The $\mathcal{N}=4$ Pentabox through Colour-Kinematics Duality

Young Theorists Forum 2014

Gustav Mogull g.mogull@ed.ac.uk

Higgs Centre for Theoretical Physics, University of Edinburgh

December 17, 2014

Complexity of Feynman Diagrams

■ Scattering amplitudes are traditionally formed as a sum of constituent Feynman diagrams.

- These grow both in complexity and number with increasing numbers of scattered particles and internal loops.

Figure: Three gluon jet production events.

- The situation is worse for gravity amplitudes as all possible kinds of vertex exist.

Hidden Structure in Yang Mills Amplitudes

- The Parke-Taylor formula for tree-level colour-ordered Yang Mills scattering amplitudes takes the form

$$
\begin{aligned}
& A^{\text {tree }}\left(1^{+}, 2^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}, \\
& \mathcal{A}_{n}^{\text {tree }}=\sum_{\sigma \in S_{n}} A^{\text {tree }}(\sigma(1), \sigma(2), \ldots, \sigma(n)) \operatorname{Tr}\left[T^{a_{\sigma(1)}} T^{a_{\sigma(2)}} \ldots T^{a_{\sigma(n)}}\right] .
\end{aligned}
$$

- Colour-ordered (colour-stripped) amplitudes are formed from planar Feynman diagrams with ordered external legs only.
- Recent advances in Yang Mills amplitudes are Lagrangian free, e.g. Yangian symmetry, Grassmannia, dual coordinates, the Amplituhedron, etc.
■ Can we reconcile this elegant structure with our intuitive, yet computationally impractical, Feynman diagrams?

The Tree-Level Feynman Diagram Expansion

- The Feynman diagram expansion at tree-level is realised as a sum of cubic graphs only.

$$
A_{m}^{\text {tree }}=g^{m-2} \sum_{\text {diagrams } j} \frac{c_{j} n_{j}}{\mathcal{D}_{j}}
$$

- \mathcal{D}_{j} are products of Feynman propagators, c_{j} are colour factors (products of $f^{a b c} \mathrm{~s}$) and n_{j} are kinematic numerators.
- At 4 points we have the s, t and u channels.

Colour-Kinematics Duality

- Colour-factors of diagrams often satisfy Jacobi identities of the form

$$
c_{i} \pm c_{j} \pm c_{k}=0
$$

due to $f^{a b c} f^{c d e}+f^{b c d} f^{a d e}+f^{c a d} f^{b d e}=0$.

- This occurs whenever three diagrams are the same, except for internal s, t and u - channels.
- At tree-level, it has been proven (arXiv:0805.3993) that we may choose Bern, Carrasco \& Johansson (BCJ) kinematic numerators, n_{i}, satisfying

$$
n_{i} \pm n_{j} \pm n_{k}=0
$$

■ Does this imply the existence of a kinematic group?

Loop-Level Expressions

■ Existence of loop-level BCJ numerators is merely conjectured, though there is strong evidence.

- Yang Mills amplitudes take the form, with $D=4-2 \epsilon$,

$$
\mathcal{A}_{m}^{\text {L-loop }}=i^{L} g^{m-2+2 L} \sum_{\text {diagrams j }} \int \prod_{k=1}^{L} \frac{d^{D} \ell_{k}}{(2 \pi)^{D}} \frac{1}{S_{j}} \frac{n_{j}\left(\ell_{k}\right) c_{j}}{\mathcal{D}_{j}\left(\ell_{k}\right)} .
$$

- An example of a BCJ move on the "pentabox" numerator would be

The Double-Copy Formula

- This gives tree-level gravity amplitudes from BCJ numerators:

$$
\mathcal{M}_{m}^{\text {tree }}=i\left(\frac{\kappa}{2}\right)^{m-2} \sum_{j} \frac{n_{j} \tilde{n}_{j}}{\mathcal{D}_{j}} .
$$

■ At loop-level, the double-copy formula generalises to

$$
\mathcal{M}_{m}^{\text {L-loop }}=i^{L+1}\left(\frac{\kappa}{2}\right)^{m-2+2 L} \sum_{j} \int \prod_{k=1}^{L} \frac{d^{D} \ell_{k}}{(2 \pi)^{D}} \frac{1}{S_{j}} \frac{n_{j}\left(\ell_{k}\right) \tilde{n}_{j}\left(\ell_{k}\right)}{\mathcal{D}_{j}\left(\ell_{k}\right)}
$$

- These formulae continue to hold in the supersymmetric regime, potentially providing supergravity amplitudes at loop-level.

Finding BCJ Numerators

■ BCJ systems are formed by diagrams making up an L-loop amplitude.
■ Candidate numerators must satisfy 3 important properties:
1 All possible BCJ moves of the form $n_{i} \pm n_{j} \pm n_{k}=0$.
2 Any symmetries of the corresponding graphs.
3 Reproduction of the complete amplitude on summation of diagrams.

- It suffices to determine the numerators of the master diagrams: from these, all other numerators are straightforwardly obtainable through BCJ moves.
■ However, if we need to compare to a known amplitude, what have we achieved?

Generalized Unitarity in $\mathcal{N}=4$ at 1 Loop

■ Colour-ordered, 1-loop $\mathcal{N}=4$ amplitudes are expressible as a sum of box diagrams,

$$
\begin{aligned}
& A^{1 \text {-loop }}(1,2, \ldots, n)=\int \frac{d^{4} \ell}{(2 \pi)^{4}} \mathcal{A}^{1 \text {-loop }}(1,2, \ldots, n) \\
& =\sum_{\text {channels } A} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{B_{A}}{\ell^{2}\left(\ell-K_{1}^{A}\right)^{2}\left(\ell-K_{1}^{A}-K_{2}^{A}\right)^{2}\left(\ell+K_{4}^{A}\right)^{2}} .
\end{aligned}
$$

- $\left\{K_{i}^{A}\right\}$ is an ordered partition of the external momenta p_{i}, e.g. $\left\{K_{1}, K_{2}, K_{3}, K_{4}\right\}=\left\{p_{1}+p_{2}, p_{3}+p_{4}, p_{5}, p_{6}\right\}$ at 6 points.
■ The coefficients B_{A} are unknown and independent of ℓ.

Generalized Unitarity in $\mathcal{N}=4$ at 1 Loop

$$
\begin{aligned}
& \mathcal{A}(1,2, \ldots, n)=\sum_{\text {channels } C} \frac{B_{C}}{\ell^{2}\left(\ell-K_{1}^{C}\right)^{2}\left(\ell-K_{1}^{C}-K_{2}^{C}\right)^{2}\left(\ell+K_{4}^{C}\right)^{2}} \\
& \ell^{2}\left(\ell-K_{1}^{A}\right)^{2}\left(\ell-K_{1}^{A}-K_{2}^{A}\right)^{2}\left(\ell+K_{4}^{A}\right)^{2} \mathcal{A}(1,2, \ldots, n) \\
& =\sum_{\text {channels } C} B_{C} \frac{\ell^{2}\left(\ell-K_{1}^{A}\right)^{2}\left(\ell-K_{1}^{A}-K_{2}^{A}\right)^{2}\left(\ell+K_{4}^{A}\right)^{2}}{\ell^{2}\left(\ell-K_{1}^{C}\right)^{2}\left(\ell-K_{1}^{C}-K_{2}^{C}\right)^{2}\left(\ell+K_{4}^{C}\right)^{2}} .
\end{aligned}
$$

- Choose the 4 components of ℓ such that

$$
\begin{align*}
\ell^{2}= & \left(\ell-K_{1}^{A}\right)^{2}=\left(\ell-K_{1}^{A}-K_{2}^{A}\right)^{2}=\left(\ell+K_{4}^{A}\right)^{2}=0 . \\
B_{A} & =\ell^{2}\left(\ell-K_{1}^{A}\right)^{2}\left(\ell-K_{1}^{A}-K_{2}^{A}\right)^{2}\left(\ell+K_{4}^{A}\right)^{2} \mathcal{A}(1,2, \ldots, n) \\
& =\operatorname{Cut}_{A}(1,2, \ldots, n) . \tag{1}
\end{align*}
$$

- Key point: a knowledge of the cuts suffices to reconstruct the full amplitude.

Generalizing to the 2-Loop, 5-Point System

- We need only compare to 3 different cuts, all of which contain no triangles, bubbles or tadpoles.

- We compare these to the BCJ expansion (rather than the irreducible expansion) of the colour-ordered integrand,

$$
\mathcal{A}^{2-\text { loop }}\left(12345 ; \ell_{1}, \ell_{2}\right)=\sum_{\text {diagrams } i} \frac{n_{i}}{\mathcal{D}_{i}} .
$$

■ Nonplanar graphs and topologies make no contribution as we are interested in the colour-ordered amplitude.

The 5-Point, 2-Loop System in $\mathcal{N}=4$

Figure: The 6 diagrams contributing to the 5-point, 2-loop amplitude in $\mathcal{N}=4$.

The New Approach

- $\Delta=$ Cut $_{\text {pentabox }}=$ $\ell_{1}^{2}\left(\ell_{1}-p_{1}\right)^{2}\left(\ell_{1}-p_{1}-p_{2}\right)^{2} \ldots\left(\ell_{1}+\ell_{2}\right)^{2} \mathcal{A}^{2 \text {-loop }}$ is the maximal cut of the integrand, taken when all pentabox propagators are zero.
- The pentabox itself is the only diagram that contributes on this cut, hence in this case $n=\Delta$. Thus,

$$
\begin{aligned}
n\left(12345 ; \ell_{1}, \ell_{2}\right) & =\Delta+f_{1}\left(12345 ; \ell_{1}, \ell_{2}\right) \ell_{1}^{2} \\
& +f_{2}\left(12345 ; \ell_{1}, \ell_{2}\right)\left(\ell_{1}-p_{1}\right)^{2}+\ldots
\end{aligned}
$$

■ We determine the unknown rational functions f_{i} by considering the other two cuts, both of which are double-boxes.

A Double-Box Cut

- Take the same cut as previously leaving $\left(\ell_{1}-p_{1}\right)^{2}$ nonzero.

Cut $_{\text {double-box }}=\ell_{1}^{2}\left(\ell_{1}-p_{1}-p_{2}\right)^{2} \ldots\left(\ell_{1}+\ell_{2}\right)^{2} \mathcal{A}^{2 \text {-loop }}$
$=\frac{n\left(12345 ; \ell_{1}, \ell_{2}\right)}{\left(\ell_{1}-p_{1}\right)^{2}}+\frac{n\left(12345 ; \ell_{1}, \ell_{2}\right)-n\left(21345 ; \ell_{1}, \ell_{2}\right)}{\left(p_{1}+p_{2}\right)^{2}}$
$=\frac{\Delta\left(12345 ; \ell_{1}, \ell_{2}\right)+\left(\ell_{1}-p_{1}\right)^{2} f_{2}\left(12345 ; \ell_{1}, \ell_{2}\right)}{\left(\ell_{1}-p_{1}\right)^{2}}$
$+\frac{\left.\Delta\left(12345 ; \ell_{1}, \ell_{2}\right)+\left(\ell_{1}-p_{1}\right)^{2} f_{2}\left(12345 ; \ell_{1}, \ell_{2}\right)-\left(p_{1} \leftrightarrow p_{2}\right)\right)}{\left(p_{1}+p_{2}\right)^{2}}$

Solving the Double-Box Cut

- We choose to express the cut in terms of irreducible numerators,

$$
\mathrm{Cut}_{\text {double-box }}=\frac{\Delta}{\left(\ell_{1}-p_{1}\right)^{2}}+\Delta_{2}
$$

- The cut equation holds under arbitrary permutations of external momenta. So consider the same equation, taking $p_{1} \leftrightarrow p_{2}$, and solve to obtain

$$
\begin{aligned}
& f_{2}\left(12345 ; \ell_{1}, \ell_{2}\right)+f_{2}\left(21345 ; \ell_{1}, \ell_{2}\right) \\
& =\Delta_{2}\left(12345 ; \ell_{1}, \ell_{2}\right)+\Delta_{2}\left(21345 ; \ell_{1}, \ell_{2}\right)
\end{aligned}
$$

- This is a symmetry condition on f_{2} and can be solved by taking $f_{2}=\Delta_{2}+g_{2}$, where $g_{2}\left(12345 ; \ell_{1}, \ell_{2}\right)=-g_{2}\left(21345 ; \ell_{1}, \ell_{2}\right)$.

Progressing to a Solution

- Once all the cut equations are solved, we are most of the way to a solution. For $\mathcal{N}=4$ we also need to set diagrams containing triangles to zero.
- Ultimately we are left with a solution of the form

$$
\begin{aligned}
n\left(12345 ; \ell_{1}, \ell_{2}\right) & =n^{\mathrm{CJ}}\left(12345 ; \ell_{1}, \ell_{2}\right)-\chi(34512) \ell_{1}^{2} \\
& -(\chi(13254)-\chi(25413))\left(\ell_{1}-p_{1}\right)^{2} \\
& +(\chi(13254)-\chi(24513))\left(\ell_{1}-p_{1}-p_{2}\right)^{2} \\
& -\chi(12345)\left(\ell_{1}-p_{1}-p_{2}-p_{3}\right)^{2},
\end{aligned}
$$

where n^{CJ} is a solution, first found by Carrasco \& Johansson via method of ansatz (arXiv:1106.4711), and χ is a new function satisfying

$$
\begin{aligned}
& \chi([1,2] 345)=\chi(123[4,5])=\chi(12345)-\chi(54321)=0, \\
& \chi(12345)+\chi(25341)+\chi(51342)=0
\end{aligned}
$$

Outlook

■ Our workflow can be summarised as:
1 Evaluate cuts of planar integrands using unitarity methods.
2 Use these to derive BCJ master numerators.
3 From these extract the full amplitude using BCJ moves, and a corresponding gravity amplitude.

- The ansatz method has failed to produce a solution for the 5-loop, 4-point $\mathcal{N}=4$ system,

- We would like to move beyond $\mathcal{N}=4$, deriving numerators for pure YM amplitudes.

Thanks for listening!

