribution Binomial(2, τ 2);

(c) theτ -bond leading fromv to the relevant boundary is open.

Then there are infinitely many
chances of making a connec-
tion across the cell boundary.
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E. Notes on proof of
infinite island property

Notion of “cone boundary”∂c(S) of finite subsetS of vertices: col-
lection of daughtersv of S such thatQd(v) ∩ S = ∅.

Use induction onS, building it layerLn on layerLn−1 to obtain
an isoperimetric bound:#(∂c(S)) ≥ (2d − 1)#(S). Hence deduce

P [S in island atu] ≤ (1− pτ (1− η))(2d−1)n

where#(S) = n andη = P [u not in infinite cluster ofQd(u)].
Upper bound on numberN(n) of self-avoiding pathsS of length

n beginning atu0:

N(n) ≤ (1 + 2d + 2d)(2d + 2d)n .

Hence upper bound on the mean size of the island:
∞∑

n=0

(1 + 2d + 2d)(2d + 2d)nη
n(1−2−d)
br ,

whereηbr is extinction probability for branching process based on
Binomial(2d, pτ ) family distribution.
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