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Motivation

• Many diseases have a heritable component; mapping the underlying gene(s) has many
potential benefits

• Linkage disequilibrium (LD) mapping (a.k.a. association mapping) has potential to
achieve greater resolution than pedigree studies (more meioses in population history than
in a pedigree)

• Large samples (individuals × markers) are required when LD is weak, e.g. if there is
◦ Ancient origin of disease allele
◦ Complex genetic basis underlying the disease
◦ Phenocopies (individuals with disease status but without the disease allele)

• A technology called DNA pools allows cheap genotyping of many individuals
◦ There is at least one “Pooled Genome Scan” dataset of approximately 16,000

bi-allelic markers where phenotypes are complex disease thought to have polygenic
basis – a potentially very informative dataset
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Linkage disequilibrium mapping

• Looks for association between disease status and allelic state at marker locus or loci

• Example (Muir et al. 2001)

DRD5 microsatellite Control Schizophrenia
allele count frequency count frequency
134 15 1.72 4 1.27
136 22 2.51 3 0.95
138 78 8.92 29 9.18
140 39 4.46 6 1.90
142 31 3.55 12 3.80
144 35 4.00 18 5.70
146 67 7.67 12 3.80
148 384 43.9 169 53.5
150 110 12.9 32 10.1
152 64 7.32 21 6.65
154 22 2.52 10 3.16
156 7 0.80 0 0.00

• Assume ancient polymorphism in marker DRD5 microsatellite

• Assume schizophrenia predisposing allele arose on unique genetic background
(there was complete LD at some time in the past)

• Interpret weak association because of either weak effect, or recombination, or both
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DNA Pools

• A pool consisting of exactly equal quantities of DNA from many individuals is mixed
together and then typed. The ratio of peak heights on the chromatograph inform us
about the frequencies of the alleles present in the pool

• Advantage Effort saved can be used to type more individuals and/or markers

• Disadvantages
◦ Peak height estimation and differential amplification of alleles lead to imprecise

estimates of allele frequencies (but this is a small problem)
◦ No phase / linkage information acquired
◦ No multipoint analysis available

· Multipoint analysis uses data from several markers simultaneously to weigh the
evidence for the disease locus being at a given position

· Several multipoint methods are available for analysing haplotypes or
phase-unknown diploid genotypes (e.g. DMLE+ Reeve & Rannala 2002, BLADE
Liu et al. 2001, COLDMAP Morris et al. 2002, 2003, 2004)
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Accurate estimation of allele frequencies

From Barcellos et al. 1997 AJHG 61:734
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DNA pools throw away phase information

12
18

36
27

1
2

haplotypes

Fully resolved haplotypes

Data from DNA pools
allele frequencies 42

54
32
64

31
65

• No information from DNA pools about strong LD between second and third markers

• At present marker loci must be analysed one by one

• Obviously pooling only considered within diseased and control groups
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Single point methods are inadequate

• p-values confound effect size (strength of LD) and power (heterozygosity of marker;
number of alleles), leading to “incoherent” conclusions

• Decision to attempt positional cloning should be based on a quantified region estimate

• Failure to use all the information leads to inefficiently large region estimates

N = marker, ∗ = disease locus, • = − log10 (p−value)
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Real Data: APOE and Alzheimers

From Martin et al. 2000 AJHG 67:383
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Real Data: Cytochrome p450 Enzyme

From Morris et al. 2004 AJHG 74:945
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A new mapping method: “Poolmap”

• Advantages
◦ Uses multilocus allele frequency data, not haplotypes
◦ Non-parametric model for genealogy at disease locus
◦ No assumption about map distances between markers
◦ Robust to (unknown) rate of phenocopies, and to dominance at disease locus
◦ Computationally rapid
◦ Calculates profile likelihood comparable to posterior density

• Disadvantage: Less precise inferences because
◦ Less information (used) from data
◦ Non-parametric model
◦ Conservative elimination of nuisance parameters
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Poolmap method uses a nonparametric model
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Data, model and parameters likelihood function
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The likelihood function

L(z, x, P; D, C) ∝
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where d∗
ij = dij − δjai

xi are the counts that is not “explained” by a and x

and I(d∗
ij ≥ 0) ∈ {0, 1} is an indicator function

• Applies for arbitrary numbers of alleles at each locus

• Awkward to work with, but efficient numerical exploration possible by using the Pool
Adjacent Violators Algorithm (PAVA; Brunk 1955)

Crucial Assumptions Made

• Rare disease predisposing allele

• Linkage Equilibrium and Hardy–Weinberg proportions in blocks of non-ancestral
chromosome
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Profile likelihood for reducing dimensionality

Lmax(z; D, C) = max
x,P

L (z, x, P; D, C)

Lln Lln

x,P)( x,P)(
zz

MLE MLE

profile

Profile likelihoods “behave” like ordinary likelihoods in several respects:

• Maximum at same value of z

• Equivalence between support regions
Θ(c) = {(z, x, P) : L (z, x, P; D, C) > c} is a level c support region
Z(c) = {z : Lmax (z; D, C) > c} is a level c profile support region

z ∈ Z(c) ⇐⇒ ∃ (x, P) s.t. (z, x, P) ∈ Θ(c)

a value of z is “in one iff it’s in the other” Multipoint linkage disequilibrium mapping using multilocus allele frequency data – p. 15/27



Why this might not work

• I’ve deliberately abused the likelihood framework, choosing a “parameter” x so that the
likelihood function has a simple form. Ordinarily x would be a random variable with
distribution indexed by age of disease allele and other parameters

• Whereas nuisance parameters can be eliminated by maximisation, nuisance random
variables must be eliminated by integration

• Treating x as a parameter means that all (isotonic–antitonic) x are equally “plausible”
a priori, but e.g. highly asymmetric x should be “less plausible”

R. A. Fisher (Design of Experiments, 1935) on the subject of nonparametric inference:
an erroneous assumption of ignorance is not innocuous [in inductive inference]; it
often leads to manifest absurdities. (with apologies to Sprott)

• Nonparametric model has higher dimensional parameter space than sample space
(z, x, P) ∈ R Z

n
R

n and (D, C) ∈ Z
2n for biallelic loci

• Summary using profile likelihood is both contraversial (may lead to misinference) and
conservative (may lead to non-inference or huge loss of information)
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Poolmap generally produces “coherent” conclusions
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Test on simulated data sets

• Model assumed by DMLE+ Bayesian analysis program of Rannala and Reeve (2001,2002)

• 100 disease haplotypes and 200 control haplotypes

• n = 10, 28 or 82 markers at locations mi uniform on [0cM, 2cM] interval

• Marker loci biallelic with allele frequencies uniform on [0.2, 0.8]

• Position of disease locus, z∗, uniform on [(m1 + m2)/2, (mn−1 + mn)/2]

• 1000 replicates for each combination of parameter values
◦ Young: Allele age 100 generations, no phenocopies
◦ Ancient: Allele age 1500 generations, no phenocopies
◦ Phenocopies: Allele age 100, 50% or 75% phenocopy chromosomes

· Chromosomes in disease pool carry disease allele with probability 0.25
· E.g. Disease allele at 0.5%, risk ratio RDd/Rdd = 100, 1% phenocopies in

population

• Note only age × (mn − m1) is identifiable
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Does L
max

(·) behave like an ordinary likelihood?

Yes, to the extent that confidence intervals based on a “Pretend Bayes” procedure (interpret
normalized Lmax(z) as a density π(z)) have coverage properties (slightly) better than their size
would suggest
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Information Gain increases with marker density
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(Very) Fast Runtimes
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• MCMC methods typically take days for n ' 30

• Composite likelihood methods are effectively O(n2)
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Comparison: Poolmap vs. Minimum p-value
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Compare point estimates µz (mean of density π(z)) vs. zmin p

Statistical metatheorem: Likelihood method will be as or more efficient (have smaller variance
of error distribution) than frequentist method
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Comparison: Poolmap vs. Minimum p-value
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Poolmap estimator is technically LESS efficient than minimum p-value estimator because of rare
extremely large errors, but has more density around small errors

Width of profile likelihood will give a “warning” when a large error occurs; there is no
analogue in the minimum p-value procedure
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Comparison: Poolmap vs. Minimum p-value

When disease locus position z∗ is restricted to [0.5cM, 1.5cM] Poolmap generally gives more
efficient point estimates that the minimum p-value method

n Allele fp Poolmap Minimum p-value

age (µz − z∗) |µz − z∗| (zmin p − z∗) |zmin p − z∗|

s.d. Q0.5 Q0.9 s.d. Q0.5 Q0.9

cM cM cM cM cM cM

10 100 0 0.159− 0.063− 0.187− 0.296+ 0.158+ 0.492+

28 100 0 0.058− 0.035− 0.091− 0.202+ 0.109+ 0.342+

82 100 0 0.037− 0.021− 0.057− 0.156+ 0.082+ 0.241+

10 1500 0 0.255ns 0.069ns 0.358ns 0.224ns 0.079ns 0.330ns

28 1500 0 0.102ns 0.019− 0.090− 0.102ns 0.033+ 0.132+

82 1500 0 0.026− 0.011− 0.033− 0.050+ 0.023+ 0.078+

10 100 0.75 0.532(+) 0.361ns 0.892(+) 0.477(−) 0.311ns 0.803(−)

28 100 0.75 0.453ns 0.225ns 0.794ns 0.423ns 0.229ns 0.716ns

82 100 0.75 0.255− 0.116− 0.384− 0.344+ 0.190+ 0.600+

+/−: p ≤ 0.01 ; (+)/(−): 0.01 < p ≤ 0.05 ; ns: 0.05 < p estimated by bootstrapping
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Real Data: Cytochrome p450 Enzyme

(individuals with no missing data only:

256 controls)

12 diseaseds

(very)ABC posterior density

poolmap profile likelihood

Modified from Morris et al. 2004 AJHG 74:945
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Summary

• In gene mapping region estimates are REQUIRED (and not merely preferable)

• Multipoint analysis of multilocus allele frequency data is possible

• Method described is robust to unknown population history, unknown rate of phenocopies,
and unknown dominance

• Works “quite well” if modelling assumptions are violated, e.g. allele affecting trait is
common, and markers not at linkage equilibrium

• Data sets of up to 1000 markers can be analysed quickly

• Power analysis (for one case; not shown) suggested that
◦ Roughly 3× wider region estimates are obtained by Poolmap than by Bayesian

analysis of fully resolved haplotypes
◦ Roughly 3× marker density can compensate for this

• Bias and efficiency of point estimates should not be sole criteria for judging performance

• Functions of Lmax(·) provide rapidly calculatable summary statistics that can be used for
e.g. Approximate Bayesian Computation, or multipoint significance tests
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