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Complexity of Feynman Diagrams

Scattering amplitudes are traditionally formed as a sum of
constituent Feynman diagrams.
These grow both in complexity and number with increasing
numbers of scattered particles and internal loops.

(a) LO (b) NLO (c) NNLO

Figure: Three gluon jet production events.

The situation is worse for gravity amplitudes as all possible
kinds of vertex exist.
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Hidden Structure in Yang Mills Amplitudes

The Parke–Taylor formula for tree–level colour–ordered Yang
Mills scattering amplitudes takes the form

Atree(1+, 2+, . . . , i−, . . . , j−, . . . , n+) =
〈ij〉4

〈12〉 〈23〉 · · · 〈n1〉
,

Atree
n =

∑
σ∈Sn

Atree(σ(1), σ(2), . . . , σ(n))Tr [T aσ(1)T aσ(2) . . .T aσ(n) ] .

Colour–ordered (colour–stripped) amplitudes are formed from
planar Feynman diagrams with ordered external legs only.

Recent advances in Yang Mills amplitudes are Lagrangian free,
e.g. Yangian symmetry, Grassmannia, dual coordinates, the
Amplituhedron, etc.

Can we reconcile this elegant structure with our intuitive, yet
computationally impractical, Feynman diagrams?
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The Tree–Level Feynman Diagram Expansion

The Feynman diagram expansion at tree–level is realised as a
sum of cubic graphs only.

Atree
m = gm−2

∑
diagrams j

cjnj
Dj

.

Dj are products of Feynman propagators, cj are colour factors
(products of f abcs) and nj are kinematic numerators.

At 4 points we have the s, t and u channels.
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Colour–Kinematics Duality

Colour–factors of diagrams often satisfy Jacobi identities of
the form

ci ± cj ± ck = 0,

due to f abc f cde + f bcd f ade + f cad f bde = 0.

This occurs whenever three diagrams are the same, except for
internal s, t and u– channels.

At tree–level, it has been proven (arXiv:0805.3993) that we
may choose Bern, Carrasco & Johansson (BCJ) kinematic
numerators, ni , satisfying

ni ± nj ± nk = 0.

Does this imply the existence of a kinematic group?
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Loop–Level Expressions

Existence of loop–level BCJ numerators is merely conjectured,
though there is strong evidence.

Yang Mills amplitudes take the form, with D = 4− 2ε,

AL-loop
m = iLgm−2+2L

∑
diagrams j

∫ L∏
k=1

dD`k
(2π)D

1

Sj

nj(`k)cj
Dj(`k)

.

An example of a BCJ move on the “pentabox” numerator
would be
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The Double–Copy Formula

This gives tree–level gravity amplitudes from BCJ numerators:

Mtree
m = i

(κ
2

)m−2∑
j

nj ñj
Dj

.

At loop–level, the double–copy formula generalises to

ML-loop
m = iL+1

(κ
2

)m−2+2L∑
j

∫ L∏
k=1

dD`k
(2π)D

1

Sj

nj(`k)ñj(`k)

Dj(`k)
.

These formulae continue to hold in the supersymmetric
regime, potentially providing supergravity amplitudes at
loop–level.
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Finding BCJ Numerators

BCJ systems are formed by diagrams making up an L-loop
amplitude.

Candidate numerators must satisfy 3 important properties:

1 All possible BCJ moves of the form ni ± nj ± nk = 0.
2 Any symmetries of the corresponding graphs.
3 Reproduction of the complete amplitude on summation of

diagrams.

It suffices to determine the numerators of the master
diagrams: from these, all other numerators are
straightforwardly obtainable through BCJ moves.

However, if we need to compare to a known amplitude, what
have we achieved?
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Generalized Unitarity in N = 4 at 1 Loop

Colour–ordered, 1–loop N = 4 amplitudes are expressible as a
sum of box diagrams,

`

`+KA
4

`−KA
1 −KA

2

`−KA
1

KA
4

KA
3 KA

2

KA
1

A1–loop(1, 2, . . . , n) =

∫
d4`

(2π)4
A1–loop(1, 2, . . . , n)

=
∑

channels A

∫
d4`

(2π)4
BA

`2(`− KA
1 )2(`− KA

1 − KA
2 )2(`+ KA

4 )2
.

{KA
i } is an ordered partition of the external momenta pi , e.g.

{K1,K2,K3,K4} = {p1 + p2, p3 + p4, p5, p6} at 6 points.

The coefficients BA are unknown and independent of `.
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Generalized Unitarity in N = 4 at 1 Loop

A(1, 2, . . . , n) =
∑

channels C

BC

`2(`− KC
1 )2(`− KC

1 − KC
2 )2(`+ KC

4 )2

`2(`− KA
1 )2(`− KA

1 − KA
2 )2(`+ KA

4 )2A(1, 2, . . . , n)

=
∑

channels C

BC
`2(`− KA

1 )2(`− KA
1 − KA

2 )2(`+ KA
4 )2

`2(`− KC
1 )2(`− KC

1 − KC
2 )2(`+ KC

4 )2
.

Choose the 4 components of ` such that
`2 = (`− KA

1 )2 = (`− KA
1 − KA

2 )2 = (`+ KA
4 )2 = 0.

BA = `2(`− KA
1 )2(`− KA

1 − KA
2 )2(`+ KA

4 )2A(1, 2, . . . , n)

= CutA(1, 2, . . . , n). (1)

Key point: a knowledge of the cuts suffices to reconstruct the
full amplitude.
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Generalizing to the 2–Loop, 5–Point System

We need only compare to 3 different cuts, all of which contain
no triangles, bubbles or tadpoles.

We compare these to the BCJ expansion (rather than the
irreducible expansion) of the colour–ordered integrand,

A2–loop(12345; `1, `2) =
∑

diagrams i

ni
Di
.

Nonplanar graphs and topologies make no contribution as we
are interested in the colour–ordered amplitude.
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The 5–Point, 2–Loop System in N = 4

Figure: The 6 diagrams contributing to the 5–point, 2–loop amplitude in
N = 4.
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The New Approach

`2 `1

4

5

3

2

1

∆ = Cutpentabox =
`21(`1 − p1)2(`1 − p1 − p2)2 . . . (`1 + `2)2A2–loop is the
maximal cut of the integrand, taken when all pentabox
propagators are zero.

The pentabox itself is the only diagram that contributes on
this cut, hence in this case n = ∆. Thus,

n(12345; `1, `2) = ∆ + f1(12345; `1, `2)`21

+ f2(12345; `1, `2)(`1 − p1)2 + . . . .

We determine the unknown rational functions fi by considering
the other two cuts, both of which are double–boxes.
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A Double–Box Cut

Take the same cut as previously leaving (`1 − p1)2 nonzero.

`1`2
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Cutdouble–box = `21(`1 − p1 − p2)2 . . . (`1 + `2)2A2–loop

=
n(12345; `1, `2)

(`1 − p1)2
+

n(12345; `1, `2)− n(21345; `1, `2)

(p1 + p2)2

=
∆(12345; `1, `2) + (`1 − p1)2f2(12345; `1, `2)

(`1 − p1)2

+
∆(12345; `1, `2) + (`1 − p1)2f2(12345; `1, `2)− (p1 ↔ p2))

(p1 + p2)2
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Solving the Double–Box Cut

We choose to express the cut in terms of irreducible
numerators,

Cutdouble–box =
∆

(`1 − p1)2
+ ∆2.

The cut equation holds under arbitrary permutations of
external momenta. So consider the same equation, taking
p1 ↔ p2, and solve to obtain

f2(12345; `1, `2) + f2(21345; `1, `2)

= ∆2(12345; `1, `2) + ∆2(21345; `1, `2).

This is a symmetry condition on f2 and can be solved by
taking f2 = ∆2 + g2, where
g2(12345; `1, `2) = −g2(21345; `1, `2).
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Progressing to a Solution

Once all the cut equations are solved, we are most of the way
to a solution. For N = 4 we also need to set diagrams
containing triangles to zero.

Ultimately we are left with a solution of the form

n(12345; `1, `2) = nCJ(12345; `1, `2)− χ(34512)`21

− (χ(13254)− χ(25413))(`1 − p1)2

+ (χ(13254)− χ(24513))(`1 − p1 − p2)2

− χ(12345)(`1 − p1 − p2 − p3)2,

where nCJ is a solution, first found by Carrasco & Johansson
via method of ansatz (arXiv:1106.4711), and χ is a new
function satisfying

χ([1, 2]345) = χ(123[4, 5]) = χ(12345)− χ(54321) = 0,

χ(12345) + χ(25341) + χ(51342) = 0.
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Outlook

Our workflow can be summarised as:

1 Evaluate cuts of planar integrands using unitarity methods.
2 Use these to derive BCJ master numerators.
3 From these extract the full amplitude using BCJ moves, and a

corresponding gravity amplitude.

The ansatz method has failed to produce a solution for the
5–loop, 4–point N = 4 system,

We would like to move beyond N = 4, deriving numerators
for pure YM amplitudes.

17 / 18



Thanks for listening!
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