1 Functions of several variables

Our course builds on the calculus that you have learnt in Single B. There you
worked with functions of just one variable there; in this part of the course we
will extend the idea of differentiation and integration to functions of more
than one variable.

1.1

1.

Examples

Areas and volumes;

a) The volume V of a circular cylinder of radius « (cm) and height y
(cm) is V = mz?y. A function of 2 variables. The cylinder gets larger
if we increase x or y.

b) A rectangular box with sides z,y,r has V = zyz a function of 3
variables.

Heights above a surface or displacements from a line
The position of a point on the earth given by ¢,6. (Latitude and
longitude). The height above sea level can be expressed as h(6, ¢).

Atmospheric pressure
Again a function of 0, ¢ but also time dependent P(¢,0,¢). Another
variable? Variation of pressure with height r would be P(t,r,0, ¢).

1.2 Graphs of functions

An equation y = f(x) describes a curve in a plane. Given x we can compute
y if we know the function f. Then we regard x and y as the coordinates of a
point. The equation y = f(x) describes how (x,y) moves as we vary x. The
relation may be expressed implicitly as g(z,y) = 0.

1. 22 4+ y? = 1 describes a circle of unit radius. This gives

gt =1— 22

soy = v 1 — 22 for |z| < 1. Two equations of the form y = f(z), one
for the lower half one for the upper half.



2.

1.3

In three dimensional space, 2% + y? + 22 = 25 describes a sphere of
radius 5. This gives
22 =25 — 2% — o>

s0 2 = +4/25 — a2 —y? for 2% + y* < 25. Note that for fixed y it
describes circles in x, z plane. [How big are the circles if I slice 4 units

from the origin? - y = 4 hence z = +1/9 — 22 and they are 3 units|
Now have two equations of form z = f(x,y). Given an z,y they give
us two points lying on the sphere.

. An equation of the form z = f(x,y)thus describes a surface. We can

think of z as the height of the surface above the xz, y plane. (or below if
it is negative). The function f may be defined for all z, y or a restricted
set as in the sphere. [What does z* + y? > 25 correspond to?]

Examples of graphs of functions

z = 5: for some range of x,y. - a flat roof. For the remaining examples
see handouts

. 2 = 22 + siny: Defined for finite  and y. The lines show the curves

on the surface corresponding to fixed z and y. For fixed y we get a
parabola, and for fixed x we have a sin curve whose height is shifted.

z = cos(zy): Again the function is defined for all z,y. z = const for
xy = const. Contours of constant height would be hyperbolas. Keeping
e.g. y constant gives cosine behaviour with a period determined by y.

_ siny/a24y?

. z = —F—— the sombrero: Note the symmetry about the z axis
’x2+y2

through the origin. 2z has the same value for 2% + ¢y = r? with r
constant. This is the equation for a circle in the x,y plane.

z = 2% —3zy? the monkey saddle: Cubic curve for fixed y and parabolic
for fixed x.

. Three peaks: Combination of exponentials (Gaussians). It has maxima,

minima and saddle points. We need to be able to classify them.



7. z = (2% + y*)/a? satellite dish: This is a circular paraboloid. Parallel
rays are focused onto the focus of the dish at (0,0, a).



2 Partial derivatives

For any function f(z,y) we get
(g—i)y by differentiating w.r.t. x keeping y constant

<g—£) by differentiating w.r.t. y keeping = constant
xX

We often (in fact nearly always) drop the subscripts (when it is clear which
variable is being held constant). Furthermore, sometimes gf is written f, and
g—£ is yvritten fy-

leferentiating again we get

a <8f) 8 L also written fy,

a% (%) = i also written f,,
d% (?) d—f also written f,
aﬁ g_J;) 32 also written f,,
For all “sensible” functions f., = fy..

2.1 Examples
1. f(x,y) = 2% — 3zy® Then

fo = 32°—3y°

fy = —Ouzy
fxa: = 6x
fyy —6y
fzy = fyx = _6y

Note that f,, = f,. for all reasonable functions and will be assumed
from now on.

2. f(z,y) = cosy + sin(zy). Then

fe = ycos(zy)

fy = —siny+ xcos(zy)
facz = _y2 SHI(xy)
fyy = —cosy— x*sin(zy)

Joy = fye = cos(zy) — xy sin(zy)



3. f(z,y,2) = 2%y +yz + 2%x. Then

fe = 2xy+ 22
Iy 2+ a?
f: = y+2xz

2.2 Mathematical definition of the partial derivative

Recall the mathematical definition of the (standard) derivative:

o St An) - f)

drx  Az—0 Az

Mathematical definition of the partial derivative is similar:

of _ . flat+Aay) — flay)
or  Az—0 Ax
Oy  Ay—0 Ay

Recall that % gives the rate of change of f. Similarly % corresponds to the
rate of change of f in the positive x direction. And g—i corresponds to

the rate of change of f in the positive y direction.
(See handout for a picture of this.)

2.3 Multi-variable partial derivatives

Partial derivatives are defined for multi-variable functions in a sim-

ilar way: For a function of n variables, f(x,zs,...,x,), we get:
% by differentiating w.r.t. the variable x; keeping all other variables
constant
Mathematically we define
af . flrrze, .+ Axy, o xy) — f(1,22, - Ty, )
— = lim
or; Az;—0 Az,



2.4 The total differential

It af - corresponds to the rate of change of f in the positive = direction and
af Corresponds to the rate of change of f in the positive y direction. It is
natural to ask, What is the rate of change of f in an arbitrary direction?

Consider comparing the function at (z,y) , f(z,y), with the function
evaluated at a nearby point (z + Az, y + Ay) in order to obtain the rate of

change of f in the arbitrary direction (Az, Ay). The change in f, Af, is:

Af = flo+Az,y+ Ay) — f(v,y)
f(varArL",erAy)—f(szyﬂLAy)AxJr f(rc‘,erAy)—f(ffw)A
N Ax Ay J

and as Az — 0 and Ay — 0 this gets closer and closer to:

O N, 9f
A —A
U 8x T y
As Az — Owe can replace Ax with the infinitesimal dz, Ay with dx and Af
with df and write:

f of ,

Af = Gpdo+ 5,y

J(The

objects df,dx,dy are abstract mathematlcal objects. They are essentially
represent the small changes Af, Ax, Ay when these become infinitesimally
small. Such objects are known as differentials. It is important to get used
to this concept even though it might seem strange at first sight! See Riley
Ch2.1 for more info in the single variable case.)

We call df, defined by this equation, the total differential of f.

Example: what is the total differential of f(x,y) = ysin(z + y)?
First compute the partial derivatives:

of

P = ycos(x +y) +sin(z + y)

= ycos(x +y) o

Then the total differential is

df = ycos(x +y)dx + [ycos(z + y) + sin(z + y)| dy




Physical Example (Riley 5.11): The first law of thermodynamics can be
expressed:

dE=TdS — PdV

where F is the internal energy of some substance, P its pressure, T temper-
ature, V' Volume and S Entropy. If we think of F/,T, P as being functions of
S,V relate (%)v and (3—5)5 to T, P and hence prove the Maxwell relation:

().~ (@),

Answer: Since we are thinking of E as a function of S,V we have that
dE = (g—g)v ds+ (3—5)5 dV. Comparing with the first law gives immediately

T = (g—g)v and P = — (3—5)5. Now for the Maxwell relation, differentiate

T wrt V to give (g_‘z;) g = 38‘/2—6% (drop subscripts here as it would get too

cluttered, we must remember that S,V are our variables) on the other hand
8%E 0%E 8%E

we get (%)V = — 555y and since for second derivatives we have gz = 755¢
we immediately get the Maxwell relation. (Note: We will later get other
Maxwell relations by considering different choices of our 2 variables.)

2.5 Exact and Inexact differentials

Not all differentials are total differentials of a function. For example y dx +

x dy is the total differential df of the function f(z,y) = xy + ¢ where c is a
constant (Check this!). However try to find a function f(z,y) whose total
differential is x dy + 3y dz. Tt is impossible, there is no such function. Such

a differential which is not the total differential of any function is known as

an inexact differential. On the other hand a function which is the total
differential of a function is known as an exact differential.

Example: show that = dy + 3y dx is inexact.

For this to be exact it would have the form f, dx + f, dy (here note that
I am using the other notation for partial derivatives f, = Jf/0x etc.) So
f= = 3y and therefore (integrate wrt x) f(z,y) = 3zy + g(y). On the other
hand we must also have f, = z giving f(z,y) = xy+ h(z). These two results
for f(z,y) can not be made compatible and so no such f(z,y) exists. The
differential is thus inexact.




A useful criterion for exactness is the following:

(A differential A(x,y)dz + B(x,y) dy is exact if and only if A, = B,. |

Note that one way around this statement is obvious, namely if A(x, y) dx+
B(z,y) dyis exact (ie = df) then we have A = f,and B = f,and so A, =
fyz = fazy = Bz. The other way around we will use without proof. So we can
now give a different proof of the above example:
Example: show that z dy + 3y dz is inexact.
Here we have A = 3y and B = x so A, = 3 and B, = 1. These are not equal
so the differential is thus inexact.

Example: Prove the Maxwell relation in the example above directly using
this criterion and the fact that dE =T dS — P dV is an exact differential.

Here we have variables S, T instead of x,y. Using the above criterion for an
exact differential we have A = T and B = —P so the criterion A, = B,
becomes Ty, = —Pg which is the required Maxwell relation

2.5.1 The multi-variable case

This works similarly. The total differential of a multi-variable function
f(SL'l, To, ... ,:L‘n)iS

A differential
Z gi<x1a Lo, ... an)dxz
i=1
is exact if it is the total differential of a function, ie if g; = 0f/0x; for

some function f, and inexact otherwise. A necessary and sufficient condition
for a differential to be exact is:

Ay _ 9yg;
8.1']‘ 8.73'1 ’

Forallz,7=1,...,n.



Example: show that y(y+z) de+2(2y+z)dy+xydz is an exact differential.
Here instead of (x1, x9, x3)the variables are called (z,y, z) and we have g, =
y(y+ 2), g0 = 22y + z and g3 = xy. So gﬁ = %—i} =2y+z= % = g—agj,

T2
So 99 — %foralli,j,sothe

g1 993 992 _ .. _— 993
Ox; ox;

similarly o ol Sk =1 = g2

differential is thus exact. You may be able to guess the function whose total

differential it is. In this case f = zy(y + 2) + ¢ for a constant c.

2.6 The chain rule

Usual case: If y is a function of a variable x and x is a function of another

variable ¢ then
dy dydx

dt — dx dt
Multi variable case: If f = f(z,y) and x and y and both function of just
t then in a time change At the change in e.g. z is Ax = fl—fAt by definition.
Change in f is then
of of

Af = gAx—i—a—yAy

Dividing through by At and taking the limit gives:

df _0fdv  0f dy
dt Oz dt Oydt

j(Note

that you can get this straight from the equation for the total differential by
dividing by the infinitesimal dt.)
2.6.1 Examples

1. Suppose that the cylinder changes its size as * = 3t and y = 4 + t%.
What is the rate of change of V7 Method 1: Substitute:

V = maly
= 7Ot3(4 + 17).
Then
dV
= 72nt 4 3673



Method 2: use chain rule

v ovdr oVdy
dt Ox dt ~ Oy dt
= 2may(3) + ma?(2t)
= 7wl8t(4 +t*) + 718
= T2t + 367t°

. For f = sin(zy) find % along the curve parameterized by x = t2, y = t3.

df ofde  Of dy

dt dx dt "y dt
= ycos(zy)(2t) + x cos(zy)(3t?)
= 5ttcos(t?)

Note could have again substituted and used f(t) = sin(¢°)

. For f(x,y,z) = 3ze¥? find the value of % at the point on the curve
r =sint, y = cost, z =t where t = 0.

df ofde  dfdy Ofd»

dt " dedi oydt " ozdt
= eY*(3cost — 3xzsint + 3xz)

df
E t=0

since at t = 0, (z,y, z) = (0, 1,0).

= 3.

. Let f = f(x,t) where x = z(t). What is Z—Jz?
The chain rule tells us that for functions f(x,y) we have

df _ofdv  0fdy
dt Oz dt Oydt

For this example we can take y(t) = t. Then we have

o _ofdr  of
dt Oz dt Ot

since dt/dt = 1. Note the importance of d/dt and 0/0t

10



2.7 Change of variables

Suppose that x = z(u,v) and y = y(u,v) where u,v are two other variables.
Then we have:

of Of dx _ of dy

du ~ dwou " dyou
of _ ofor 0foy
v Oxdv  Oyov

Note that % 15 at constant y but g—i 15 at constant v.

2.7.1 Examples

1. Let f(x,y) = xy where x = ucosv and y = usinv. Substituting gives
f(u,v) = u*sinv cosv and f, = 2usinvcosv. The formula gives

= ycosv -+ xsinv

= 2usinvcosv

as required. It works.

2. If f is a function of z,y where v = u? — v? and y = 2uv show that

ufy —vf, = 2(u? 4+ v?)f,. Use

of _ ofow ol

ou Or du Oy du
= 2uf, +2vf,

and

of _ 0for 010y

v Ox dv Oy v
= —2vf,+2uf,

So that

uf, —vf, = 2u’f, +2uvf, +20°f, — 2uvf,
= 2(u2+v2)%

Note that since we do not know the form f a substitution is not even
possible.

11



2.8 Some useful theorems of partial differentiation

In general, all variables are as good as any other. For functions of one
variable we sometimes think of the inverse function. So if y = f(z) then for
the inverse, x = f~!(y). In other words there is no real difference in x and v,
both are variables and we can treat them on equal footing as variables. We
have been so far thinking mostly of a function f of x and y. We will now
write z instead of f and treat x,y, z on an equal footing. So thinking of z as
a function of x and y, z(z,y) then we have:

dz = (%) dr + (%) dy
ox y oy ),

but we could equally invert the equation and write xzas a function of y and

z, 2y, 2) ) )
dr = (_x) dy + <—$) dz
oy ), 0z y

or write y as a function of z and z, y(z, z) and thus we have

0 0
dy = (a—i) dz + (8_2) dz.

Plugging the last equation in to the previous one gives

(3 (B0 @)

Now this equation implies

SCICEEECEC)

is the analogue of the relation for single variable functions: % = <fl—$> -1
y

and is true for partial derivatives if the same variable(s) are kept fixed on
both sides of the equation (in this case z).
The equation * also implies the vanishing of the second term:

@)@ &), = @)@ E),

12
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thus giving

Z (3).(3), (), )

Example: Show this identity for the equation z = 2x + 3y. Here (g—;)y =2,
rearranging = = 3(z — 3y) so (%Z) = —32 and since y = £(z — 2y), we have

(3. =3 S0 (). (3. (8), = DB = -1

2.9 Thermodynamic Example

We look at an example here where different quantities can become our vari-
ables. Previously we saw that the first law of thermodynamics takes the
form

dE =TdS — PdV (1)

where F is the internal energy of some substance, P its pressure, T tem-
perature, V Volume and S Entropy. We then thought of E. T, P as being
functions of S,V so S,V were our variables, and we then proved the Maxwell

relation:
oy __(or
oV S_ oS V'

However it is possible to take any two quantities as our variables (de-
pending on the physical situation, what are we physically varying in the
experiment. Let us thus consider taking 7',V as our variables, can we derive
a different Maxwell relation?

Let us begin by writing all the differential forms in [1] in terms of these
variables, so dE = (4%),, dT + (5&), dV and dS = (38),, dT + (55), dV
so we get

oE oE oS oS
<8_T>V dT + (W>T av =T ((8_T>V dT' + (W)T dV> — PdV

Now equate coeffs of dT" and dV we get two equations: (g—?)v =T (g—g)v
and (g—{f)T =T (%)T — P. Now differentiating the first equation wrt V" and

13



; 9*E  _ p_9%S ds d%s oP
the second equation wrt T' we get 2= = T'502% = (52) 4+ Toeor — (55)
giving immediately the Maxwell equation(%)T = (g—?)v. (We twice used

the fact that for mixed second derivatives the order doesn’t matter.)

14



3 Partial differential equations

An equation involving functions of two or more variables and some of its
spatial derivatives is a p.d.e. Here we solve some simple examples that can
be done easily.

3.1 Simple Examples
Example 1: % = OV

The solution of the o.d.e. is u = ¢ a constant. But if v = u(z,y) then
integration with respect to x can give any function of y (check by reversing,
i.e. differentiation). So then

u(z,y) = f(y)

where f is some function to be determined by the boundary conditions.,

Example 2a: Find the general sol’n of % = 0 where u = u(z,t).
Integration with respect to z gives u, = f(t) and again gives u(z,t) =

xf(t) + g(t), with f and g being arbitrary functions.

Example 2b: Find the sol’n of % =0 when u(0,t) =1, u(1,t) = sint.

Must now determine f and g to satisfy the boundary conditions. Note that
there are two “t—functions of integration” so two boundary conditions are
required involving functions of . We have

gt) = 1
f(t)+g(t) = sint

so that g(t) = 1 and f(t) =sint — 1. The full solution is
u(x,t) = x(sint — 1) + 1.

Check this!

15



Example 3: Find the general solution z(z,y) of aiggy = 0.

Integration w.r.t. x gives z, = F(y) an arbitrary function. And w.r.t. y
gives

z = /gﬂyﬂd+g@)
= f(y) +g(x)

where f, = F(y) and f and g are arbitrary differentiable functions (since z,
must exist).

2z ..
0xdy r—y-.

Example 4: Find the general solution z(z,y) of

Integration w.r.t = keeping y constant gives z, = % — 2y + G(y). And with

respect to y gives
Ty
2=z —y)+ fl2) +9(y)

where f and g are again arbitrary differentiable functions.

Example 5: Find the general solution u(z,y) of 2% + u = 2.

How would we do this if it were an o.d.e? We multiply by integrating factor
(since without the 2 the sol’'n is just e=*). Then

e‘u, +e*u = 2e°
0 0
(o — 97 (e*
G 5 (¢)

uet = 26"+ f(y)

so that
u=2+e"f(y).

Note you could also rearrange to get

du
/Q—u_/dx

and remember to integrate keeping y constant

log(2—u) = cly) -«
u = 2+ W

with f(y) = e,

16



Example 6: Find the general solution u(z,y) of u,, + “= = 3z + 4.
Let p(z,y) = u, then xp, + p = 32 + 4z can be integrated straightaway

ap = 2°+22° + f(y)
Uy = 51:2—|—21:+—f(y)
T

and then integrating again gives
3

u — % + 22 + f(y)log(x) + g(y).

3.2 Aside: differentiation as an operator

It is extremely useful to view differentiation d/dt as an operator acting on
the set of all functions and giving a new function called df /dt

d df
— i f— L
dt dt

Then acting with d/dt on df /dt gives the second derivative
d df d*f
- ! — P .
dt ~ dt dt?

The same is true for partial derivatives.

Always remember that derivatives act on everything to the right.
For example, consider expanding out something like

0 0 0 0 0*f 0*f o0 f 0 0
2 20\ (O O\, _ 2 2 2 20 (O
(3: ox tY 8y> (896 +y8y) f=x 8x2+y 8$8y+x y8x8y+y dy (yay

where the last term gives

oy g

o [ of of O%f
2V YT 2 3
Y oy (y3y> "

This means we can rewrite the change of variables rule as an operator
equation:

17



0 3x£ (‘3y£

du ~ Budr | Oudy
9 o o
v Ovdr vy

Notice there are no f’s in this equation. This can act on any function. Indeed
it can act on df /dt which in turn can be obtained by acting with this operator
on f. In other words we, for example, the following:

Ff_(0r0  0yoN(0rd  Oy0dy,
ouz  \Oudxr Oudy Ooudr  Oudy

where each operator acts on everything to the right of it.
Example: If f(z,y) and z(r,0) = rcosfy(r,0) = rsinf (polar coordi-
nates) compute 9%f/0r?.

Using the formula for co-ordinate transformations above (with u = r and
v = 0) we have:

0 _ o o0
or ordr  Ordy

= CoS 92 4+ sin 0—

ox dy

So we have that

o (0 0 0 . 0
E <Ef) = E (COS 9% —+ sin Qa—y> f

B o (0f .0 (O0f
= COSH@T’ (033) +Sln98r (8@/)

where we used the fact that % = 0 to move the % through the cos6 and
sinf. Now we again use the above formula for % to give

’f o . 0\ [Of . o . 9\ [Of
or2 cos ¢ (COS 9% + Slnea—y) (%) + sin 6 (COS Ga—x -+ sin 98_y> <a—y)
O f _0Af L, O
_ 2 2p- J
= coS 6_8x2 + 2608081n98x8y + sin eagﬂ

18



3.3 DMore interesting examples

Example 7: Axially symmetric functions V' (z,y) satisfying Laplace’s
equation V,, +V,, = 0.

If we rewrote the function V (z,y) in to polar coordinates, from the previous

. . 2
example we know the form of %7‘2/ . We can similarly compute %T‘;' The
details are on the handout, we find that

1 1
RV + 0V =0V + =0,V + =9,V = 0.
r r
If axially symmetric then V' = V(r) only and it reduces to an o.d.e.
1
Vir + =V, =0.
r

Let p =V, then rp, +p = 0 so that rp = c and V. = £ so that

V = clog(y/2? + y?) + d.

The important point here is that sometimes it is possible to use coordinates
where the problem is reduced to an o.d.e.

Example 8: Find the general solution f(x,t) of 3f, — f; = 0.

This is a typical sort of equation that arises when there is a traveling wave
as we'll see. Change variables to s(x,t) = x + 3t and r(z,t) = x — 3t, then
the change of variables rule gives

of  ofds ofor
or 8sax+8r8x_f5+fr
of  0fds ofor

9%~ asat Torar L3

Then 3f, — f; = 6f. = 0. So we see that the solution is f = g(s) = g(x+ 3t),
for arbitrary g. If we are given an initial condition such as f(z,0) = sin(z)
then f(z,t) = sin(x + 3t). This is a wave moving left at speed 3.

Example 9: The wave equation u,, — ¢ ?uy = 0.

This is the type of equation describing the string, and many other systems.

The way to solve this problem can be seen by rewriting it (using a® — b* =

19



(a+b)(a — b) — note we can use this relation for differential operators too!)

as
(ax — cilﬁt)(ax + Cilat) u=0.

Suppose s = x + ct and r = x — ct. Then again following example 8 by the
chain rule

O, = 0su0y8 + Opud,r = Osu + Opu
Ou = 0su0ss + O,udyr = cOsu — co,u

Then (0, — ¢~ 10;) = 20, and (9, + ¢~ '9;) = 20, so the equation becomes
Ups = 0.

Integrating as in example 3 gives u = f(r) + g(s) = f(z + ct) + g(x — ct).
This is d’Alembert’s solution.

This is the sum of a left moving wave with speed ¢ and a right moving
wave. So if this is the general solution the oscillating string must be a solution
like this.

To see how a standing oscillating mode can be realized like this consider
the nm nm

U = g [sin(f(x +ct)) + sin(f(x —ct))].

Using sin(A + B) +sin(A — B) = 2cos B sin A we get

u = 2uy cos(%t) sin(nlx).

L
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4 Taylor expansions (Riley 5.7)

For a function of a single variable Taylor’s theorem allows us to expand about
a point zo. Writing z = xo + Ax

F(z) = F(xo + Ax) = F(xo) + Az F'(xg) + A2_:1!52F,,(x0) -

Can also write it as an operator equation using the fact that e* =1+ A +
2
S+
d
F(I’O + ACC) = eAx%F<m>|x:mo.

This last equation makes it obvious how to generalize; a function of two
variables expanded about (z,y) = (zo,¥o) can be found by first expanding
about z = x4 and then about y = yp;

f(a:, 3/) = f(ﬂfo + Az, yo + AZ/) = eszeAyayf(:U? y)|x=xo,y=yo
1
= f+Azf|+Ayf,|+ §(Arv2fm + 202 AY foy + Ay f)| + -

where the vertical line | indicates setting z — 2o and y — yq.
Example 1: cos(z + y) about (0,0) up to and including quadratics
In above have o = 0 = yy and Az = x and Ay = y: have

[ = cos(z+vy)
fo= g, = —sinfaty)
fa:a::f$y:fyy = —COS(ZE—{—g)

Then
f) = fahe byl 3 e 20 e+ oo
= 1- %(x+y)2+...
Note this is slightly trivial since could have just expanded z =z +y
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Example 2: f(z,y) = log(z + 2y).find the Taylor expansion about
(1,0)

In earlier notation, zo =1, yg = 0, Az =z — 1 and Ay = y. Have

fl = log(a+2y) =0
1
fac| = ’ =1
T+ 2y
1
| = ———— =1
fo| (x+2y)2|
2
f— :2
1yl x+2y|
4
p— — . :—4
2
- — —_— :—2
Juul (a:+2y)2|

So that

flz,y) = (x—1)42y— %((m — 1) +4(z — Dy + 49%) + ...

2’2

= z—;—l—... [z =a+2y—1]

Again could have done this more simply.
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5 Critical points

Want to find where local maxima minima or saddle points are. A critical
point is a point at which both f, =0 and f, = 0.

Example 1: f(z,y) = 22 + >

The graph of z = f(x,y) is a parabolic cylinder.

fmZQxfyZQy

The point (0,0) is the only critical point.

Example 2: f(z,y) = 2* — y°.
The graph of z = f(x,y) is a saddle.

fa::2x fy:_Qy

The point (0,0) is the only critical point. Increases away from origin for fixed
y but decreases for fixed y.

5.1 Local maxima and minima

Defn: A point (xg, o) is said to be a local mazimum if f(zo,v0) > f(z,y)
for all points (x,y) in a sufficiently small neighbourhood surrounding
(.To, ?JO)

Defn: A point (xo,) is said to be a local minimum if f(xo,y0) < f(z,y)
for all points (x,y) in a sufficiently small neighbourhood surrounding
(.To, ?JO)

We can use the Taylor expansion about (zg,y) to tell us about the nature
of the point there. To simplify things call Ax =z — z¢ and Ay = y — 3o and
to simplify notation we write

fx:c = f:cac(xO;yO)
f:vy - f$y(I07y0)
fow = fou(@o0,90).
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Then we can write

f(z, Z/) = f(wo, yo)—i‘A?U f:r(x(): ?Jo)"‘Ay fy(l’o, y0)+%(Ax2fxx+2AxAyfxy+Ay2fyy)+' .-

A necessary condition for a mazimum, minimum or saddle is that f, = f, =
0.
The test for what sort of critical point it is is let M = fo.fyy — (foy)?

e If M >0 and f,, > 0 then local minimum
o If M >0 and f,, <0 then local maximum
e If M < 0 then saddle point
e If M = 0 then inconclusive

Proof: the function near xg,yo is
1
2fCE£E

flxo+ Az, y0 +Ay) = f(wo,90) +

= f(20,%0) + (AT fop + AY fuy)® + AY2M) + ... .

2foa

If for > 0and M > 0then f(x,y)— f(xo,y0) > 0and f(zo,yo) is a minimum.
If f,. <0 then the reverse is true. If M < 0 then for some values of Ax, Ay,
f(x,y) — f(zo,yo) is positive and for others it’s negative.

5.2 Examples
Example 1: f(z,y) = 22 + ¢?
The graph of z = f(x,y) is a parabolic cylinder.

fzx = 27 fyy = 27 fmy =0
And then M =4 and f,, = 2, it works!

Example 2: f(z,y) = 2% — ¢?
Should find that it is a saddle

f:mc = 27 fyy = _27 f:]cy =0
And then M = —4, it works!
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Example 3: Find and classify the critical points of f(z,y) = —2° +
dry — 2% + 1

First find where f, = f, = 0.

fo = =32 +4y
fy = 4x—4y
foe = —Cz

foy = —4

foy = 4

Solving these gives x = y and z(—3x 4+ 4) = 0 so have
4 4
= (0.0 ZZ
which I’ll label A and B.
o At Awe have f,, =0, f,, = =4, foy =450 M = —4 and A is a saddle

e At B we have f,, = =8 ,f,, = —4, foy = 4s0 M =16 > 0. Also
fee < 0 so that B is a maximum.

N

B N
o '\v‘v;y‘g’&ww
) WAYA'S '77/'.#'.#
S
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Example 4: Find and classify the critical points of f(z,y) = 22 —y*+
4. .22

Y+ xy

First find where f, = f, = 0.

f:r = 2$(1+y2)
fy = 2y(@®+2y° - 1)

fow = 2(2°+6y°—1)
f:cy = 4xy

Solving f, = f, = 0 gives v = 0 and y = O,:I:\/L5 (since y* + 1 > 1 then f,
can only give z = 0) so have

! ) or (0, —

(ZE,y) = (070) or (07 E

)
V2
which I'll label A, B and C.
o At Awe have f,, =2, fyy = =2, foy =050 M = —4 and A is a saddle

d AtBandowehavefxx:3>fyy:47 fxy:OSOM:12>O. Also
fzz > 0 so that B, C are minima.

26



-1 \\::
0 N
N
. B
g////////l
3
10
-2 -1 0 1 2

Example 5: A rectangular box open at the top is to have a volume
of 32m3. What are the dimensions in order to make the surface
area as small as possible?

First write the expressions for the volume and surface area if the base width
height are x,y, 2;

V = zyz
S = zy+2rz+ 2yz.
For a given x,y the volume determines z = x—vz; where V = 32m3. Then

Vv 1%
S=xy+2—+2—.
Y x

Extrema of S will be found where S, = S, = 0;

I

V
X
V
Sy :0: .T—2E



Solving this gives z
2= 12V)s = 2m.
This should be a minimum, so need S,

y and then 23 = 2V or x

y = (2V)3 = 4m,

4V

4V
m3:275yy:_3:27

y
Sey =1, so that M = S,,S,, — (Szy)? > 0 and S, > 0 - i.e. it is indeed a
local minimum.
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6 Double integrals (Riley 6.1)

Consider solving a p.d.e. directly by integration such as
Uygy = 2079 + 2y

We integrate with respect to y with x constant, and then w.r.t. = keeping y

constant. The first step gives
ey

Ux=T+yZ+F($)

and the second gives
23y
6

u=——+ay’ + f(z) + g(y).
where f.(z) = F(z).

These were both indefinite integrals. But we could consider doing definite
integrals instead. Consider putting limits in the first integration of 0, 2. Then

2 T y
/ (22%y° + 2y)dy = [—— + ]y
0
= 822+ 4.

Now consider for example doing the second integral with limits 0, 1:

3

1
/(8x2+4)dx - [8%+4x]5
0

8 20
3 * 3

This is an example of a repeated integral. It can be written as a single

expression
1,2 20
/ / (222> + 2y) dy dx = 3
0o Jo

with the convention that the ordering of dydx tells us to do the y integral first.
The integral has an interpretation as the “volume under the surface given by
f(x,y)” which I'll discuss in a moment. For the moment simply note that
the area over which we integrated is the rectangle {z,y|x € [0, 1], y € [0, 2]}.
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The limits on the first y-integration could have depended on x. For
example we could have taken limits 0 < y < x. Then we would have

// (227> + 2y) dy d.

The y integration gives

T .1)2y4
/(2x2y3+2y)dy = [ +vh
0
6
_ 2
and then the second integral with limits 0,1 gives
1,6 7 3
x 9 x x°
- dr = [— + =
| Gt = G
1 N I
14 3 42

The region over which we integrated is now a triangle with hypotenuse given
by the line y = z. T'll come to more complicated regions of integration in a
moment.

6.1 Interpretation as volume under a surface
Recap of the one-dimensional (Riemann) integration

Suppose we want to calculate the area under a curve f(z) between x = a

and z = b: that area is ,
= / f(z)dx

To approximate this area we can divide the interval into N lengths Az, Axs . ..

Let z; be the point midway along the ¢’th interval. Then the area is approx-
imately given by the sum of the area of all the rectangles of height f(z;) and

width Az;:
S & Z Flz:) Ax;.

To find the integral we take the hrmt as N — oo
N b
5= Jm (3 ) ar) = [ s
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Extension to two-dimensional (Riemann) integration

Suppose we want to calculate the volume under a surface whose height is
given by f(x,y). Let the region in the z,y plane that we want to integrate
over be R so that we might guess that

V= //Rf(x,y) dA.

To see that this is indeed the volume, approximate the volume by dividing
the integration region into N areas AA;, AAy ... AAy. Let z;,y; be the point
“in the middle” of the 7’th area. Then the volume is approximately given by

the sum of the volumes of all the columns of height f(x;,y;) and base area
AAZ'Z

N
V= Z AA; f(xi,y:)-
i=1

The double integral is defined as the limit as N — oo so that

Vo= flp @ y)dd = lm (37 AA ()

6.2 Explicit example: integration over rectangles

So far, so formal. How do we see that the limit above is the same thing as the
earlier double integrations? Consider the earlier example where R was the
rectangle given by 0 <z < 1 and 0 < y < 2. The integral we wish to evaluate
should be the volume under the surface of height f(z,y) = 222y + 2y. The
area summation in this case is most easily done by summing the area first in
the y direction and then the z direction. That is we introduce a double sum
over i,j and then define the area elements as small rectangles AA;; = Az; Ay;;

Va Y Y Ay f(zi,y)

i=1 j=1

with N = nm. But another way to think of this is that for each z; we
are evaluating the area under the curve f(z;,y) at x; given by the single
integration limit

m 2
S() = Jim Y f(em)dn = [ Sy
j=1
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and then summing the volumes of all the slices of thickness Ax; given by
V = nh_}rgoZAxl (x;)
_ / S(a
- [ / () dyde
0o Jo

where we simply twice utilized our definition of single integration as a limit.

e Note that in this particular case we can do the sum in either order,
but with integration over more complicated areas (i.e. not rectangles)
you have to pay attention to the limits.

e An important example of double integration region is when f(z,y) =
1; the “volume” under this surface is clearly just the area of the in-

tegration region;
V= // dA = A.
R

Example 1: Find ffR ere +1 —r——dA where R is the square defined by
0<z<land 0<y<1.

We can do the integral

1 1 1 1 1 1
L rdy = / {——} dy
/0/0 (v +y+1)2 0 (z+y+1)],
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Example 2: Find [[, zsin(zy)dA where R is the rectangle defined
by 7 <z<mand 0 <y<1.

In this case it is easier to do the y integral first (as it’s just like integrating
a sin y function). We can do the integral

™

™ 1
/ / zsin(xy)dydr =
3 /0 3

= / (1 —cosx)dx

2

[ cos(ay)]y—y de

B

= [z —sinz]%
2
m
= —+1
2+

6.3 Double integrals over other regions

Suppose that instead the region R is defined by

b
v(x)

where u, v are some functions. Most cases of interest could be defined this
way although some are written more naturally in different coordinate systems
(e.g. polar) than Cartesian z,y. Integration becomes

J[ emaa= | b / (()) F (o, y)dy da.

Note that the interpretation as the limit of sums is unchanged from earlier,
but we cannot not now easily change the order of integration as the limits are
explicitly  dependent. In the figure below I show the region of integration

for the integral
1 Ve
//2 fx,y) dyda
0 T

IA A
VARVAN

u() Y
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0.8
X =y2
0.6

0.4
: y =%
0.24

0" 02 04 0B 08 1 X
Example la: Evaluate [/ » Ty dA where R is the finite region enclosed

by the line y = x and the curve y = 2.

The two curves intersect at z = 0 and = = 1. The region of integration is
therefore defined by

$2

IAIA
IN I/\

1
y<uw

(Note that > x? in this region). The way the problem is posed we can
obviously do the y integral first:

1 T 1 Yy=x
[ [ - [ o]
0 Jax2 2 y=cx
5
_ G;_zadx
2

2
_1xx
21014 6

S
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Example 1b: A first look at changing the order of integration:

Suppose we wish to do the x integration first. We should get the same answer.
The region of integration must first be rewritten as

IAIA

Y
x

IAIN

1
VY
(Note that \/y > y in this region). We should now do the z integral first:
1 Ve 11y T=\/y
/ / rydxdy = / {—yﬁ] dy
0 Yy 0 2 =y
17,2 :
) Y
= ———=]d
i (5-5)
1 {ys yt 1
213 4],
1

= 5 (phew)

Y

w

[\)

Example 2: Find the area of the finite region R in the plane
bounded by the the finite region enclosed by the line z = y? and
the lines r = 3 and y = +1.

First note that to find the area we can just do the double integral with
f(z,y) = 1. Inspecting the region of integration, the easiest is to do the x
integration first (otherwise we would have to split the z-integration into two
regions). The region of integration is therefore defined by

y2

—1

T 3

IN A
IANIA
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We have to now do the z integral first:

/_ll/yjdxdy = /1 220 dy
/[

- 2|3y — =

’ 3L
_ 2D
3 3

On the 3rd line I used the symmetry of the region around the z—axis, changed
the integration region from [-1,1] to [0,1] and multiplied by 2.

Example 3: Find the area of the bounded region R determined by
the curves in the plane y = z?/4 and 2y — 2z — 4 = 0.

The bounded region is everywhere below where the straight line intersects
the parabola. Again inspecting the region of integration, the easiest is to do
the y integration first. The intersection points are when

2
x
i 4
5 T+
which has solutions at x = —2,4. The region of integration is therefore
defined by
x? 1
— < — 4
T S vslatd)
-2 < x<4

We have to now do the y integral first:

(x+4)/2 4
/ / dyde = [ ) s
—2J22/4 g v
11
= / Z(2$+8—$2)d$

1 1 .]"
= —[x2+8x——x3}
-2

4 3
1 64 8 36
4(6—!—3 5 + 16 3) T 9
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6.4 More on changing the order of integration

Sometimes it may be preferable to carry out the integration in a different
order, but as we have seen you need to be a little careful with the limits.

Example 1: Find the integral [ = [ fyl cos(5x?) dxdy.

In this case the x integral is not easy (it gives something called the Fresnel
integral). The easiest route is to do the y integral first. The integration region
is everywhere above the line y = x up to x = 1. The region of integration
defined above is

<
IA A
< 8
IN A
—_

which we can rewrite as

IA A
8
IA A
—_

We can now do the y integral first:

1 T T
/ / cos(=2?)dydr =
0 Jo 2

Example 2: Find the integral [ = [ f\l/y exp(z?) dxdy.

In this case the x integral is not easy (it gives something depending on what
are called incomplete Gamma functions). The easiest route is to do the y
integral first. The integration region is everywhere above the line y = x up
to x = 1. The region of integration defined above is

Vy <

< z <1
0 <y

1

VAN
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which we can rewrite as

0
0

INIA
8

INIA
—

We can now do the y integral first:

1 z?
/ / exp(z®)dydr =
o Jo

1

[y exp(:v3)} 3;52 dx

(2* exp(z?)) dz

S— >—

exp(fcg)] 1
—1)
—.

0

Il
Y~
o L =

6.5 Change of variables in double integration (Riley
6.4.1)

We now know how to write [[, f(z,y)dA as a double integral in Cartesian

co-ordinates [ [, f(z,y)dA = f; f;((;)) f(x,y)dydz. The important point here
is that the measure dA = dxdy. What happens if we use alternative co-
ordinates (eg Polar coordinates etc.)? To answer this we ask what happens
to the area element (an infinitesimally small piece of area) in different co-

ordinates.
F} Y
(u, v+ Av) (u+ Au, v+ Av)

3

r

(u,v) (u + A, v) ru,v)

r(u+ Au, v+ Av)

r(u + Au,v)
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A small area in (u,v) space is mapped into physical space r(u,v) =
x(u,v)i + y(u,v)j. As Au and Av become small, this blue area becomes
closer and closer to a parallelogram. The edges of this small parallelogram
are given by the vectors a, b:

a=r(u+ Au,v) —r(u,v) =~ %Au
b =r(u,v + Av) —r(u,v) =~ %AU

The area of the small parallelogram with edges a and b is given by AA =
lax b| =] (2 x &) |AuAv = |z,y, — T,y |AuAv. Taking the limit to zero
we get

dA = |zyyy — TpYu| dudv = J dudv.

Here J = |z,y, — T,yy|is known as the Jacobian and is sometimes denoted

Yy
= J = |TuYy — ToYul-

So the integral [[, f(z,y)dA = [[, f(z,y)dzdy can be found in the new

co-ordinates as
F(,y)dA = _ I(z,y) _
x7y) - f(x7y)d$dy - f(x<uuv)7y(u7 U)) d d - f(x(u,v),y(u,v))\xu
R R R d(u,v) R
For some problems with axial symmetry it is easier to use polar coordinates.

6.6 Use of polar coordinates
We cover the z,y plane with a polar grid and our area elements AA; become
wedges at 7,6 as shown;

it
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The area of an element of width Ar and rA# is given by AA = rAr A6.
In addition of course f(z,y) — f(rcos,rsinf) so that we have the theorem

//Rf(x,y)dA = //Rf(rcosﬁ,rsinﬁ)rdrdé’

Compare this with the general change of variables given above. Here z =
rcosf, y =rsinf

I(x,y)
d(r,0)

and so again from the previous subsection the area element dA = Jdrdf =
rdrdf.

J = = |2,y — zoy,| = |cosO(rcos@) — (—rsinf)sinf| =r

Example 1: Evaluate I = [[,sin(2? 4+ 3*) dA where R is the circular
disc 2% +y* < 7.

Clearly in this case there is a circular symmetry we should be taking advan-
tage of. The region of integration defined above is

0 < r<+m
0 < 6 <27

Using the theorem above we can write

VZ Y%y

I :/ / sin(r?) r df dr
o Jo
JT

= 27r/ sin(r?) r dr
0

= [—7‘( cos(rg)]f

= w(1 —cos(m)) = 2.
Example 2: Evaluate I = [[,3zy°dA where R is the semi-circular
disc 22+ 3% <1 and z > 0.

First note that the line z = 0 in polar coordinates runs along ¢ = +7. The
region of integration defined above is

|
|

IA A
IA A

ol x

40



Using the theorem above we can write

I = // 313 cos 0 sin? 6 rd dr

/ 3r*sin?(#) d(sin ) dr
0

.

Example 3: Evaluate [ = [~ e dx

This is a famous integral (the Gaussian integral) whose answer is known to
be /. To do it first construct the square;

I’ = / e_Ide/ eV dy
_ / / =49 g dy

This is the integration over the entire plane. Using polar coordinates it

becomes simpler;
00 2 )
I’ = / / e " df rdr
o Jo

= 27T/ e rdr
0

so I = /m.
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7 Extension to triple integration

Many problems require the evaluation of a “bulk” property such as mass of
a 3-dimensional object, by integrating over the entire volume. Suppose we
want to find the mass of a star for example, of density p(x,y, 2). The mass
of a small volume element with sides Az, Ay, Az will be

AM = p(z,y, z) AzAyAz

Extending the two dimensional case then, we can subdivide the volume into
N3 small elements, and sum. The total mass can be written as the triple

integral
M = ///pdxdydz
v

or if we wish to avoid specifying coordinates

= fffon

where V' is the integration volume.
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Example 1: A wedge occupies the region V given by 0 < z < 2,
0<y<land 0 <z <1-—y. The wedge is made of material of
density p = 122y g/cm3. What is its mass?

We have
M = ///pd:cdydz

v
2 1 1—y

= 12/ // xy dzdydz
o Jo Jo
2 1

= 12/ / xy 2]y 7Y dydx
0o Jo
2 1

= 12/ / zy(1 —y) dydx
0o Jo
2

2 371
= 12/x[y——y—] da
o 123,
2
= 2/ wdr = [2°]3 = 4gm
0

Note that implicit in this example were the units of length in the limits (e.g.
2cm, (1 — y)em etce).

7.1 Cylindrical polar coordinates

As for double integration, there are often cases were different coordinate
systems are preferable. Cylindrical polar coordinates are useful in cases with
axial symmetry, usually involving pipes, cylinders, annuluses etc. They are
an extension to polars where we essentially just “add a z—coordinate”. It is
illustrated in the figure, (to tie in with convention I'll now call the angular
coordinate ¢)
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constant 2
¢ surface

If we wish to integrate over the volume the volume elements have sides

Ar, rA¢ and Az so that

///Vf(x,y,z)dg;dydz = ///Vf(rcosqﬁ,rsinqﬁ,z)rdrdqﬁdz

Example 2: Find the volume V' of the finite region bounded by the
cylinder 22 + y?> = 1, and the planes z = 0 and 2 = z + 3.

We have to find V = [[[,, dxdydz for this volume. Given the cylindrical sym-
metry of at least part of the problem we might try doing V' = [[[,, rdrdodz
instead. Clearly the tricky bit is the z limit. This will become

0<z<rcos¢p+3

44



and should be evaluated first. That is we do
1 27 T cos p+3
V = / / / rdzdgdr
0o Jo 0
1 27
/ (2] T3 dopdr
1 027T
/ r(rcos ¢ + 3) dodr
0
1

r[rsing + 3@25]3” dr

6mrdr

I
Fo5— — — —

[r?]5 = 3.

Example 3: Find the volume V of the finite region bounded below
by the paraboloid z = 22 +y?, and above by the sphere z2+y*+2% = 6.

This problem clearly has axial symmetry about the z-axis so again do V =
[[[f,, rdrd¢dz. First we need to find where the two surfaces meet given in
cylindrical coordinates by

z2=1r>=V6—1r2
which has solution r = v/2. For each r we need to integrate z in the range

r2 < z2<V6—r2

45



The ¢ doesn’t really play much role here as it doesn’t appear in any of the
limits so we can integrate it first. So in total we have

V2 V6—1r2 2
V = / / / rdodzdr
0 0

r2
V2
— 2#/ r [2]7:2642 dr
0

V2
= 27T/ r(vV6 — r2 — r?)dr
0

V2
1 3 7’4
= 91 |—=(6—7r?)2 — —
ﬂ[ 3(6 %) 4}0
1 4 1 s
= 2n(—=8 — -4+ —62
7( 38 4+32)

= 27r(2\/_—%)

7.2 Applications: volumes, masses, centres of masses
and centroids

Masses and volumes already seen. Centre of mass of a body has coordinates

Z,1, Z where
:i'/ pdV = /xpdV
and similar for y, z.

Example Find the cenre of mass of example 3 above, assuming constant
density.

Clearly * = y = 0 by symmetry. Compute z. Using above formula we
may set p = 1:
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V2 V612 por
zV. = / / / zrdodzdr
0 r2 0
V2

= 27r/ r[22/2] TQG_TQ dr
0

V2
= 7T/ 7(6 —r* — r*)dr
0

V2
= T 3T2_r_4_r_6
4 61,
8
= 6—-—1——
R(6-1-3)
11
= —
3

giving z = 117 /(3V) = 11/(6(2v/6 — 1)) ~ 1.488
Definition: Centroid= what the centre of mass of an object would be if
it had constant density (even if it doesn’t.) (Use above formula with p = 1)

7.3 Change of variables for triple integrals: Spherical
polar coordinates
General change of variable formula for triple integrations is similar to the

double integration case. Recall for double integration when changing vari-
ables, the measure changed via a Jacobian

0
dA = dxdy = (z,y) dudv = |x,y, — Tyyu|dudv,
A(u, v)
Now note that the Jacobian can be written as a determinant
_ O(z,y) _ % %
X Y
0(u, ’U) 9 v

In the same way for triple integration we can change variables and need
to multiply the measure by a Jacobian which is the determinant of a 3 X
3determinant. If our new variables are u, v, w then

dV =dxdydz = ow.y,2) = g_x i %
8(“7 v, w) (9;): gz BE
ow  dw Ow
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The proof of this is similar to that for the double integration case. Consider
a small volume element with sides Au, Av, Aw. It is a parallelepiped, with
edges given by the 3 vectors

or. Oy. 0z or, Oy, 0z Oor, Oy. 0z

—i4+ = k, —i4+ ==j k —i+—=j+—k

g ol e ' T al T ot e e T aw
The volume of such a parallelepiped is given by the scalar triple product
la.(b x c)| also equal to the determinant above.

7.4 Cylindrical polar coordinates

Here we have coordinates (7, ¢, z)where x = rcos ¢,y = rsin¢, z = z so the
Jacobian becomes

cos ¢ sing 0

——— <~ =| —rsing rcos¢ 0 |=r
(r, ¢, z2) 0 0 1

as we saw already.

7.5 Spherical polar coordinates

Spherical polar coordinates are useful in cases with radial symmetry, involv-
ing for example central charges, gravitating stars, black holes, bubbles, explo-
sions, etc etc. In this case the volume is mapped out by radius r and the two
angles, one altidudinal angle 6 giving “latitude” and the other “azimuthal”
angle ¢ giving “longitude”. The coordinates x,y, z are given by

xr = rsinfcos¢
y = rsinfsing
z = rcos#.
The Jacobian is then
o(z ) sin @ cos ¢ sin 6 sin ¢ cos
ﬁ: rcosfcos¢ rcosfsing —rsinf | =r’sinf
(r,6,¢) —rsinfsin¢ rsinfcos ¢ 0

It is illustrated in the figure, (to tie in with convention I’ll now call the
angular coordinate ¢)
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Volume element f SN .
2 . {3.:’» g Il'u '-.II |
dV=r"sin6 d6 d¢ dr |' e /I -y

By convention (in maths) the angle 6 is taken to be zero at the zenith (i.e.
straight up) and 7 at the nadir (i.e. straight down). If we wish to integrate
over the volume the volume elements are curvilinear boxes having sides Ar,

rsin #A¢ and rAf so that

/// flx,y, z)dedydz = /// f(rsinf cos ¢, rsin @ sin ¢, z cos §) r* sin 0 drdpdf
1% v

Example 4: Find the volume of the region bounded above by a
sphere of radius ¢ and below by a cone of half angle m < 7.

For this example we may use SP coordinates if we place the axis of the cone

along the § = 0 direction. Then the integration region is

¢ <2m
0 <m
r <a

o
IAINIA
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and

vV o= // / r2sin 0 dododr
= /0 r2[— cos 0] dr

= 27r(1—cosm)/ ridr
0

2 3
— (1 — cosm)

3

Note that when m = 7 we get the volume of the sphere (47a?).

Example 5: Evaluate I = [[[,, %dmdydz where V is that part

of the interior of the sphere 2> + y? + 22 = 9 in which = > 0, y > 0
and z > 0. i.e. the “positive octant”.

The positive octant is given by the integration region is

T
0 < < =
_¢_2
T

0 < 6<—
- -2
0 < r<3

Also we have 22 + y? = r2sin® §(sin? ¢ + cos? ¢) = r?sin? 6, so that

I = /// sin(r T51n9d¢d0dr
TS]H
3
= // / rsin(r?) dodfdr
0 0

3
/ rsin(r?) dr
0

[~ 5 cos(r)l

(1 —cos(9))

o o[ F, 7
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8 Vector Calculus

Combine together what we know about vectors with what we know about
calculus. Already seen this a little bit...

8.1 Revision of 1st term: vectorial functions of one vari-
able

In A-level: scalar functions of one variable. ODEs: Physical picture, particle
moving in 1 dimension x(t). Vectorial function of 1 variable. Picture: Particle
traveling in 3d r(t)

8.1.1 Basic formula: (here the variable is t)

da(t) %'—l—@' das

dt a T ad T

8.1.2 Leibnitz rules: (See term 1 handout)

8.1.3 Chain rule:
da(s) B @d_a
du  duds

8.1.4 Non-constant basis, eg Polar coordinates: (See term 1 hand-
out)

Often even the basis vectors need to be differentiated. Cartesians i, j,k are
constant, but in Polars, for example, they are not constant. Quick recap.

Consider motion in a plane, using polar coordinates r, 8, where x = r cos
and y = rsinf. r = xi + yj = r(cos i + sin 0j).

The radial unit vector e, is a vector in the direction of r, e, = © =
cos #i + sin 6j.

The tangential unit vector ey is a vector perpendicular to e,, and is

€9 = —sinfi+ cosfj, (increasing 6 is anti-clockwise).
If the particle is moving then r and 6 can depend on time. e, = %%er =
0(— sin 0i + cos 0j) = feg. &g = L Ley = §(— cosbi — sindj) = —be,.

Note: e, e, =eg-eg =1 and e, - eg = 0 for all time.
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r=re, therefpre I =re.+r1e =71e + 7“969. r = e, + re, + féeg + réeg +
rhéy = (i — r6%)e, + (270 + r6)ey.

8.2 Integration of vectors

(Indefinite) Integration of vectors (or expressions involving vectors) wrt scalar
= inverse of differentiation. But rememember: if the expression we integrate
is a vector, then

e the integral is also a vector
e constant of integration is also a vector

eg if a(t) = dA/dt, then the indefinite integral of Ais

where bis a constant vector (since a(t) is a vector.) As you would expect the
definite integral from t = tito t = tsis

/'t2 a(t) dt = A(t1> — A(tg)

t1

In fact you have already seen this. Last term you proved that for a central
force, Torque dL/dt = 0 you then concluded that L =constant. This is by
integrating wrt to t.

Example: Integrate a(t) = costi—+ 2tsint?j+ 4> k. Integrate term by
term so

/a(t)dt =sinti—cost’j+t*k

8.3 Vector functions of several arguments

a(uy, ug, . .., u,)vector function of n variables.

8.3.1 Basic formula still applies
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8.3.2 Chain rule generalises to the multi-variable case
If a(uy, ug, ..., u,) and each u;(vq, va, . . ., v,), then just as for scalar functions

we have
@_8a8u1+8a8u2+ +&8un
dv;  Ouy Ov;  Ousy Ov; ou,, 0v;

8.3.3 Total differential generalises straightforwardly

If we have a vector function of n variables, a(uy,us, ..., u,) then the total
derivative is: p 5 5
a a a
da = d —d e duy,.
a 8U1 vt 8U2 vt + ﬁun “

8.4 Scalar and Vector fields

Up until now we have considered functions of many variables, often without
specifying what the variables are (often space, sometimes space and time,
often we didn’t care). From now on our variables will always be coordinates
in space.

A scalar field is simply a function f(x,y, z) where z,y, z are co-ordinates of
space (we have considered these previously - but have also considered more
general functions eg f(x,t) or just where we didn’t care what our variables
represented). So to every point in space (z,y,z) is associated a number
f(z,y,2). Example: pressure in a fluid P(x,y, z).

A vector field is a vectorial function of z,y, 2. So it associates a vector
v(z,y,2) to every point in space (z,y,z). Example: velocity vector in a
fluid (giving the speed and direction of motion of the fluid at each point.)
Note: although these operations are defined for 3 dimensions, we will often
specialise to 2d (simply setting the kcomponents to zero.)

8.5 Vector Operators: Grad

There are different differential operators which can be applied to scalar and
vector fields. They can all be written in terms of the vector operator, V
called del or nabla. It is defined as

0 0 0

;9 .0 9
v 10x+‘]8y+ 0z
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So if f(x,y,z) is a scalar field (function of x,y, z) then

of. of. Of
V= 9509y
/ 8x1 + 8y‘] + 0z
Example: If f(zr,y,2) = 2%y’> what is V f?
Vf= %i + g—gjj + %k = 2zy32i + 32%y?zj + 2%’k

8.5.1 Directional derivatives

The partial derivatives give the rates of change of f when we move along
the i direction or the j direction. How can we find the rate of change in the
direction of a unit vector i in some other direction? A clue comes from the
derivation of the chain rule earlier:

If f = f(z,y,z), recall (section 2.4) that if we make a small change
Ax, Ay,Az the change in f, Af is

7 N Nl |
Af = axAx—i-ayAy—l—aZAz.

= (%1 + g—;;j + %k) - (Azxi+ Ayj + Azk)
(We used this to define the total differential, there we had only two variables
but the extension to 3 is straightforward). This is the total change in f if we
move Az in the i direction, followed by Ay in the j direction, followed by Az
in the k direction. Our position goes from (z,y, z) — (z+Azx, y+Ay, 2+Az)
which we can write as x — x+ Azi+ Ayj+ Azk+. Now suppose Azxi+ Ayj+
Azk has some infinitessimal length Asie. ((Az)?+(Ay)?+(Az)? = (As)?).
Then Azi+ Ayj+ Azk = Asin and then

of of of

(%Ax—l— ayAy—i— aZAz
_ . Of.  Of. Of
= Asn.(ax1+ay3+azk)

Af

where the dot indicates the scalar dot product as usual. The vector

9] 0 0
Vf:(a_£i+a_£j+a_£k)
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is called the “gradient of f”, (or “grad f” or “del f” for short) and the vector
differential operator V = i% +j8% + k% is called del, grad or nabla. So the
rate of change along a direction 1 is in the limit then given by

i
%—an

Note that V f is a vector. Often using V greatly simplifies manipulations; for
example consider Taylor series again. In a space of variables x = (21, ..z,)
we can write the expansion of f at x = x¢ + h as

f(x0+h) =€ flx,

The Laplacian becomes (V.V)f often written V2f and so on.

8.5.2 What does Vf tell us about the surface f(z,y)?

Consider separating V f into the modulus and unit vector;
Vf=m|Vf|
Then the gradient in a direction n is given by
(.n)|Vf| = cosb|Vf|

where 6 is the angle between the two directions. The gradient is therefore a
maximum when 6 = 0 - in other words V f points in the direction of maximum
gradient (In 2D, thinking of the function as “height” the gradient points “up
the slope”).

In 2D, the contours or level curves of the surface are by definition the
directions along which f is constant. This means cosf = 0 - in other words
the contours are at right angles to V f.

In 3D we have level surfaces.

Examples of level curves: contours lines on a map represent height
above sea level - lines of constant h(z,y); isobars on a weather map represent
lines of constant atmospheric pressure (at sea level) p(z,y).

More generally, in 3 (or more) dimensions V f points in the direction that
f increases the fastest and is perpendicular to the level-surfaces.

95



Level curve fixy)=c

Figure 1: Showing an example level curve given by the equation f(z,y) = ¢
a constant, V f at a point (which is a vector perpendicular to the level curve)
and an arbitrary unit vector at the same point n. The rate of change in the
direction n (unit vector) is n-V f = |V f| cos @ where cos fis the angle beween
n and Vf. (as indicated on the figure)

8.5.3 Summary of Grad
e In Cartesian coordinates: Vf = (%i + g—ij + %k)
e Takes a scalar field f(x,y, 2) to a vector field V f

e Vf points in the direction of maximum gradient (Grad is short for the
“gradient operator”.)

e Directional derivative: The rate of change in the direction n (unit
vector) isn- Vf

e Level curves (in 2d - or level surfaces in 3d) is the curves f(z,y,2) = ¢
are perpendicular to V f
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8.5.4 Examples

Example 1: Find the rate of change of f(z,y) = v* + 2%+ at (0,1)
in the direction of the vector i+ 2j.

First find V f. We have
fo = 14222 =1
fy = 4° +2y2® =4
Vi = (14 229%)i+ (4y° 4+ 2y2?)j = i + 4j
Now we need the unit vector. This is
A = (i+2j)/(1+2%
(i + 2j)

Sl

Then the rate of change is

avf = (i+2j).(i+4j)

Sle&l-

Example 2: The temperature in a room at the point with coordi-
nates (r,y,z) is given by T(z,y, z) = z%¢ Y2. At the point (2,1,1) in
what direction does the temperature increase most rapidly?

First find VI'. We have
T, = 2zeVz=4]e
T, = —2%eYz=—4/e
T, = 2%¢Y=4/e
4
(i—-j+k)

= VT = 2ze Yzi—a’eVzj+ 2’ Vk = -
e

So the direction of greatest increase is

1
—((1—j+k).
\/3( j+k)
The rate is

4/3
IVT| = T\/_K/m.
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Example 3: Find the level curves and gradient of f(x,y) = 2* + 3°.

The level curves are defined by f(z,y) = ¢ = 2% + y?, so they are circles
as expected. Check that this fits with the Vf. We have Vf = 2(x,y) =
2r(cos 6,sin#) in polars, which is an arrow of length 2r pointing radially
from the origin. The unit vector orthogonal points in the direction of the
level curve passing through (z,y); m = %(y, —z) = (sin @, — cos0).

Example 4: Find the level curve of f(z,y) = y*+22y>+2 through the
point (0,1) and verify that its tangent at this point is orthogonal
to Vf.

The level curves are defined by f(z,y) = ¢ = y* +2%y?> + . At (0,1) you can
easily verify that f(0,1) = 1 so must have ¢ = 1. The equation of the level
curve is y* + 2%y? + v = 1. The tangent to this point has “slope” j—g in the
x,y plane. Differentiating we find

d

%(4@;3 +2yz?) +2rP +1 = 0
dy 1
dr

So the corresponding unit vector in the z,y plane is

1
b= (4,1
p 1( )

~J

Next V f is given by

V= (2vy’ +1, 4° + 2y2®) = (1, 4)

and is along unit-vector m = \/Lﬁ(l, 4). Then we find m.p = 0.

Example 5a: Find the rate of change of f(x,y) = sin(\/22 +3?) at
some position (z,y) and along the direction of the unit vector n =
Ngi + 1nyJ.

In this and the next example we’ll do an example two ways that demonstrates
the important concept of coordinate invariance of 1.V f: First we’ll use the

o8



cartesian coordinates in which the question is given. For V f we have

fo— x cos(y/x? + y?)
L e/
cos(y/22 + y?)
+

i+ yj)

so that

U

=Ty
ds
cos(y/x? + y?

)
= (xng + yny)
Va2 +y? ’ Y
We will repeat this computation in polar coordinates shortly. But first,
2 more vector operators...Div, Curl.

8.6 Vector Operators: Div

The divergence of a vector field v(z,y, 2) = vi(x,y, 2)i+uvs(x, y, 2)j+vs(z, y, 2)k,
“Div v” is defined by
. 87}1 81)2 81)3

d =V.-v=—+ —+ —.
vy V= e + dy + 0z
This is, of course what you get from V-v = (i> +ja%+k%) “(viitvoj+usk)
Example: Find the divergence of the vector field v = 2%y i+ zzcos(y)j +
e k.

Vv =2y — zzsin(y) + 3e™2?

Note: Div takes a vector field and gives a scalar field. (The opposite of

Grad.)

Significance of Div: If we think of the vector field v(z,y, z) as giving the

flow of some quantity, then V - v gives a measure of the net amount flowing

out of any point. (see Wolfram demonstration:
"http://demonstrations.wolfram.com/VectorFieldFlow ThroughAnd Around ACircle /)
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8.6.1 Laplacian: V2f

We have seen that Grad takes a scalar field to a vector field, whereas Div
takes a vector field to a scalar field. Therefore Div Grad, takes a scalar field
to a scalar field. What is this operator?

div(gradf) =V - (Vf) = V- (fol + fii + k) = fax + fyy + [foz

Div(Grad) =V? is the Laplacian (which we met previously). (Can be defined
in any dimension.)
0?0 0P
2_ 07 O O
v Ox? + Oy? + 022

Example: Find the Laplacian of the scalar field f(z,y, z) = xy%e?.

82f 82f a2f 2z 2 2z 2z 2
= 5.2 + oy + 5.2 = 0+ 2ze™ + 4oy e™ = 2zwe™ (1 + 2y°).

V2 f

8.7 Vector Operators: Curl

The operators Grad, Div can be defined for fields in any dimension. The
operator curl only works in 3 dimensions. It is defined as follows, for any
vector field v(z, . 2) = vy(2,y, 2)i + 1o, , 2)j + v3(,y, 2)k :

31)3 8’02 . 8’01 81}3 . 81}2 81}1
lv = ] g 9% g2 IU g
curlv =V xv <0y 6z)1+(6z 8x>J+(8:E 8y)

This is, of course what you get from Vxv = (i%+j%+k%) X (v1i+vej+usk)
Example: Find the curl of the vector field v =xyzi+yzj+ xz k.

Vxv=—yi+(zy—2)j—azzk

Curl gives a measure of the angular velocity of the fluid near a point. (see
Wolfram demonstration:
"http://demonstrations.wolfram.com/VectorFieldFlowThroughAnd Around ACircle /)
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8.7.1 Famous example of Grad, Div, Curl

Maxwell’s equations for Electro-magnetism. Eis the electric field (it is a
vector field) Bis the magnetic field (it is also a vector field). Bpoints in
the direction of a compass. In a vacuum these are governed by Maxwell’s
equations which are written in terms of Grad, Div and Curl:

V- -E =0
V-B=0
OB
E=—-——
V x T
1 OE
B=——
VX c? Ot

More later.....

8.8 Vector operator Formulae |Riley:10.§|
8.8.1 Vector operators (Grad, Div, Curl) acting on Sums/products

1. Grad, Div, Curl are linear operators (means “sum then operate=operate
then sum”) ie:

V(f+9)=Vf+Vy
Vi(v+w)=V.-v+V. w
Vx(v+w)=Vxv+Vxw

Proof: follows from linearity of 0/0z etc. eg. V- (v+w) = 0/0x(v1 +
wy)+0/y(vy+ws)+0/0z(vs+ws) = 9/0x(v1)+0/y(ve)+0/0z(v3)+
0/0x(wy) + 0/0y(wy) + 0/0z(w3) =V - v+ V. -w

2. When acting on products involving two scalar fields or a scalar field
and a vector field we get natural generalisations of the product rule:

V(fg) =(Vf)g+ f(Vg)
V-(fv)=(Vf)- v+ f(V-v)
VX (fv)=(Vf)xv+ f(VxV)

Proof: All follow in one way or another from the product rule for
0/0xetc. Eg to prove the 3rd formula, let us focus on the k component
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only. The k component of V x (fv) is:

k (%(f@g) — %(fﬂl)) = k (%UQ — g—‘;jvl) -+ kf(%UQ — %’Ul)

which equals the kcomponent of the RHS. The other components will
be similar.

Example: Show that V x (fv) = (Vf) x v+ f(V xv) for [ =
2%y, v =2zi+2j+ k. Then V x (fv) = V x (zyzi+ 222%yj + 2%yk) =
r?zi+ (2%y—2xy)j+ (4zy —2x?2)k. On the other hand V f xv = (2zyi+
22j) x (2i+2j + k) = 2221 — 22yj + (4zy — 222)k and f(V x v) = 2%yj
which sum to the same.

. Vector operators acting on products of vector fields can be trickier. The
first is the simplest as there are only two terms:

V:-(axb)=(Vxa)-b—a-(V xb)

|[Note the relation with the vector identity (scalar triple product) a -
(bxc)=b-(cxa)=c-(axb). Insome sense the above identity
is a natural combination of the scalar triple product identity and the
product rule for differentiation.

Then we also have the following more complicated identities

V(a-b)=ax (Vxb)+bx(Vxa)+(a-V)b+(b-V)a
Vx(axb)=a(V-b)—b(V-a)+(b-V)a—(a-V)b

Again, the second identity is the analogue of the vector triple product
identity ¢ x (a x b) = (c-b)a — (c-a)b (combined with the product
rule.)

Example: Verify V(a-b) = ax(Vxb)+bx(Vxa)+(a-V)b+(b-V)a
for a = i + zj, b = 2%j + zk.

Then V(a-b) = V(2?) = 32%k, ax (V x b) = (zi+ 2j) X (=) — 2zi) =
(222—2)k, bx(Vxa)=(2%j+ak)x (—i) = —zj+2%k, (b-V)a=
(220/0y+x0/0z)(zi+2j) = zj (a-V)b = (20/0x+20/0y)(2*j+xk) =

xk, the result follows.
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8.9 Action on the position vector and related functions

We write the position vector r = zi+ yj + zk and r = |r| = /22 + y? + 22
Then we have for example

Exercise: Show that V f(r) = (df /dr)e,
Then we can use this result with the previous result and identity 1b above,
to show that for example:

dg

V- (glr)r) = 3g(r) + 75

Proof: V- (g(r)r) = g(r)V -t + Vg -t = 3g(r) + %e, - v = 3¢g(r) + re

We can also prove:

a*f  2df

2 _

Vi) = dr? 5 rdr

Proof: V2f(r) = V- (Vf(r)) = V- (4r) using the result for Vf above.

Now we can use the identity for V - (g(r)r) above with g(r) = 1 df to get
V.(lﬁr)_3df+ (ldf)_d2f+2df

rdr rdr dr \r dr dr? rdr’

8.10 Combinations of Grad, Div and Curl

We can also consider applying more than one of Grad, Div or Curl on a single
scalar or vector field. We get two identities that give zero

curl(gradf) =V x (Vf) =0
div(curlv) =V - (V xv) =0

So the grad of a function V f gives a vector field which has zero curl (“irro-
tational”). Eg f = zy2z? V[ = y2%i + 22%j + 2zyzk. Check V x (Vf) =
(222 — 222) + j(2yz — 2y2) + k(2% — 2?) = 0.
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Also the curl of a vector field is divergenceless.

The other useful identity is
curl(curl v) = V x (V x v) = V(V - v) — Vv

where we recall that V2f = V - Vf (although here it is applied to a vector
field.)

Example: Show that Maxwell’s equations in a vacuum imply that E and B
satisfy the wave equation. Recall

V-E =0
V-B=0
0B
VXE=——
. ot
1 OE
VxB=——
x c? ot
Take Curl of equation 2. LHS=V x (V x E) = V(V - E) — V’E = —V?E
whereas RHS=-V x 28 = —d(vajB) = —C%%%E. Thus we have the wave
equation VE = C%%QTE. We get the same for B. Must be more information

as there are 4 equations.

8.11 General Curvilinear Coordinates

Instead of x,y, z it is sometimes useful to use different co-ordinates uy, us, us
(eg Spherical or Cylindrical Polar co-ordinates) so that

$:$(U1,U27u3) yzy(uhuz,u?,) Z:Z(U1,u27us)

8.11.1 Basis vectors
In cartesians the position vector is
r=uxi+yj+zk

and 1i,j,k are basis vectors. Note that the basis vectors can be given as

or . Or I or
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In general co-ordinates it is useful to similarly define basis vectors in terms

of partial differentials of the position vector %. If the co-ordinates are

orthogonal this means g—; . % = 0if ¢ # j. It is then useful to make the

basis vectors orthonormal by ensuring they are of unit length, ie dividing
by the modulus. So for an orthogonal system of co-ordinates (which we

assume from now on) we define basis vectors:

1 Or 1 Or 1 Or

S hon T o % ko

where h;.... are called scale factors:

or
8u1

| or
2 6’&2

b | or

h pum
! 0U3

Example 1: Cylindrical polars

[Notes not complete here]

Define basis vectors, scale factors

Derive Grad in general orthogonal coordinates.

Give Cylindrical polars and spherical polars as examples.

Example 5b: Find the rate of change of f(x,y) = sin(\/2? + y?)
at some position (z,y) and along the direction of the unit vector
i = n,i+n,j, using polar coordinates. [This example was first done
in Cartesian coordinates in section8.5.4]

Seeing that the function is a function of r = /(22 + y?) only (i.e. f =
sinr) you might prefer to use polar coordinates (same as cylindrical coordi-
nates, without the z coordinate). Of course the answer should be the same

cos(y/

[We got g—é =nVf= ﬁ (xn, + yn,)before|. The transformation to
polar coordinates is
xr=rcosf ; y=rsind.
In polar coordinates Vf = er% + eg%% so that Vf takes a particularly
simple form
Vf=cosre,+ 0ey =cosrr

so that
n.Vf=n,cosr
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where in the polar coordinates n = n,e, + ngey. So all that remains is to
compare with the previous answer:

cos(y/ 22 + y?)

n.vVf= (xng +yny) =

Now z/r = cosf and y/r = sinf. So the previous answer can be written

M (xng + yny).

0.V f = cos(r) (cos(d)n, + sin(f)n,) = cosre, - n

where we recall e, = cos i+ sin8j and fi = n,i+n,j. But then by definition
e, -n = n, and we get the same answer.
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