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SOME REMARKS ON COMMUTATORS 

OYSTEIN ORE 

In a group the product of two commutators need not be a com- 
mutator, consequently the commutator group of a given group can- 
not be defined as the set of all commutators, but only as the group 
generated by these. There seems to exist very little in the way of 
criteria or investigations on the question when all elements of the 
commutator group are commutators. In the following it is shown 
that in the finite symmetric group 2n all elements of the alternating 
group are commutators; one can extend this and show that when 
n >5 all elements in the alternating group are commutators of ele- 
ments in An. For the infinite symmetric group the situation is dif- 
ferent since we obtain: Any one-to-one correspondence of an infinite 
set to itself is a commutator. 

1. We shall begin by making a few general remarks which apply 
both to the finite and the infinite cases. Any one-to-one corre- 
spondence T of an arbitrary set S to itself can be written uniquely as 
a product of cycles which operate on disjoint sets of elements 

(1) T= H j n. 

These cycles may be finite of the type (?n = (1, 2, . .. , n) or infinite 
of the type 

(2) ( - ( - * * 0, 1, 29 

One transforms T by another correspondence U 

T' = UTU-1 

by performing the substitutions of U in each of the cycles of T. Thus 
two such correspondences T and T' are transforms or similar if and 
only if they have conformal cyclic decompositions (1), that is, there 
exists a one-to-one correspondence between their cycles for each order 
n =1, 2, * * *, o. 

Since one obtains the inverse of a correspondence by reversing the 
order in a cycle, T and T-' are conformal. Furthermore, a com- 
mutator has the form 

K = A BA-'B-1 

so that we arrive at the following criterion which we shall use in the 
following 
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308 OYSTEIN ORE [April 

LEMMA. A correspondence T is a commutator if and only if it can be 
written as a product 

(3) T-=VV' 

of two conformal correspondences V and V'. 

We shall also need the observation that if K1 and K2 are two com- 
mutators 

K1 = A1B1A1 B1, K2 = A2B2A2 B2 

where A1 and B1 commute with A2 and B2, then the product 

K1K2= K2K1= (A= A2)(BlB2)(AlA2)1(BlB2)-l 

is a commutator, and similarly for an arbitrary number of factors. 
This remark makes it possible to find commutators equal to certain 
parts of a product (1) in the elements which these cycles involve and 
combine them to a commutator representation for T. 

Let us also remark that any one-to-one correspondence T of the 
set S to itself may be regarded as such a correspondence for sets S' > S, 
obtained by adding to the cyclic expansion (1) the single element 
cycles el= (a') for the elements a' in S'- S. 

2. For the symmetric group 2n of a finite set of n elements the 
alternating group An is the commutator group and in this instance 
we can show: 

THEOREM 1. Every element in the alternating group An is a com- 
mutator of Z. 

PROOF. Let T be a permutation in An. Its cyclic decomposition 
(1) may contain cycles of odd order and an even number of cycles of 
even order. Our theorem follows, therefore, if one can show that 
every cycle of odd order and every pair of cycles of even order are 
commutators in the elements they involve. 

For a cycle of odd order 

(4) e2i+l = (1, 2, *, 2i + 1) 

one has the representation 

(5) C2i+1 = (1, 2, * * *, i + 1)(i + 1, i + 2, ,2i + 1) 

in the form (3) of the lemma, namely, as the product of cycles of 
order i+ 1. [All products of permutations are executed from right to 
left in the following.] 

Next let 
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I95I1 SOME REMARKS ON COMMUTATORS 309 

(6) C2i= (1, 2, * * *, 2i), D2j = (2i + 1, * * *, 2i + 2j) 

be a pair of even order cycles -where we suppose that j > i. Then one 
can write 

(7) C2iD2i = (1, 2, , 2i, 2i + 1, , ij +j + 1) 

*(2i, i +j +1i +j +2,C 2i +2j) 

and we have again a representation (3) as the product of two cycles 
of order i+j+1. 

3. Let us now turn to the infinite symmetric group Xs of some set 
S. It is clear that there exist one-to-one correspondences T of S to 
itself, which are commutators and actually involve all elements in S, 
for instance, the elements in S may be paired into transpositions 
with T as their product. Since the commutator group is normal it 
follows from a theorem of R. Baer (Studia Mathematica vol. 5 (1934) 
pp. 15-17) on the infinite symmetric group that 2s is its own com- 
mutator group when S is infinite. 

An essential new element in the infinite case is the occurrence of 
the infinite cycles (2). We shall now show: 

THEOREM 2. Every infinite cycle is a commutator in the elements it 
involves. 

PROOF. It is clear that it suffices to show the existence of a single 
infinite cycle which is a commutator in its elements. The subsequent 
construction may appear relatively complicated, but I have been un- 
able to find any simpler procedure. 

An infinite cycle involves a denumerable set of elements and for our 
purposes it is advantageous to represent them by two-way indices 

(8) aii, i =O +1, +2, * * * ;j = O, 1, 2, * * 

which is also a denumerable set. In this notation we construct the in- 
finite set of infinite cycles 

As ( * a-1,i, ao,j, al,i, j =) j- , 1, 2, *** 

without common elements; their product shall be denoted by 

(9) A- = Ai. 
jiO 

When the elements (8) are interpreted as lattice points in the upper 
half of the coordinate plane the correspondence (9) has the effect of 
moving each element one step to the right on the lines parallel to the 
x-axis. 
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310 OYSTEIN ORE (April 

Our second correspondence is also an infinite product of infinite 
cycles 

00 

(10) B H B, 
i=l 

where the cycles B, are defined as follows: 

B1 = ( , a,1,2, a-1,1, a-.,o, al,o, a1,1 a1,2, . . . 

B2 = ( , a*,a.2,2, a-2,1, a-2,o, ao,o, a2,0, a2,1, a2,2, . . . 

and in general 

Bi = ( * * *, 2, a-i,1, a-i,o, ao,i-29 ai,o, ai,1, ai,2, . . . 

One can describe B. geometrically: Under it, each lattice point in 
the -ith column moves one step downward and when one reaches 
the x-axis it jumps to the point ao,i-2 on the y-axis and from there to 
the zero-point in the ith column on which it moves upward again. 
The cycle B1 is slightly irregular since it contains no lattice point on 
the y-axis. 

From these constructions it is clear that both A and B are one-to- 
one correspondences of S to itself leaving no element fixed. Further- 
more, the cyclic product decompositions (9) and (10) show that they 
are conformal. According to the lemma the product 

(11) C= BA-1 

is therefore a commutator and the proof of Theorem 2 follows from 
the fact that C is actually an infinite cycle involving all elements (8). 
We leave it to the reader to verify that C is the cycle 

C = (. . . . . . . . . . . . . 

ao,,49 a.11,3, a..2,2, a..3,1, a-4,0, 

a0,3, a 1,2, a..2,1, a_.3,o 

ao,2, a-.,1, a-2,0, 

(12) ao,1, a.1,o, 

ao,o, 

a2,0, a1,1, 

a3,0, a2,1, a1,2, 

* . . . . . . . . . . . 

This content downloaded from 129.234.21.159 on Mon, 29 Apr 2013 06:16:17 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


951II SOME REMARKS ON COMMUTATORS 311 

As one sees, C represents a diagonal progress through the lattice 
points of the two quadrants. 

4. Before we can give a proof of the main theorem on infinite cor- 
respondences we shall need a few other auxiliary results. The first of 
these is the following theorem. 

THEOREM 3. A product of two cycles without common elements is a 
commutator, provided one of the cycles is infinite. 

PROOF. When both cycles are infinite the statement is a direct 
consequence of the lemma. To produce a product of an infinite cycle 
and a finite cycle of arbitrary length a we notice that we need only 
multiply the cycle (2) by the transposition (0, a) since 

(13) C,(O,(? a) = ( * -, - 1, O, a+ 1, a + 29 ... ) (1, 2, * ,a). 

We shall therefore multiply the cycle C? in (12) on the right by some 
transposition 

(14) X = (ai, j, ak,l). 

To obtain a product C X conformal with (13) we can even choose 
a j and ak,z in the same line in (12), provided this line is taken so high 
up that its length exceeds a. 

When (11) is multiplied by X the result is 

(15) C X = B (XA)-1. 

According to our selection of the two elements ai,j and ak,l in (14) 
the multiplication XA will affect only two of the infinite cycles in 
A, namely, Ai and Al. But one verifies that 

XA2A I ( *, ai.2,j, ai-1,j, ak,i, ak+1, , ) 

* ***,ak-2,1, a_-,,l, ai,j, ai+l,, * * 

so that this product is again a product of two infinite cycles. There- 
fore, XA is conformal to A and to B, and from (15) we conclude, 
by means of the lemma, that CX and therefore (13) is a commutator. 

Next we show: 

THEOREM 4. A correspondence is a commutator when its cyclic de- 
composition is an infinite sequence of cycles of finite orders greater than 
or equal to 2. 

PROOF. Let 

(16)A P = . .. (a,, . .. n. {aj .bi b. 2 
. A 

l 
. . . 

I 
. 

Ci 
. . . 
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312 OYSTEIN ORE [April 

be the given correspondence. If there should be an infinite number of 
cycles of even order these may be arranged in pairs which are com- 
mutators in the elements they involve. The cycles of odd orders are 
already commutators in their elements so that P becomes a com- 
mutator. Hence we can assume that there are only a finite number of 
cycles of even order, in particular, there shall be only a finite number 
of transpositions in (16). 

We now multiply (16) on the right by 

(17) A = ( * - , ai, ail, bi, b2, cl, Ci, 3, . ) (a2) . . . (b2) 

According to the remark just made, A in (17) consists of one infinite 
cycle and a denumerable set of fixed elements. For the product 

B= PA 

one finds the expression 

B -( * *,a2, a3, * ,ail, b2,*** bi,C, ** i3***) 

* (al)(b1)(cl) 

which is also an infinite cycle and a denumerable set of fixed points. 
We conclude that A and B are conformal and according to the lemma 
P is a commutator. 

Somewhat surprising at first sight is the following fact. 

THEOREM 5. Every finite permutation in an infinite set is a com- 
mutator. 

PROOF. It is evident that this is not true within the finite set of 
elements involved in the permutation; however, the construction can 
always be performed within a denumerable set. Let us first take the 
given permutation to be a single finite cycle 

P = (al, a2, * * *, ai). 

In the basic set S we select two disjoint infinite sequences 

Sa = I . I a-2, a-,, ao, all * * *,I ai, ai+,, * * * , I Sb- = { bi, b2,***}. 

Within the set Sa+Sb we form two correspondences, namely first 

Ca = ( * I a-2, a-,, ao, a,, , * * ai, ai?,, * * ) (b1) (b2) * * - 

consisting of a single cycle in the elements in Sa and having the ele- 
ments in Sb as fixed points and secondly 

Ca = ( a+2, ai+j, al, ao, a-,, )(a2) . . . (ai)(bl)(b2) * . 

This content downloaded from 129.234.21.159 on Mon, 29 Apr 2013 06:16:17 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


19511 SOME REMARKS ON COMMUTATORS 313 

These two correspondences are clearly conformal and since 

it is a commutator. 
When the permutation is a product of a finite number of cycles 

P C il ci2y ... I Cir 

we select 2r disjoint sequences SI and S({) from S and proceed in the 
same manner for each cycle. 

We are now in a position to prove the main theorem. 

THEOREM 6. Any one-to-one correspondence of an infinite set to itself 
is a commutator. 

PROOF. As before let (1) be the cyclic decomposition of the cor- 
respondence T which we want to examine. If there exists an infinite 
number or an even number of cycles of even order these may be 
paired and a corresponding commutator may be constructed in these 
elements according to the preceding. The infinite cycles and the 
cycles of odd orders are already commutators in their elements so 
that T itself becomes a commutator. 

We may therefore assume that the number of cycles of even order 
is finite and odd. If there is some cycle of infinite order one of the 
cycles of even order may be combined with it to give a commutator 
according to Theorem 3; again we conclude that T itself is a com- 
mutator. When one has no infinite cycles but an infinite number of 
finite cycles, these may be arranged in infinite sequences as in 
Theorem 4 and T is a commutator. This leaves us finally with the 
finite permutations and these are taken care of by Theorem 5. 

5. A more thorough investigation whose details we shall omit here 
makes it possible to establish the stronger form of Theorem 1. 

THEOREM 7. When n _5 every element in the alternating group An 
is a commutator of elements in An. 

It is possible that a similar theorem holds for any simple group of 
finite order, but it seems that at present we do not have the necessary 
methods to investigate the question. 

[In the previously mentioned paper by Baer all normal subgroups 
of the group 2 of all one-to-one correspondences of an infinite set S to 
itself are determined. They form a composition chain 

1 <A<Io<..<ZA < .. < 
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314 E.G.-RODEJA F. [April 

where Ao is the group of all finite, even permutations, lo the group 
of all finite permutations and for each cardinal number N the group 
2 consists of all correspondences involving at most N elements. 
The preceding considerations are sufficient (as pointed out by the 
referee) to show that each of them consists only of its own com- 
mutators with the obvious exception of lo whose commutators 
form A o. ] 

YALE UNIVERSITY 

NOTE ON A LEMMA OF A. W. GOODMAN 

E.G.-RODEJA F. 

In a recent and interesting paper on p-valent functions by A. W. 
Goodman we find the following lemma.' 

LEMMA 1. For all integers n _ k > 1 

( (1) m+k2nk m-i 2 2 k 
(1) JJ(n~ - a n) 

m=k (m + k)!(m k)- a=1 

and for all integers n > k > 1, f 1, 

n m-1 n 

(2) '(-1) mr ][I -?a) ][I (a'- kf) = O. 
m=k a=l a==r?+l 

Here the empty product is unity by definition. 
The identity (1), which is the first half of the lemma, has been 

used in the said paper, while (2) is stated only as a generalization of 
(1). 

In this note we intend to establish the identities (13) and (14) 
(where Fn and Gn are arbitrary functions of the natural number n), 
including the afore mentioned as particular cases; and for their 
demonstration we shall follow a method in part similar to the one 
used in the paper quoted. 

Let A() be a function of the natural numbers n and m satisfying 
the conditions (a) A (m=O if n < m, (b) A ()1 if n=m. 

H(p, k, n) is defined by 

Received by the editors March 6, 1950. 
1 A. W. Goodman, On some determinants related to p-valent functions, Trans. 

Amer. Math. Soc. vol. 63 (1948) pp. 175-192. 
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