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Light and the nature of space-time

Light follows the geodesics of space-time

Gravitational lensing

Massive objects curve space-time in their vicinity

What is the nature of quantum space-time?
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Motivation
Space-time on the quantum level

Closed strings probe or ‘feel-out’ space-time on the quantum level
(∼ 10−35m)

Worldsheet of closed string probing space-time



Motivation
Flux compactifications of closed string theory

6 unobserved dimensions of strings’ 10 dimensional target space are perhaps rolled up/

compactified in

Flux compactifications

I string vacua with p-form fluxes along the extra dimensions
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Flux compactifications of closed string theory

X : Σ −→ M = R4 × KH

H-flux, H = dB, turned on in extra dimensions of string vacua KH



Motivation
Non-commutative and non-associative space-time geometry

geometric KH
T−duality

// “non− geometric” KR

I closed strings propagating and winding in the R-flux background probe a
non-commutative and non-associative space-time geometry
(Blumenhagen, Plauschinn: 2010, Lüst: 2010)

I confirmed by explicit string and CFT calculations (Blumenhagen, Deser,
Lüst, Plauschinn, Rennecke: 2011, Condeescu, Florakis, Lüst: 2012)

Constant trivector R-flux: R = 1
3!
R ijk∂i ∧ ∂i ∧ ∂k

Coordinate algebra probed by closed strings in R-flux compactification:

non-commutative [x i , x j ] =
i`4

s
3~ R

ijk∂k , [x i , ∂j ] = i~δi
j and [∂i , ∂j ] = 0

non-associative [x i , x j , xk ] = `4
sR

ijk
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Motivation
Attempt to understand non-geometric space-time

I Kontsevich’s deformation quantization of twisted Poisson manifolds
provides explicit star product realizations of this non-associative geometry
(Mylonas, Schupp, Szabo: 2012)

I If one replaces

xi · x j 7−→ x i ? x j

one recovers the “non-geometric” commutation relations and Jacobiator

nc [x i , x j ]? =
i`4

s
3~ R

ijk∂k , [x i , ∂j ]? = i~δi
j and [∂i , ∂j ]? = 0

na [x i , x j , xk ]? = `4
sR

ijk

I The coordinate algebra with the ?-product is a non-commutative and
non-associative algebra on the R-flux compactification



Motivation
Attempt to understand non-geometric space-time

I Kontsevich’s deformation quantization of twisted Poisson manifolds
provides explicit star product realizations of this non-associative geometry
(Mylonas, Schupp, Szabo: 2012)

I If one replaces

xi · x j 7−→ x i ? x j

one recovers the “non-geometric” commutation relations and Jacobiator

nc [x i , x j ]? =
i`4

s
3~ R

ijk∂k , [x i , ∂j ]? = i~δi
j and [∂i , ∂j ]? = 0

na [x i , x j , xk ]? = `4
sR

ijk

I The coordinate algebra with the ?-product is a non-commutative and
non-associative algebra on the R-flux compactification



Motivation
Attempt to understand non-geometric space-time

I Kontsevich’s deformation quantization of twisted Poisson manifolds
provides explicit star product realizations of this non-associative geometry
(Mylonas, Schupp, Szabo: 2012)

I If one replaces

xi · x j 7−→ x i ? x j

one recovers the “non-geometric” commutation relations and Jacobiator

nc [x i , x j ]? =
i`4

s
3~ R

ijk∂k , [x i , ∂j ]? = i~δi
j and [∂i , ∂j ]? = 0

na [x i , x j , xk ]? = `4
sR

ijk

I The coordinate algebra with the ?-product is a non-commutative and
non-associative algebra on the R-flux compactification



Motivation
Twist deformation quantisation

I (Mylonas, Schupp, Szabo: 2013) observed that noncommutative and
nonassociative star products can be obtained via a cochain twisting of
classical symmetries to a quasi-Hopf algebra

I For a particular choice of “classical algebra of symmetries” g

I and “cochain twist” F ∈ Ug⊗ Ug, we obtain

?-product: ? = µ ◦ F−1

flip: τ = F 21 ◦ σ ◦ F−1 x i ? x j = τ .
(
x j ? x i

)
associator: φF = (1⊗ F ) ◦ (1⊗∆)(F ) ◦ φ ◦ (∆⊗ 1)(F−1) ◦ (F−1 ⊗ 1)

(x i ? x j ) ? xk = φF .
(
x j ? (x i ? xk )

)
I quasi-Hopf algebra (H, τ, φF ) = “generalised quantum group /

quantum symmetries”

Vladimir Gershonovich Drinfeld
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Motivation
Where these formulae come from...

? and flip: AF ⊗ AF

F−1

��

? // A

A⊗ A

µ

;; AF ⊗ AF

F−1

��

τ // AF ⊗ AF

A⊗ A
σ
// A⊗ A

F 21

OO

? = µ ◦ F−1 τ = F 21 ◦ σ ◦ F−1

associator: (AF ⊗ AF )⊗ AF

F−1⊗1

��

φF // AF ⊗ (AF ⊗ AF )

(A⊗ A)F ⊗ AF

(∆⊗1)(F−1)

��

AF ⊗ (A⊗ A)F

1⊗F

OO

(A⊗ A)⊗ A
φ

// A⊗ (A⊗ A)

(1⊗∆)(F )

OO

φF = (1⊗ F ) ◦ (1⊗∆)(F ) ◦ φ ◦ (∆⊗ 1)(F−1) ◦ (F−1 ⊗ 1)



Motivation
Goal

Goal Mathematical development of a framework to describe a large
class of non-commutative and non-associative geometries,
including the non-geometric flux compactification above.
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Non-commutative and non-associative algebras from deformations
Gelfand-Naimark

Israel Moiseevic Gelfand

‘ I have mentioned the closeness between the style of mathematics and the style of classical music or poetry. I was happy

to find the following four common features: first – beauty, second – simplicity, third – exactness, fourth – crazy ideas.

The combination of these four things: beauty, exactness, simplicity and crazy ideas is just the heart of mathematics, the

heart of classical music. ’

Mark Aronovich Naimark



Non-commutative and non-associative algebras from deformations
Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds
with a symmetry group action G.

Lem G a Lie group, Ug the universal enveloping algebra of its
associated Lie algebra g. Then there is a functor:

Gelfand-Naimark G -Manop C∞ // UgAlg

“Manifolds may be analyzed by studying functions on them.”

Thm F a twist of Ug. Then there is a functor:

Quantisation UgAlg
F

'
// H Alg

“Algebras transforming under classical symmetries are twisted
to nc/ na algebras transforming under quantum symmetries H.”

Remark Twist deformation quantisation is an equivalence of categories.

Application Recover MSS Algebra by choosing Ug, a particular algebra A in
UgAlg and twist F ∈ Ug⊗ Ug.



Non-commutative and non-associative algebras from deformations
Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds
with a symmetry group action G.

Lem G a Lie group, Ug the universal enveloping algebra of its
associated Lie algebra g. Then there is a functor:

Gelfand-Naimark G -Manop C∞ // UgAlg

“Manifolds may be analyzed by studying functions on them.”

Thm F a twist of Ug. Then there is a functor:

Quantisation UgAlg
F

'
// H Alg

“Algebras transforming under classical symmetries are twisted
to nc/ na algebras transforming under quantum symmetries H.”

Remark Twist deformation quantisation is an equivalence of categories.

Application Recover MSS Algebra by choosing Ug, a particular algebra A in
UgAlg and twist F ∈ Ug⊗ Ug.



Non-commutative and non-associative algebras from deformations
Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds
with a symmetry group action G.

Lem G a Lie group, Ug the universal enveloping algebra of its
associated Lie algebra g. Then there is a functor:

Gelfand-Naimark G -Manop C∞ // UgAlg

“Manifolds may be analyzed by studying functions on them.”

Thm F a twist of Ug. Then there is a functor:

Quantisation UgAlg
F

'
// H Alg

“Algebras transforming under classical symmetries are twisted
to nc/ na algebras transforming under quantum symmetries H.”

Remark Twist deformation quantisation is an equivalence of categories.

Application Recover MSS Algebra by choosing Ug, a particular algebra A in
UgAlg and twist F ∈ Ug⊗ Ug.



Non-commutative and non-associative algebras from deformations
Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds
with a symmetry group action G.

Lem G a Lie group, Ug the universal enveloping algebra of its
associated Lie algebra g. Then there is a functor:

Gelfand-Naimark G -Manop C∞ // UgAlg

“Manifolds may be analyzed by studying functions on them.”

Thm F a twist of Ug. Then there is a functor:

Quantisation UgAlg
F

'
// H Alg

“Algebras transforming under classical symmetries are twisted
to nc/ na algebras transforming under quantum symmetries H.”

Remark Twist deformation quantisation is an equivalence of categories.

Application Recover MSS Algebra by choosing Ug, a particular algebra A in
UgAlg and twist F ∈ Ug⊗ Ug.



Non-commutative and non-associative algebras from deformations
Equivalence of algebra representation categories

We are interested in obtaining nc/ na spaces by deforming classical manifolds
with a symmetry group action G.

Lem G a Lie group, Ug the universal enveloping algebra of its
associated Lie algebra g. Then there is a functor:

Gelfand-Naimark G -Manop C∞ // UgAlg

“Manifolds may be analyzed by studying functions on them.”

Thm F a twist of Ug. Then there is a functor:

Quantisation UgAlg
F

'
// H Alg

“Algebras transforming under classical symmetries are twisted
to nc/ na algebras transforming under quantum symmetries H.”

Remark Twist deformation quantisation is an equivalence of categories.

Application Recover MSS Algebra by choosing Ug, a particular algebra A in
UgAlg and twist F ∈ Ug⊗ Ug.



Example: “Moyal-Weyl” analogue of non-associative algebra

I g the non-Abelian nilpotent Lie algebra over C with generators
{ti , t̃

i ,mij : 1 ≤ i < j ≤ n} and Lie bracket relations

[ t̃ i ,mjk ] = δi
j tk − δi

k tj

I “classical algebra of symmetries” Ug

I “R-flux”: rank-three skew-symmetric real-valued tensor R =
(
Rijk

)n

i,j,k=1

I “cochain twist” F ∈ Ug⊗ Ug given by

F = exp
(
− i ~

2

(
1
4

Rijk (mij ⊗ tk − ti ⊗mjk ) + ti ⊗ t̃ i − t̃ i ⊗ ti

))
I The star product is given by ? = µ ◦ F−1. On A = C∞(R2n), this yields

nc [x i , x j ]? =
i`4

s
3~ R

ijkpk , [x i , pj ]? = i~δi
j and [pi , pj ]? = 0

na [x i , x j , xk ]? = `4
sR

ijk

I The flip is given by τ = F−2

I The associator is given by φF = exp
( ~2

2
Rijk ti ⊗ tj ⊗ tk

)
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Non-commutative and non-associative bundles from deformations
Serre-Swan

Jean-Pierre Albert Achille Serre

Richard Gordon Swan



Non-commutative and non-associative bundles from deformations
Equivalence of module representation categories

Given a nc/ na space, we want to understand all H-equivariant vector bundles
(e.g. tangent bundle, cotangent bundle) and operations between them

Lem M a manifold with G -action. Then there is a functor:

Serre-Swan G -VecBunM
Γ∞ // Ug

C∞(M)MC∞(M)

“Vector bundles may be analysed by studying their modules of
sections.”

Thm F a twist of Ug. Then there is a functor:

Quantisation Ug
C∞(M)MC∞(M)

F

'
// H

AMA

“Modules of sections over classical algebras are twisted to nc/
na modules of sections over quantum algebras.”

Remark Twist deformation quantisation is an equivalence of categories

Application Applied to our non-geometric space, this gives us all
H-equivariant vector bundles over the nc/na algebra describing
the flux compactification.
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Non-commutative and non-associative bundles from deformations
Tensor fields and homomorphism bundles

I The representation category of any quasi-Hopf algebra is a closed braided
monoidal category, which means that it has a tensor product, a braiding
and internal homomorphisms.

I For the category H
AMA of H-equivariant vb over A ∈H Alg we obtain:

Thm H
AMA is a closed braided monoidal category (⊗A, τA, homA)

Physical relevance This gives standard operations on fields:

1 nc/na vector bundles can be tensored ⊗A  tensor fields

2 V ⊗A W
τA // W ⊗A V  allows us to define symmetric

and anti-symmetric tensors

3 homA are nc/na homomorphism bundles  e.g. g ,R

metric: g : VField −→ 1− Forms

curvature: R : V −→ V ⊗A Ω2
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Work in progress/ outlook

I Differential operators, connections, Riemannian geometry in H
AMA

I Develop a gravity theory in H
AMA which is a candidate for a low-energy

effective theory for non-geometric closed string theory

Geometry on curved spaces
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