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Some course information

These brief and basic notes are provided to help you produce a comprehensive and
comprehensible set of notes of your own. They are not a replacement for textbooks which
you will be expected to consult for further details as necessary: the University Library
and many College libraries have copies of the books recommended for the course.

The notes are not replacements for your attendance at lectures. There will be material
(mainly explanations and examples) covered in lectures which is not included in these
notes.

These notes were originally written by John Bolton and Iain MacPhee; various
changes and additions have been made by Patrick Dorey, Olaf Post and Wojtek Za-
krzewski.

Homework and tutorials: problems will be set every week and you are required
to attempt them and hand in their solutions. These will be assessed and returned at
the weekly tutorials which you should attend. Further problems will be set for tutorials.
Details of tutorial groups will be sorted out in the first week of Michaelmas term and made
available on the noticeboards in the Mathematics building and on the course webpages. It
is important that you attempt, at the very least, all the set questions. The main reason
for this is that practice is necessary in order to master the mathematical techniques
covered.

Web pages & DUO

Information about the course and additional material is also available through DUO
and via the Maths Dept pages at

http://maths.dur.ac.uk/teaching/Auxiliary (click on the lecturer’s name).

In particular, a record of the work set appears on the course webpage and, after you
have handed in your attempts at the set questions, their solutions also appear there.
This does mean, of course, that work handed in late without prior arrangement with the
lecturer cannot be considered as counting towards the continuous assessment element of
the module.



Chapter 1

Preliminaries

This part of the course is mostly to get you warmed up after the summer break.

1.1 Algebra

1.1.1 Algebraic manipulation

Example 1.1. Simplify
1
a

+ 1
b

1
a−b

. Well,
1
a

+ 1
b

1
a−b

=
b+a
ab
1
a−b

=
(a+ b)(a− b)

ab
=
a2 − b2

ab
.

Example 1.2. Simplify

√
3− 1

4− 2
√

3
. Well,

√
3− 1

4− 2
√

3
=

(
√

3− 1)(4 + 2
√

3)

(4− 2
√

3)(4 + 2
√

3)

=
4
√

3− 2
√

3− 4 + 6

16− 12
=

2 + 2
√

3

4
=

1

2
(1 +

√
3).

Example 1.3. Find the roots of 2x2 +5x+2. Either use the quadratic formula or, much
better, factorise as follows.

2x2 + 5x+ 2 = (2x+ 1)(x+ 2),

so the roots are x = −1/2 and x = −2.

Example 1.4. Find the solutions of 4x2 +12x+7 = 0. Either use the quadratic formula
or, perhaps better, complete the square as follows.

0 = 4x2 + 12x+ 7 = (2x+ 3)2 − 2.

So, 2x+ 3 = ±
√

2, so that x = 1
2
(−3±

√
2).

1.1.2 The binomial theorem

The Binomial theorem is useful to expand things like

(a+ b)2 = a2 + 2ab+ b2,

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4.

The binomial coefficients are given by

(
n

k

)
=

n!

k!(n− k)!
. They give the number

of ways of choosing k objects from a collection of n objects, and are pronounced as ‘n

1



choose k’. (Sometimes you will also see the notations nCk, nCk or even C(n, k) for these
same numbers.) Binomial coefficients may be worked out using Pascal’s triangle, the top
part of which is shown on the right below. Each number in Pascal’s triangle is obtained
by adding the two numbers diagonally above it.(

0

0

)
1

(
1

0

) (
1

1

)
== 1 1(

2

0

) (
2

1

) (
2

2

)
1 2 1(

3

0

) (
3

1

) (
3

2

) (
3

3

)
1 3 3 1(

4

0

) (
4

1

) (
4

2

) (
4

3

) (
4

4

)
1 4 6 4 1

A quick look at the triangle suggests some simple properties of the binomial coefficients,
all of which are easily checked from the initial definition:(

n

0

)
=

(
n

n

)
= 1 ;

(
n

1

)
=

(
n

n−1

)
= n ;

(
n

k

)
=

(
n

n−k

)
.

We can also verify that the coefficients obey the basic ‘additive’ property of Pascal’s
triangle:(

n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n− k + 1)!
+

n!

k!(n−k)!

=
n!

(k − 1)!(n− k)!

[
1

n− k + 1
+

1

k

]
=

n!

(k − 1)!(n− k)!

[
k + (n− k + 1)

(n− k + 1)k

]
=

(n+ 1)!

k!(n− k + 1)!
=

(
n+ 1

k

)
.

The name given to the coefficients themselves comes from the following theorem.

Theorem 1.1 (The binomial theorem).

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + . . .

(
n

k

)
an−kbk + . . .+ bn

=
n∑
k=0

(
n

k

)
an−kbk .

Example 1.5. Express (1− x)5 + (1 + x)5 as a polynomial in x. Well,

(1−x)5 + (1 +x)5 = (1−5x+ 10x2−10x3 + 5x4−x5) + (1 + 5x+ 10x2 + 10x3 + 5x4 +x5)

= 2(1 + 10x2 + 5x4).
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WHY is theorem 1.1 true? A quick argument is to observe that (a+b)n = (a+b) . . . (a+
b), and the coefficient of an−kbk is the number of ways of choosing b from precisely k of
the n brackets.

Alternatively, the result can be built up starting from the simplest case. First we note
that the theorem clearly holds for n = 1. Now assume that it is true for n. Then

(a+ b)n+1 = (a+ b)(a+ b)n

= (a+ b)
n∑
k=0

(
n

k

)
an−kbk

(using the assumption that the result is true for n)

=
n∑
k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

Now let’s rewrite the second sum by substituting j = k + 1, adjusting the upper and
lower limits of the sum to make sure the same set of terms is counted:

n∑
k=0

(
n

k

)
an−kbk+1 =

n+1∑
j=1

(
n

j − 1

)
an−j+1bj

(this substitution is very similar to the substitution rule for integrals). Hence

(a+ b)n+1 =
n∑
k=0

(
n

k

)
an−k+1bk +

n+1∑
j=1

(
n

j − 1

)
an−j+1bj

= an+1 +
n∑
k=1

(
n

k

)
an−k+1bk +

n∑
j=1

(
n

j − 1

)
an−j+1bj + bn+1

= an+1 +
n∑
k=1

[(
n

k

)
+

(
n

k − 1

)]
an−k+1bk + bn+1

= an+1 +
n∑
k=1

(
n+ 1

k

)
an−k+1bk + bn+1

=
n+1∑
k=0

(
n+ 1

k

)
an−k+1bk.

To get from the first line to the second I separated off the first term of the first sum, and
the last term of the second; to get from the second to the third line, I just rename j into
k, and to get from the third line to the fourth, I used the ‘additive’ property of binomial
coefficients that was proved on the last page. For the last equality, note that k = 0 and
k = n+ 1 corresponds to the remaining terms an+1 and bn+1. It is now easy to see that
this is exactly the binomial theorem for n+ 1.

Since we already decided that the theorem holds for n = 1, we now have it for n = 2,
and then for n = 3, 4, 5, and so on to all positive integers, and the result has been
proved.

1.1.3 Proof by induction

The argument just given might seem something of a sledgehammer to crack a nut, but
it is a nice example of a general method known as mathematical induction. Suppose
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we want to prove some result is true for all positive integers n. If it can be shown that
the result holds for n = 1, and also that, for all N ≥ 1, if the result is true for n = N ,
then it must also be true for n = N + 1, then it follows that the result is true for all
positive n. (Think of a line of dominoes falling over one after the other.)

The example in the last subsection was quite elaborate (and more complicated than
you’d see in an exam), so here’s a simpler one to show how the method works:

Example 1.6. Prove that
∑n

k=1 k = 1
2
n(n+1).

Proof. Let’s prove this by induction. For n = 1 the statement is
∑1

k=1 k = 1 = 1
2
1(1+1),

which is clearly true. Now suppose that the statement holds for n = N . Then for
n = N + 1,

N+1∑
k=1

k =
N∑
k=1

k + (N + 1)

=
1

2
N(N + 1) + (N + 1)

= (N + 1)(
1

2
N + 1) =

1

2
(N + 1)(N + 2)

which is exactly the statement we’re after for n = N + 1. Hence, by induction, the result
holds for all positive integers n.

You can find many other examples of induction in introductory textbooks. In chapter
4 we’ll see another method of proof which is also very useful: proof by contradiction.

1.2 Trigonometry

1.2.1 Pythagoras’s Theorem.

For a right angled triangle as shown

a2 + b2 = r2.

b

r

a

4



To see this arrange four copies of the
triangle inside a square as shown. Then
the area of the big square is equal to the
area of the small square plus four times
the area of the triangle. Recalling that
the area of the triangle is half the base
times the perp height, and noting that
the small square has side length a − b,
we get

r2 = (a− b)2 + 4(
1

2
ab).

The right hand side of the above quickly
simplifies to a2 + b2, which gives the re-
sult.

r

r

r

r

b

a

a� b

b

1.2.2 Trigonometric functions

Let C be the circle centre 0 radius r in
the plane. This has equation x2 + y2 =
r2. Then the angle θ = s/r radians,
where we have travelled from (r, 0) an-
ticlockwise along C for an arclength dis-
tance s > 0. For s < 0 travel from (r, 0)
clockwise along C for a distance −s.
The circumference of the circle is 2πr; so
one complete revolution is angle θ = 2π
radians.

�
�
�
�

C

r

T

(r,0)

arclength
S>0

Now drop a perpendicular and consider
the right angled triangle shown. We put

cos θ = a/r and sin θ = b/r.

NB r > 0, but a, b are allowed to be
positive or negative.

r

a

b

T

Graphs Since the definitions of sin and cos are ratios, they are independent of the size
of the circle. So we choose a circle of radius r = 1.
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sin

cos

T2

T1

(c,s)

ss

cc

–1

–0.5

0

0.5

1

1 2 3 4 5 6 7

The trigonometric functions sin θ and cos θ are important for waves or periodic be-
haviour.

Easily proved properties

1. cos2 θ + sin2 θ = 1. (Use Pythagoras’s theorem)

2. cos 0 = 1, sin 0 = 0, cos(π/2) = 0, sin(π/2) = 1.

3. cos(−θ) = cos θ, sin(−θ) = − sin θ.

4. cos(θ + 2π) = cos θ, sin(θ + 2π) = sin θ.

Some useful triangles

T1

T2

1

1
r2

2

1

r3

T

T

The first triangle shows that sin(π/4) = cos(π/4) = 1/
√

2 ; the second that cos(π/3) =
sin(π/6) = 1/2 and cos(π/6) = sin(π/3) =

√
3/2.

1.2.3 The addition formula for cos(α+ β)

cos(α + β) = cosα cos β − sinα sin β

Proof. Let C be the unit circle. Then Pα+β has coordinates (cos(α+ β), sin(α+ β)) and
M has coordinates (1, 0), so the square of the distance apart of M and Pα+β is

(cos(α + β)− 1)2 + (sin(α + β)− 0)2. (∗)

Now take the different coordinate system as shown below right.
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P

A+B

P

A

P

A+B

P

A

C

B

M

C

B

M

A A

The coordinates ofM with respect to the new coordinate system are (cos(−α), sin(−α))
while those of Pα+β are (cos β, sin β). Thus the square of the distance apart of M and
Pα+β is equal to

(cosα− cos β)2 + (− sinα− sin β)2.

If we equate this with (∗) then the result drops out (using cos2 + sin2 = 1).

Other formulae sinα = cos
(
α− π

2

)
, cosα = sin

(π
2
− α

)
.

Proof. To prove the first one take β = −π/2 in the addition formula for cos, and to

prove the second one replace α in the first one by
π

2
− α.

1.2.4 The addition formula for sin(α+ β)

sin(α + β) = sinα cos β + cosα sin β

Proof. sin(α + β) = cos
(
α + β − π

2

)
= cosα cos

(
β − π

2

)
+ sinα sin

(π
2
− β

)
= cosα sin β + sinα cos β.

Example 1.7. Find cos(11π/4).

Well, cos(11π/4) = cos(2π + 3π/4) = cos(3π/4) = cos(π/2 + π/4)

= cos(π/2) cos(π/4)− sin(π/2) sin(π/4) = − sin(π/4) = −1/
√

2.

Example 1.8. Draw the graph of sinx+ cosx.
Idea: Try to write sinx+ cos x = R sin(x+ α) for some constants R and α. We need R
and α so that

sinx+ cosx = R sin(x+ α) = R(sinx cosα + cosx sinα).

Comparing coefficients of sinx and of cosx, we need

1 = R cosα, 1 = R sinα.

If we square and add these equations we see that we can take R =
√

2, and looking again
at the equations, we can take α = π/4. So we see that

sinx+ cosx =
√

2 sin(x+ π/4).

This latter expression is much easier to plot.
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For completeness, we note that

tanx =
sinx

cosx
, cosecx =

1

sinx
, secx =

1

cosx
, cotx =

1

tanx
.

1.2.5 Derivatives
d

dx
sinx = cosx,

d

dx
cosx = − sinx.

Example 1.9.
d

dx
tanx =

d

dx

(
sinx

cosx

)
=

cos2 x+ sin2 x

cos2 x
= sec2 x =

1

cos2 x
.

Exercise Show that
d

dx
secx = secx tanx.

1.2.6 Inverse trigonometric functions

For −1 ≤ x ≤ 1, arcsinx is equal to that angle θ in the range −π/2 ≤ θ ≤ π/2 such that
sin θ = x. This means that

sin(arcsinx) = x, −π/2 ≤ arcsinx ≤ π/2

defines arcsinx. So, for example, since sin(π/4) = 1/
√

2, it follows that arcsin(1/
√

2) =
π/4.

The inverse cosine can be defined in a similar manner – the only point to watch is
that to make the function single-valued we must select a different range for its values.
More precisely, for −1 ≤ x ≤ 1, arccos x is equal to that angle θ in the range 0 ≤ θ ≤ π
such that cos θ = x :

cos(arccosx) = x, 0 ≤ arccosx ≤ π

For example, since cos(π) = −1, it follows that arccos(−1) = π.
Finally, since tan takes values between −∞ and +∞, its inverse is defined for all

real numbers x (and not just for −1 ≤ x ≤ 1). Again taking care with the range, for
−∞ < x <∞, arctan x is the angle θ in the range −π/2 < x < π/2 such that tan θ = x :

tan(arctanx) = x, −π/2 < arctanx < π/2

The graphs of arcsin and arccos are shown below – you should check that you understand
why they look the way that they do.

AS

–1.5

–1

–0.5

0.5

1

1.5

–1 –0.5 0.5 1 AC

0

0.5

1

1.5

2

2.5

3

–1 –0.5 0.5 1
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Derivatives of inverse trigonometric functions:

Differentiating sin(arcsinx) = x using the chain rule, we get

cos(arcsinx) arcsin′ x = 1,

so that √
1− sin2(arcsinx) arcsin′ x = 1,

ie √
1− x2 arcsin′ x = 1,

ie

arcsin′ x =
1√

1− x2
.

Similarly (exercise!), it can be shown that

arccos′ x =
−1√

1− x2
, arctan′ x =

1

1 + x2
,

9



Chapter 2

Integration

2.1 Two types of integral

2.1.1 Integration as the reverse of differentiation

Definition If F (x) is a continuously differentiable function such that F ′(x) = f(x),
then F (x) is an indefinite integral (or antiderivative) of f(x).

Example 2.1. If f(x) = 3x2 then F (x) = x3 is an indefinite integral of f(x), as is x3+7.

Note If F (x), G(x) are indefinite integrals of f(x) then G(x) = F (x) + c for some
constant c.

In fact, this follows easily because

(F (x)−G(x))′ = F ′(x)−G′(x) = f(x)− f(x) = 0,

so that F (x)−G(x) is constant.

Notation Write
∫
f(x) dx for an indefinite integral of f(x). We see from the above

Note that it is defined up to an additive constant.

2.1.2 Integration as the area under a graph

If a < b, the definite integral of f(x) on
the interval a ≤ x ≤ b is given by the
(signed) area under the graph of f(x)
between x = a and x = b (shaded in the
diagram). Here, areas below the x-axis
are counted negatively. −ve

+ve

b

a

Notation Write
∫ b
a
f(x) dx for the definite integral of f(x) on the interval a ≤ x ≤ b.

Also, we let
∫ a
b
f(x) dx = −

∫ b
a
f(x) dx. Unlike the indefinite integral, the definite integral

is uniquely defined.

Notice that the variable ‘x’ in the expression
∫ b
a
f(x) dx is a ‘dummy variable’ in that

it can be replaced by any other symbol without affecting the value of the expression. For
instance,

∫ b
a
f(x) dx =

∫ b
a
f(t) dt. As a specific example

∫ 3

1
x2 dx =

∫ 3

1
t2 dt.
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2.2 The fundamental theorem of calculus

The relation between the definite and indefinite integral is provided by the following.

Theorem 2.1 (The fundamental theorem of calculus). Let f(x) be a continuous function
and let A(x) =

∫ x
a
f(t) dt. Then A(x) is continuously differentiable and A′(x) = f(x) (ie

A(x) is an indefinite integral of f(x)).

Idea of proof A′(x) = lim
h→0

A(x+ h)− A(x)

h

= lim
h→0

1

h

(∫ x+h

a

f(t)dt−
∫ x

a

f(t)dt

)
= lim

h→0

1

h

∫ x+h

x

f(t)dt = f(x).

x x+h

intf

hf

f(x)

Since indefinite integration is just the reverse of differentiation, indefinite integrals
are often quite easy to find. The following result is really useful because it enables us to
use indefinite integrals to evaluate definite integrals. In fact, everything we’re going to
do here depends on the following consequence of the Fundamental Theorem of Calculus.

Let F(x) be any indefinite integral of f(x) (ie F′(x) = f(x)). Then∫ b

a

f(x) dx = F(b)− F(a)

Proof The fundamental theorem of calculus shows that A(x) is an indefinite integral

of f(x). Since both F (x) and A(x) are indefinite integrals of f(x) it follows from the
result on indefinite integrals that, for some constant c,

A(x) = F (x) + c. (∗)

Putting x = a gives 0 = A(a) = F (a) + c, so that c = −F (a). Putting x = b in (∗) now

gives the required result since
∫ b
a
f(x) dx = A(b) = F (b)− F (a).

2.3 Natural logarithm and the exponential

2.3.1 Natural logarithm

For x > 0, let

lnx =

∫ x

1

1

t
dt .

Properties

1. ln 1 = 0,

2. lnx > 0 for x > 1,

3. ln(1/x) = − lnx, or, more generally,

ln(ax) = ln a+ lnx

g

1 x

ln
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4. lnx < 0 for 0 < x < 1,

5.
d

dx
(lnx) =

1

x
,

6. ln(x/a) = ln x + ln(1/a) = ln x −
ln a,

7. ln(xn) = n lnx.

Graph of lnx

2.3.2 Inverse ln function

Just like trigonometric functions have inverse functions, so does lnx. So, let expx be
that number y > 0 such that ln y = x. So,

ln(expx) = x

Then (3) above shows that

exp(a+ b) = exp a exp b.

Because of this we often write ex rather
than exp x.
Properties

1. Let e = exp 1. Then
ln e = ln(exp 1) = 1,
(e=2.7182818....)

2. elnx = x, ln(ex) = x,

If a > 0, we put ax = ex ln a. Then

3. ln(ax) = x ln a.

1

Graph of ex

2.3.3 The derivative of ex

Differentiate ln(ex) = x using the chain rule. We get
1

ex
d

dx
(ex) = 1, ie

d

dx
(ex) = ex.

Example 2.2. Find all solutions to

ln(x+ 3) = 1 + lnx.

Apply exp to both sides to get

x+ 3 = e1+lnx = e1elnx = ex.

So x(1− e) = −3, ie

x =
3

(e− 1)
.

12



Example 2.3. Find all solutions to

e(x
2) = (ex)2. (= exex = e2x)

Apply ln to both sides to get
x2 = 2 ln(ex) = 2x.

So, x(x− 2) = 0, ie
x = 0 or x = 2

Example 2.4. Differentiate y = e3x lnx. Using the product rule and the chain rule,

dy

dx
= 3e3x lnx+

e3x

x
.

Exercise Write y as a function of x (ie solve for y in terms of x) when ey − 2e−y = x.

Ans: y = ln
(
x+
√
x2+8
2

)

2.4 Hyperbolic functions

For any real number x we put

sinhx = 1
2

(ex − e−x) , coshx = 1
2

(ex + e−x)

We also have

tanhx =
sinhx

coshx
, cosechx =

1

sinhx
, sech x =

1

coshx
, coth x =

1

tanhx
.

These are the hyperbolic functions, and here are some properties.

1. sinh 0 = 0, cosh 0 = 1.

Proof. sinh 0 = (e0−e0)/2 = (1−1)/2 = 0, while cosh 0 = (e0+e0)/2 = (1+1)/2 =
1.

2. cosh2 a− sinh2 a = 1.

Proof. cosh2 a− sinh2 a =
1

4
(ea + e−a)2 − 1

4
(ea − e−a)2 =

1

4
4 = 1.

The reason for their
names

The functions sinh x and
coshx are called the hyper-
bolic functions because of
(2), which shows that, as x
goes from −∞ to ∞, then
(coshx, sinhx) traces out
(the right hand side of) the
hyperbola u2 − v2 = 1 in the
(u, v)-plane.

(
osh(x); sinh(x))

U

V

U

2

� V

2

= 1
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Physical interpretation. The graph of coshx gives the shape of a chain or cable
hanging under gravity (see Figure 2.1).

3. 0 < sinhx < coshx for x > 0.

Proof. The above inequalities hold when 0 < ex − e−x < ex + e−x. The second of
these inequalities always holds since e raised to any power is positive. The first
inequality holds when e−x < ex which holds when e2x > 1, which holds when
x > 0.

4. sinh(−x) = − sinhx , cosh(−x) = cosh x .

Proof. sinh(−x) =
e−x − ex

2
= −e

x − e−x

2
= − sinhx. The proof for coshx is

similar.

5. sinh′ x = coshx , cosh′ x = sinhx .

Proof. sinh′ x =
d

dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh x. The proof for coshx is

similar.

6. sinhx is everywhere increasing, and coshx is increasing for x > 0.

Proof. sinh′ x = coshx (by (5)), which is always positive (by (3) and (4)). The
proof that coshx is increasing for positive x is similar.

7. ex = coshx+ sinhx , e−x = coshx− sinhx.

Proof. coshx+ sinh x =
(ex + e−x)

2
+

(ex − e−x)
2

= ex. The second result is proved

similarly.

8. cosh(a+ b) = cosh a cosh b+ sinh a sinh b
sinh(a+ b) = sinh a cosh b+ cosh a sinh b.

Proof. cosh a cosh b+ sinh a sinh b =
1

4
(ea + e−a)(eb + e−b) +

1

4
(ea− e−a)(eb− e−b) =

1

4
(2e(a+b) + 2e−(a+b)) = cosh(a+ b). The other relation is proved similarly.

9. sinh 2a = 2 sinh a cosh a , cosh 2a = cosh2 a+ sinh2 a .

Proof. Take a = b in (8).

10. 1− tanh2 a = sech2a , coth2a− 1 = cosech2a.

Proof. 1 − tanh2 a = 1 − sinh2 a

cosh2 a
=

cosh2 a− sinh2 a

cosh2 a
=

1

cosh2 a
, using (2). The

other relation is proved similarly.
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Figure 2.1: Plots of sinh x and cosh x

11. tanh′ x = sech2x , coth′ x = −cosech2x.

Proof. tanh′ x =
d

dx

(
sinhx

coshx

)
=

cosh2 x− sinh2 x

cosh2 x
= sech2x, using (5) and (2).

The other equation is proved similarly.

12. Let arcsinh be the inverse function of sinh. Then arcsinhx is that number y such
that sinh y = x, ie,

sinh(arcsinhx) = x

In fact arcsinhx = log(x+
√

1 + x2) and arcsinh′x = 1√
1+x2

.

13. In a similar way, let arccosh be the inverse function of cosh. Then arccosh x is that
positive number y such that cosh y = x, ie,

cosh(arccoshx) = x .

In fact arccoshx = log(x+
√
x2 − 1) and arccosh′x = 1√

x2−1 .

2.5 Basic principle of integration

The problem, given a function f(x) and an interval a ≤ x ≤ b in the real number line, is
to compute the integral

I =

∫ b

a

f(x)dx.

Because of the consequence of the Fundamental Theorem of Calculus described in Section
2.2, there are two steps:

(a) find (somehow!) a function F (x) such that F ′(x) = f(x) (ie find an indefinite integral
of f(x));

15



(b) then I = F (b)− F (a).

Of course, the hard part is step (a), and for this there are no holds barred—if you can
find an F (x) that works, you’ve solved the problem!

Remember that the indefinite integral of f(x) is not unique: if F (x) is an indefinite
integral then so is F (x) + c for any real number c.

Example 2.5. Let

I =

∫ 3

1

e2xdx.

Note that F (x) = 1
2
e2x will do, because this happens to satisfy F ′(x) = e2x. So will

F (x) = 1
2
e2x + c for any constant c, as we’ve just mentioned. However, c is irrelevant

here, since it cancels in step (b):

I = F (3)− F (1) =
1

2

(
e6 − e2

)
.

We write an indefinite integral as
∫
f(x)dx.

2.6 Methods of integration

2.6.1 Some useful indefinite integrals

Here are some useful indefinite integrals. To check them, all you need to do is to notice
that in each case the derivative of the right-hand side is the function inside the integral
sign. ∫

xa dx =
xa+1

a+ 1
+ c, a 6= −1∫

x−1 dx = ln |x|+ c∫
sinx dx = − cosx+ c∫
sec2 x dx = tan x+ c∫
sinhx dx = cosh x+ c∫
dx

a2 + x2
=

1

a
arctan

x

a
+ c

∫
dx

1− x2
= arctanh x+ c

∫
dx√

1 + x2
= arcsinh x+ c

∫
dx√

1− x2
= arcsin x+ c

This list is not meant to be complete (shortage of memory and of paper!).
A word about the first integral in this list. Of course, it works because the derivative

of xa is axa−1. When a = 1, 2, 3, . . . is a whole number this can be checked using the

16



Binomial Theorem. But more generally (for example, if a is irrational, like a =
√

2 or
a = π), we define xa as follows:

xa = ea lnx.

We can differentiate this using the chain rule:

d

dx
(xa) =

a

x
ea lnx

=
a

x
xa

= axa−1.

2.6.2 Integration by Parts

Recall the product rule for differentiation:

d

dx
(u(x)v(x)) =

du

dx
v(x) + u(x)

dv

dx
.

This says that u(x)v(x) is an indefinite integral of the right-hand side, or in other words:

uv =

∫ (
du

dx
v + u

dv

dx

)
dx.

Rearranging this gives the rule for integration by parts:∫
u
dv

dx
dx = uv −

∫
v
du

dx
dx

Example 2.6. Consider

I1 =

∫
xexdx.

Take u(x) = x and v′(x) = ex. Then u′(x) = 1 and v(x) = ex, and we can find I1 by
substituting for u and v in the rule for integration by parts.

I1 = xex −
∫
exdx = xex − ex + c.

This can be checked by differentiating the right hand side.

Example 2.7. Find

I2 =

∫
x2exdx.

Take u(x) = x2 and v′(x) = ex Then u′(x) = 2x and v(x) = ex, and we get:

I2 = x2ex −
∫

2xexdx

= x2ex − 2I1,

where I1 is the integral from the previous example. Using that example we conclude:

I2 =
(
x2 − 2x+ 2

)
ex + c.

Again, you could check that this is correct by differentiating it!

17



Remark How would you do all the integrals

In :=

∫
xnexdx, n = 1, 2, 3, 4, . . .?

Well, by exactly the same reasoning as in the last example, we find that

In = xnex − nIn−1.

You can use this to find I3, I4, etc up to In for any n (although you wouldn’t want n to
be too big!). This is an example of a recurrence relation.

Sometimes you have to integrate by parts twice in order to evaluate an integral:

Example 2.8. Let

I =

∫
e2x cos 3xdx.

Integrate by parts with u(x) = cos 3x and v′(x) = e2x. Then v(x) = 1
2
e2x, so we get

I =
1

2
e2x cos 3x+

3

2

∫
e2x sin 3xdx.

Now integrate the right-hand integral by parts, to get

I =
1

2
e2x cos 3x+

3

4
e2x sin 3x− 9

4

∫
e2x cos 3xdx

=
1

2
e2x cos 3x+

3

4
e2x sin 3x− 9

4
I.

Now solve for I, to conclude:

I =
1

13
e2x (2 cos 3x+ 3 sin 3x) + c.

Again, you could differentiate this to make sure it works.

Example 2.9. Here’s a cunning example:

I =

∫
lnx dx.

There is a trick here: integrate by parts with u(x) = lnx and v′(x) = 1. Then v(x) = x
so we get

I = x lnx−
∫

1

x
xdx

= x lnx− x+ c.

It’s quite quick to differentiate this to check that it works!

For definite integrals, just put the limits on the previous formula:∫ b

a

u
dv

dx
dx =

[
uv
]b
a
−
∫ b

a

v
du

dx
dx

where (as usual when computing definite integrals) [uv]ba = u(b)v(b) − u(a)v(a). Some-
times, as the next example shows, you can save a lot of time by working directly with
definite integrals.
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Example 2.10. Find

Γ(n) =

∫ ∞
0

tn−1e−tdt , n = 1, 2, . . .

This is similar to the problem of computing the indefinite integrals In in example 2.7
above. It turns out to be an easier calculation, because the limits of the definite integral
have been chosen in a helpful way. However, the upper (+∞) limit does need extra care.
In general, an integral over an infinite range such as

∫∞
a
f(t) dt is defined as the limiting

value of
∫ b
a
f(t) dt as b ‘tends to infinity’; i.e., as b becomes bigger and bigger. Later in

the course we’ll see in more detail how to calculate these sorts of limiting values; for now,
you might have to take some of the discussion on trust.

First we’ll take the case n = 1 :

Γ(1) =

∫ ∞
0

e−tdt =
[
−e−t

]∞
0

= 0− (−1) = 1 .

(The zero in the second-last formula follows since the limiting value of e−t as t gets very
large is zero.)

Next suppose that n > 1. The formula for Γ(n) can be integrated by parts, taking
u(t) = tn−1 and v′(t) = e−t. Then u′(t) = (n−1)tn−2 and v(t) = −e−t, and so

Γ(n) =
[
−tn−1e−t

]∞
0

+

∫ ∞
0

(n−1)tn−2e−tdt

= 0− 0 + (n−1)

∫ ∞
0

tn−2e−tdt

= (n−1)Γ(n−1) .

(The zeroes on the middle line are because the limiting value of tn−1e−t as t becomes
large is zero, as, for n > 1, is the value of this function at t = 0.)

Armed with this formula we can calculate Γ(2) = 1.Γ(1) = 1, Γ(3) = 2.Γ(2) = 2,
Γ(4) = 3.Γ(3) = 6 and so on; the general result is easily seen to be Γ(n) = (n−1)! (as
practice, you could try to write out a full proof of this using induction).

A neat feature of this example is that, unlike the ‘traditional’ definition of the facto-
rial, the integral formula for Γ(n) makes sense when n is not an integer – it works fine
if n is replaced by any positive real number x, thereby defining the gamma function
Γ(x).

It’s even possible to define the gamma
function for negative values of x, by us-
ing the formula Γ(x) = (x− 1)Γ(x− 1),
but this goes well beyond the material
of this course. Just for interest, the
function is plotted on the right – you
can check that at positive integers it
has the expected values. The gamma
function has many remarkable proper-
ties – for example, it can be shown that
Γ(1/2) =

√
π, and that Γ(x)Γ(1− x) =

π/ sin(πx) .

GA
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–2
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2.6.3 Substitution

This method corresponds to the Chain Rule for differentiation.
The idea here is to solve an integral by making a substitution of u for a suitable

function of x, in order to simplify the integral.
This is done as follows.

Let

{
u = u(x)

du = u′(x)dx
and

{
c = u(a)

d = u(b)

Then ∫ b

x=a

f(u(x))u′(x)dx =

∫ d

u=c

f(u)du.

In general, a good choice of substitution is the best trick for evaluating an integral, and
is probably the first thing to look for.

Example 2.11. Let

I =

∫ π/2

0

esinx cosx dx.

The correct substitution to make here is u = sinx, du = cosx dx. This gives

I =

∫ 1

u=0

eudu

= [eu]1u=0

= e− 1.

Example 2.12. Let

I =

∫ 1

0

15x2
√

5x3 + 4 dx.

What you need to notice here is that 15x2 is exactly the derivative of 5x3 + 4. Hence the
substitution to make is u = 5x3 + 4, du = 15x2dx. Then the integral becomes

I =

∫ 9

u=4

√
udu

=

[
2

3
u3/2

]9
4

=
38

3
.

This method works in the same way for indefinite integrals. We play exactly the same
game to find an indefinite integral, but without having to worry about the limits of the
integral. However, don’t forget to express the answer as a function of x rather than the
substituted variable u.

Example 2.13. Let

I =

∫
(lnx)2

x
dx.
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Noticing that 1/x is the derivative of lnx it is natural to make a substitution u = ln x,
du = dx/x. Then

I =

∫
u2du

= 1
3
u3 + c

= 1
3
(lnx)3 + c.

Here is a trigonometric example.

Example 2.14. Let I =
∫

tanx dx.
Here the integrand is sinx/ cosx, where the top is (essentially) the derivative of the

bottom. So make a substitution u = cosx, du = − sinx dx. Then

I = −
∫
du

u

= ln(1/u) + c

= ln(secx) + c.

Example 2.15. Let I =

∫
dx

(3x+ 4)2
.

Here, we make a substitution u = 3x+ 4, so that du = 3dx. So the integral becomes

I =
1

3

∫
du

u2
= − 1

3u
. Thus I = − 1

3(3x+ 4)
.

Example 2.16. Let I =

∫
dx

x2 + 4x+ 7
.

Here, completing the square in the denominator, we get I =

∫
dx

(x+ 2)2 + 3
. Now

substitute u = x+ 2, du = dx. Then

I =

∫
du

u2 + 3
=

∫
du

u2 + (
√

3)2
=

1√
3

arctan

(
x+ 2√

3

)
.

Finally a different sort of example. We make a substitution in ‘the opposite direction’.

Example 2.17. Let

I =

∫ √2
2/
√
3

dx

x
√
x2 − 1

.

We will tidy this up using the identity

sec2 u = 1 + tan2 u.

Make a substitution x = secu, dx = secu tanu du. Then the integral reads

I =

∫ b

a

secu tanu

secu
√

tan2 u
du =

∫ b

a

du.

Very neat! What are the limits a, b? Well, sec a = 2/
√

3 and sec b =
√

2. So a = π/6
and b = π/4. Hence

I =
π

4
− π

6
=

π

12
.
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2.6.4 Partial fractions

These are useful when finding integrals of functions which are a quotient of polynomi-
als. So, if p(x), q(x) are polynomials we’ll see how to integrate p(x)/q(x) using partial
fractions.

‘Partial fractions’ means separating a fraction whose denominator is a product of
polynomial factors into a sum of fractions with those factors as their denominators.

If the degree of p(x) is strictly less than the degree of q(x) then p(x)/q(x) can be
written as a sum of functions of the form

A

(`x+m)r
,

Bx+ C

(ax2 + bx+ c)s

where (`x + m)r, (ax2 + bx + c)s are divisors of q(x) with ax2 + bx + c having no real
roots, that is b2 − 4ac < 0. The expression so obtained is called the partial fraction
expansion of p(x)/q(x).

Example 2.18.
x+ 1

(x− 1)(x+ 2)
=

A

x− 1
+

B

x+ 2
. (We have to find A and B)

Example 2.19.
x2 + x− 3

(2x− 1)(x+ 4)(x− 7)
=

A

2x− 1
+

B

x+ 4
+

C

x− 7
.

Example 2.20.
x2 − 7x+ 2

(2x+ 5)(x2 − 2x+ 5)
=

A

2x+ 5
+

Bx+ C

x2 − 2x+ 5
.

Example 2.21.
2x+ 1

(3x− 2)2(x+ 4)
=

A

3x− 2
+

B

(3x− 2)2
+

C

x+ 4
.

Example 2.22.
x+ 1

(x2 + x+ 1)2(x− 3)2
=

Ax+B

x2 + x+ 1
+

Cx+D

(x2 + x+ 1)2
+

E

x− 3
+

F

(x− 3)2
.

The constants could be found by clearing fractions and equating constants and ap-
propriate powers of x on both sides (but don’t try it for the above examples, some of the
numbers could be ugh!).

Example 2.23.
x+ 2

(x− 1)(x− 2)
=

A

x− 1
+

B

x− 2
.

Clearing fractions, we get

x+ 2 = A(x− 2) +B(x− 1),

so, equating constants and coeffs of x on both sides we get

2 = −2A−B and 1 = A+B.

These equations are easily solved to give A = −3 and B = 4.

The above method always works, but the equations are sometimes a nuisance to solve.
For instance, in Example (2.21) you’d get 3 equations in 3 unknowns, while in Example
(2.22) you’d get 6 equations in 6 unknowns!

However, in the case where the denominator q(x) has some non-repeated linear factors
there is a simpler method (called the cover-up rule) of determining the corresponding
constants.

The idea is that if the factor (ax + b) (but not raised to a power) appears in the
denominator of the LHS then you ‘cover-up’ that factor on the LHS and evaluate what
you can still see at the value of x which makes that factor equal to 0 (ie put x = −b/a).
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Example (2.23) (again) To find A, cover up the factor (x−1) on the LHS and evaluate

what you can still see

(
ie
x+ 2

x− 2

)
at x = 1. This gives A =

3

−1
= −3, in agreement

with above. In a similar way you can see that B = 4.

This method is really labour-saving when there are more unknowns involved.

Example 2.24.
2x2 − x

(x+ 1)(x− 2)(x− 1)
=

A

x+ 1
+

B

x− 2
+

C

x− 1
. Here, the cover-up rule

quickly gives A = 1/2, B = 2 and C = −1/2. Try doing this by the original method -
although it’s not hard, I hope it will take you longer than the cover-up method!

We can also partially apply this technique to more general situations. For instance in
the following example, we can use the cover-up rule to find the constant on top of (x−1)

Example 2.25. Using the cover-up rule,
5x2 + 4

(x2 + x+ 1)(x− 1)
=

3

x− 1
+

Bx+ C

x2 + x+ 1
.

If you then clear the denominators and compare constants you’ll get C = −1, while
comparing coeffs of x2 gives B = 2. This is much easier than the original method which
would mean your solving 3 equations in 3 unknowns.

Using the partial fraction expansion, the integral

∫
p(x)

q(x)
dx may thus be written as

a sum of integrals, each of a standard form. If deg p(x) ≥ deg q(x) then we divide p(x)
by q(x) to get p(x) = g(x)q(x) + r(x), where deg r(x) < deg q(x). Then

p(x)

q(x)
= g(x) +

r(x)

q(x)

where g(x) is a polynomial and r(x)/q(x) is of the form discussed above.
Before we see how this method of integration works, here are two integrals which we

will often need:∫
dx

x2 + a2
=

1

a
arctan

x

a
+ c,

∫
dx

x− a
= ln |x− a|+ c.

Now let’s do some integrals using partial fractions.

Example 2.26.

∫
dx

x2 − x− 2
. We have

1

x2 − x− 2
=

1

(x− 2)(x+ 1)
=

A

x− 2
+

B

x+ 1

and A = 1/3, B = −1/3. Thus∫
dx

x2 − x− 2
=

1

3

∫
dx

x− 2
− 1

3

∫
dx

x+ 1
=

1

3
ln

∣∣∣∣x− 2

x+ 1

∣∣∣∣+ c.

Example 2.27. Let

I =

∫
(x+ 3)dx

x2 − 3x+ 2
.

Note that the denominator factorises, so the integrand is:

x+ 3

(x− 1)(x− 2)
=

A

x− 1
+

B

x− 2
,
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for suitable constants A and B. To find them, either use the cover-up rule or multiply
up to get rid of denominators and compare the numerators on each side. You get two
equations in the two unknowns A,B. Solving, we get A = −4, B = 5. So the integral is

I = 5

∫
dx

x− 2
− 4

∫
dx

x− 1

= 5 ln |x− 2| − 4 ln |x− 1|+ c.

Example 2.28. Let

I =

∫
(x+ 3)dx

(x− 1)(x2 + 2)
.

This time the integrand is

x+ 3

(x− 1)(x2 + 2)
=

A

x− 1
+
Bx+ C

x2 + 2
,

for some constants A,B,C. This time, after clearing the denominators, the numerator
of each side is quadratic (though on the left the coefficient of x2 happens to be zero!).
We therefore have three equations in three unknowns A,B,C which we can solve (but
we could use the cover-up rule to find A). We get A = 4/3, B = −4/3 and C = −1/3.
So the integral is

I =
1

3

∫
4dx

x− 1
− 1

3

∫
(4x+ 1)dx

x2 + 2

=
4

3
ln |x− 1| − 2

3
ln(x2 + 2)− 1

3
√

2
arctan

x√
2

+ c.

The next example illustrates what to do when there are repeated factors.

Example 2.29. Let

I =

∫
(6x+ 7)dx

(x+ 2)2
.

The correct form of partial fraction expansion is

6x+ 7

(x+ 2)2
=

A

x+ 2
+

B

(x+ 2)2
,

so that
6x+ 7 = A(x+ 2) +B.

Equating coefficients of x on both sides gives A = 6, and then equating constants gives
B = −5. Thus the integrand is

6x+ 7

(x+ 2)2
=

6

x+ 2
− 5

(x+ 2)2

Making a substitution u = x+ 2, du = dx now gives

I = 6 ln |x+ 2|+ 5

x+ 2
+ c.
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Example 2.30.

∫
dx

x4 − 1
. Observe that x4 − 1 = (x− 1)(x+ 1)(x2 + 1) so that

1

x4 − 1
=

A

x− 1
+

B

x+ 1
+
Cx+D

x2 + 1

and, by the cover-up rule, A = 1/4 and B = −1/4. Then, clearing fractions,

4 = (x+ 1)(x2 + 1)− (x− 1)(x2 + 1) + 4(Cx+D)(x2 − 1)

so that 4 = 2(x2 + 1) + 4(Cx + D)(x2 − 1). Comparing cofficients of x3 gives C = 0,
while comparing constants gives D = −1/2. Thus

1

x4 − 1
=

1

4

(
1

x− 1
− 1

x+ 1
− 2

x2 + 1

)
.

Hence ∫
dx

x4 − 1
=

1

4

∫
dx

x− 1
− 1

4

∫
dx

x+ 1
− 1

2

∫
dx

x2 + 1

=
1

4
ln |x− 1| − 1

4
ln |x+ 1| − 1

2
arctan x + c

=
1

4
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣− 1

2
arctan x + c.

Example 2.31. Let

I =

∫
−2x+ 4

(x2 + 1)(x− 1)2
dx.

We first note that the partial fractions form of the integrand is

−2x+ 4

(x2 + 1)(x− 1)2
=
Ax+B

x2 + 1
+

C

x− 1
+

D

(x− 1)2
,

for some constants A,B,C,D.
In fact, a slight extention of the cover-up rule enables us to find D. Cover-up (x−1)2

on LHS and evaluate at x = 1 what you can still see. You’ll get D = 1. Now, getting rid
of denominators and comparing numerators gives

0x3 + 0x2 − 2x+ 4 = (Ax+B)(x− 1)2 + C(x2 + 1)(x− 1) + (x2 + 1).

Comparing coefficients gives, respectively:

x3 : 0 = A+ C
x : −2 = A− 2B + C

const : 4 = B + 1− C.

Solving these equations gives

A = 2, B = 1, C = −2.

Hence the integral is

I =

∫
(2x+ 1)dx

x2 + 1
− 2

∫
dx

x− 1
+

∫
dx

(x− 1)2

= ln(x2 + 1) + arctan x− 2 ln |x− 1| − 1

x− 1
+ c.
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2.6.5 Powers of trigonometric functions

Odd powers of sinx or cos x are relatively easy, and can be dealt with by the method of
the next example.

Example 2.32. Let

I =

∫
cos5 x dx.

Make a substitution u = sinx, du = cos x dx, and use the fact that cos2 x = 1 − sin2 x.
Then

I =

∫
cos4 x cosxdx =

∫
(1− sin2 x)2 cosxdx

=

∫
(1− u2)2du

=

∫
(1− 2u2 + u4)du

= u− 2

3
u3 +

1

5
u5 + c

= sin x− 2

3
sin3 x+

1

5
sin5 x+ c.

Any product of sines and cosines, at least one of which is an odd power, can be done
using the above method.

Example 2.33. Let

I =

∫ π/2

0

cos2 x sin3 x dx.

Here, sin x occurs to an odd power, so substitute u = cosx, du = − sinx dx. Then

I = −
∫ 0

u=1

u2(1− u2)du

=

∫ 1

0

(u2 − u4)du

=

[
1

3
u3 − 1

5
u5
]1
0

=
2

15
.

What about even powers? For these the method of the last two examples doesn’t
work. Instead, we can make use of the identities

cos 2x =

{
2 cos2 x− 1

1− 2 sin2 x

to reduce from powers to multiple angles.
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Example 2.34. Let

I =

∫
cos4 x dx.

The integrand can be rewritten

cos4 x =

(
cos 2x+ 1

2

)2

=
1

4
cos2 2x+

1

2
cos 2x+

1

4
.

Similarly

cos2 2x =
cos 4x+ 1

2
,

and hence

cos4 x =
1

8
cos 4x+

1

2
cos 2x+

3

8
.

So the integral is

I =
1

8

∫
(cos 4x+ 4 cos 2x+ 3)dx

=
1

32
sin 4x+

1

4
sin 2x+

3

8
x+ c.

Note that if you differentiate this to check that it’s right, you will have a little work to
do to get back to cos4 x.

Later on we might find a more efficient way to integrate even powers of this sort using
complex numbers.

2.7 Line integrals (in 2 and 3 dimensions)

Let C be a curve in the plane, parametrised by r(t) = (x(t), y(t)), and let f : R2 → R be
a function of two variables (a “scalar” function; its values are scalar). The line integral
of f along the curve C from r(t0) = (x(t0), y(t0)) to r(t1) = (x(t1), y(t1)) is given by∫ t1

t0

f(r(t))|r′(t)|dt =

∫ t1

t0

f(x(t), y(t))
√

(x′(t))2 + (y′(t))2dt.

2.7.1 Arclength

If C is a curve in the plane, parametrised by r(t) = (x(t), y(t)), then the arclength of
the curve from (x(t0), y(t0)) to (x(t1), y(t1)) is given by∫ t1

t0

√
(x′(t))2 + (y′(t))2 dt.

WHY?[Not part of course] r′(t) = (x(t), y(t))
so that |r′(t)| =

√
(x′(t))2 + (y′(t))2 and the

length of the curve is
∫ t1
t0
|r′(t)|dt.

Example 2.35. Find the length of the curve C parametrised by r(t) = (cos t, sin t)
between t = 0 and t = 2π. Clearly this is a circle of unit radius so its length is 2π.
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Example 2.36. Find the length of the curve C parametrised by r(t) = (cos2 t, sin2 t)
between t = 0 and t = π/2.

Here x(t) = cos2 t so that x′(t) = −2 cos t sin t, while y(t) = sin2 t so that y′(t) =
2 sin t cos t. So √

(x′(t))2 + (y′(t))2 =
√

8 cos t sin t =
√

2 sin 2t

So the required length of C is

3

∫ π/2

0

√
2 sin 2tdt = −

√
2

cos 2t

2

∣∣∣π20 =
√

2 .

In fact this is the length of the staight line from (0,1) to (1,0) (Pythagoras).

Example 2.37. Find the length of the curve C parametrised by r(t) = (cos3 t, sin3 t)
between t = 0 and t = π/2.

Here, x(t) = cos3 t so that x′(t) = −3 cos2 t sin t, while y(t) = sin3 t so that y′(t) =
3 sin2 t cos t. So√

(x′(t))2 + (y′(t))2 =
√

9 cos4 t sin2 t+ 9 sin4 t cos2 t = 3 sin t cos t
√

cos2 t+ sin2 t

= 3 sin t cos t.

So the required length of C is

3

∫ π/2

0

sin t cos t dt = 3/2.

(0,1)

(1,0)

2.7.2 Work done by a force

If C is the curve in the plane parametrised by
r(t) = (x(t), y(t)) if F(x, y) = (f(x, y), g(x, y))
(a vector field or vector-valued function, i.e.,
a function associating a vector to each point
(x, y)) then the work done by the force F
as you move along r(t) from (x(t0), y(t0)) to
(x(t1), y(t1)) is given by∫ t1

t0

(f(x(t), y(t))x′(t) + g(x(t), y(t))y′(t)) dt.

(∗)

F

F F

You encounter this very often in physics e.g. when you consider electrostatic energy
of a particle of charge q in electric field E. You get −q

∫
E · dr

WHY?[Not part of course] The work done by the force F(x, y) is

∫ t1

t0

F(r(t)).
dr

dt
dt,

where the dot in the integral denotes the scalar product. Write this out in components
to get (*).

Example 2.38. Find the above integral when F(x, y) = (x + y, x − y) and r(t) =
(1 + t2, 2t), t0 = −1, t1 = 1.

Here, f(x, y) = x + y and g(x, y) = x − y, while x(t) = 1 + t2 and y(t) = 2t. Thus
f(x(t), y(t)) = 1 + t2 + 2t = (1 + t)2, while g(x(t), y(t)) = 1 + t2 − 2t = (1− t)2.
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So the required integral is∫ 1

−1
{(1 + t)22t+ (1− t)22}dt.

If you expand the brackets and then integrate you should get the answer 8.

Note: The equation (∗) is often written as∫
C

F(r) · dr =

∫
C

(f(x, y)dx+ g(x, y)dy).

or, in 3 dimensions, as∫
C

F(r) · dr =

∫
C

(f(x, y, z)dx+ g(x, y, z)dy + h(x, y, z)dz).
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Chapter 3

Complex numbers

3.1 What are complex numbers?

A complex number is simply a point in the (x, y)-
plane,
but rather than writing (x, y) for the point we write
x+ iy.
So, for example, we write 3 + i2 or 3 + 2i rather than
(3, 2),
2 rather than (2, 0) , and i rather than (0, 1).

i

2

(3,2)

3+2i

Just like we can add and multiply points of the real line, we would like to be able to
add and multiply points of the complex plane. Addition of complex numbers is, as you’d
expect,

(x1 + iy1) + (x2 + iy2) = x1 + x2 + i(y1 + y2),

so, for example, (2 + i5) + (3 + i7) = 5 + i12. The reason for the notation involving i
described above is that we multiply complex numbers by doing the natural thing but
putting i2 = −1. So, for example,

(3 + i4)(2 + i5) = 6− 20 + i(8 + 15) = −14 + i23.

Summarising: The set of complex numbers is called the complex (or Argand) plane,

C = {x+ iy | x, y are real numbers}, where i2 = −1.

The horizontal axis (ie the x-axis) is called the real axis and the vertical axis (ie the
y-axis) is called the imaginary axis.

Complex numbers are at least as relevant to the real world as real numbers.
The real numbers are 1-dimensional, but complex numbers are 2-dimensional.

See the ‘links’ tab on the course webpage for more on other aspects of complex numbers,
including sites where you can read about the Riemann hypothesis.

Note: Complex number cannot be ordered, i.e. you cannot say whether z1 is
larger or smaller than z2!.

3.2 Conjugate and modulus

Definition 3.1. Let z = x + iy. We write Re z = x, the real part of z, and Im z = y,
its imaginary part.
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So, if z = 3− i4 then Re z = 3 and Im z = −4.
Definition 3.2. The complex conjugate
of z is:

z = x− iy

So the complex conjugate of z is ob-
tained by reflecting z in the real axis.
Note that Re z = 1

2
(z + z) and Im z =

1
2i

(z − z).
zbar

zfig

Definition 3.3. The modulus of z is:

|z| =
√
x2 + y2

This nonnegative real number is the dis-
tance of z from the origin.

Note that |z|2 = zz = x2 + y2.

|z|
z

As well as adding and multiplying as described above, we can also divide by (nonzero)
complex numbers by using the fact that zz is real.

In fact :
w

z
=
wz

zz
=
wz

|z|2
.

So, to evaluate a quotient of complex numbers, multiply top and bottom by the conjugate
of the bottom.

Example 3.1. Find the real and imaginary parts of the complex number

z =
2− i
2 + i3

.

2− i
2 + i3

=
(2− i)(2− i3)

(2 + i3)(2− i3)
=

4− 3 + i(−6− 2)

4 + 9
=

1

13
− i 8

13
.

Hence Re z = 1/13 and Im z = −8/13.

Example 3.2. Find the real and imaginary parts of the complex number

z =
1

1 + i
+

2− i
3− i

.

You could, of course, write each fraction in real and imaginary parts using the method
of the preceding example, and then just add. Here is an alternative method which might
be quicker. First simplify:

z =
3− i+ (2− i)(1 + i)

(1 + i)(3− i)

=
6

4 + 2i

=
3

2 + i
.
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Now multiply top and bottom by the conjugate of the denominator:

z =
3

2 + i

2− i
2− i

=
6− 3i

5
.

Hence Re z = 6/5 and Im z = −3/5. We note that the modulus is:

|z| =

√(
6

5

)2

+

(
3

5

)2

=
3√
5
.

3.2.1 Further properties

For any complex numbers z, w we have

(1) zw = z w z + w = z + w

(2) |zw| = |z| |w|

Proof of (1). Suppose z = x+ iy and w = u+ iv. Then

zw = (xu− yv) + i(uy + xv),

and so by definition
zw = (xu− yv)− i(uy + xv).

On the other hand,
z w = (x− iy)(u− iv)

= (xu− yv) + i(−xv − yu),

which is the same.

Proof of (2). No need to use real and imaginary parts here:

|zw|2 = (zw)(zw)
= zwz w using (1),
= zz ww = |z|2|w|2.

Now take the square root of both sides and we’re done.

3.3 Polar representation of complex numbers

Definition 3.4. Let z = x+iy ∈ C. We define
the argument of z, arg(z), to be the angle θ
between the x-axis and the line through (0,0)
and z. The angle is measured anticlockwise
from the x-axis. Negative angles are measured
clockwise. Note that θ, θ + 2π, θ + 4π etc all
correspond to the same complex number z –
the argument is only defined modulo 2π.

Trigonometry shows that

z = x+iy

y

x
theta

pifrac
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tan θ = y/x

but beware: care is needed since this equation doesn’t completely determine θ: if we
replace x and y by −x and −y, then the value of y/x is unchanged, but the angle θ
changes by π. As a result, plugging θ = arctan(y/x) into your calculator might not give
you the right value of θ – you’ll need to draw a picture to decide whether θ is arctan(y/x)
or arctan(y/x) + π (which might also be written as arctan(y/x)− π ). (Most often, once
you have drawn the picture you’ll be able to decide what arg(z) is without using your
calculator at all, especially if you can remember the useful triangles from section 1.2.2)

Example 3.3.
Find the argument θ of z = −1− i.
Solution:
Since tan θ = y/x = 1, we see that θ = π/4
or 5π/4. A picture shows you that θ = 5π/4. pi/4

5pi/4

Note that if we write r = |z| and θ = arg z then the number z ∈ C is determined by
its modulus r and argument θ, called the polar coordinates of the complex number:

Re z = x = r cos θ, Im z = y = r sin θ.

or, in other words,

z = r(cos θ + i sin θ).

r

x

y

theta

Remark. It is a common convention to take −π <
arg z ≤ π, and it is clear geometrically that this is al-
ways possible. However, as we’ll see later, it is some-
times important to remember that adding any integer
multiple of 2π to the argument of a complex number
leaves it unchanged.

3pi/4

−2pi/3

Addition in C is geometrically clear but, at the moment, multiplication is not. We’ll
get a geometrical picture of complex multiplication using polar coordinates.

Suppose z = r(cos θ + i sin θ) and w = s(cosψ + i sinψ). Then multiplying out gives

zw = rs ((cos θ cosψ − sin θ sinψ) + i(cos θ sinψ + sin θ cosψ))
= rs (cos(θ + ψ) + i sin(θ + ψ)) .

This says that |zw| = |z| |w| (which we already knew) and arg zw = arg z + argw (after
adding a multiple of 2π to bring it in the range (−π, π], if necessary).

z

omega

zomega

1
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In other words: to multiply two complex numbers together you should mul-
tiply their moduli and add their arguments, ie

|zw| = |z| |w|, arg zw = arg z + argw

Example 3.4. Let w = i. This has modulus |w| = 1 and argument argw = π/2. So
multiplication by i has the effect of rotating anticlockwise through angle π/2.

Example 3.5. Let z = 1 + i, and w =
√

3 + i. Then |z| =
√

2, |w| =
√

3 + 1 = 2. Also,
arg z = π/4, argw = π/6. Then zw = (1 + i)(

√
3 + i) = (

√
3− 1) + i(

√
3 + 1). So

|zw| =
√

3− 2
√

3 + 1 + 3 + 2
√

3 + 1 =
√

8 =
√

4
√

2 = 2
√

2 = |z||w|.

If θ = arg (zw), then tan θ =

√
3 + 1√
3− 1

. Using a calculator, θ =
5π

12
= arg z + arg w.

Another consequence is:

Theorem 3.1 (de Moivre). For any positive whole number n,

(cos θ + i sin θ)n = cosnθ + i sinnθ.

Exercise: Prove this by induction.
Definition 3.5. For any real number θ ∈ R we
write

eiθ = cos θ + i sin θ

This is a complex number on the unit circle (i.e.
its modulus is one).
Then any complex number may be written

z = reiθ,

where r is the modulus of z and θ is an argu-
ment.

ei3p4
2eip4

Some properties:

1. (eiθ)n = einθ. (This is what de Moivre says.)

2. eiθ eiψ = ei(θ+ψ). (Since multiplication adds arguments.)

3. ei0 = 1. (Since cos 0 = 1 and sin 0 = 0.)

Remark. In other words, eiθ behaves just like the exponential function of a real variable—
hence our choice of notation.

Notice that if we replace θ by −θ we get

e−iθ = cos θ − i sin θ.

Adding and subtracting eiθ, respectively, this yields:

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

This should remind you of hyperbolic sine and cosine. Its first applications are to
deriving trigonometric identities and evaluating trigonometric integrals.
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Example 3.6. Let’s derive the identity cos2 θ =
1

2
(1 + cos 2θ).

cos2 θ =

(
eiθ + e−iθ

2

)2

=
1

4

(
e2iθ + e−2iθ + 2

)
=

cos 2θ + 1

2
.

Example 3.7. Express sin 3θ as a polynomial in sin θ.

Well, cos 3θ+ i sin 3θ = (cos θ+ i sin θ)3, so sin 3θ will be equal to the imaginary part
of the RHS. But,

(cos θ + i sin θ)3 = cos3 θ + 3 cos2 θ i sin θ + 3 cos θ i2 sin2 θ + i3 sin3 θ.

So
sin 3θ = 3 cos2 θ sin θ − sin3 θ

= 3(1− sin2 θ) sin θ − sin3 θ
= −4 sin3 θ + 3 sin θ.

Example 3.8. Here’s an integral.

I =

∫ π/2

0

cos6 θ dθ.

Just as in the previous example we can expand the power (using the binomial theorem)
and rearrange to pick out cosines of multiple angles:

cos6 θ =

(
eiθ + e−iθ

2

)6

=
1

64

(
e6iθ + 6e4iθ + 15e2iθ + 20 + 15e−2iθ + 6e−4iθ + e−6iθ

)
=

1

64
(2 cos 6θ + 12 cos 4θ + 30 cos 2θ + 20) .

Now we can integrate:

I =
1

64

[
1

3
sin 6θ + 3 sin 4θ + 15 sin 2θ + 20θ

]π/2
0

=
5π

32
.

There’s a moral here. Real problems have real solutions—but the quickest way to get
to them is often via the complex numbers.

3.4 Functions of a complex variable

We are now going to extend the familiar functions of a real variable to handle a complex
variable z = x+ iy.
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3.4.1 The exponential function

We have already defined the exponential function for a real variable, and for a pure
imaginary variable (motivated by de Moivre’s Theorem). We now define:

ez = ex+iy = exeiy = ex(cos y + i sin y)

We can read off from this its real and imaginary parts, Re ez = ex cos y, Im ez = ex sin y,
and the modulus and argument

|ez| = ex, arg ez = y.

Example 3.9. Find the modulus of e(1+i)(2−i).

Well, (1 + i)(2− i) = 3 + i, so |e(1+i)(2−i)| = |e(3+i)| = e3.

Try drawing a picture of how horizontal and vertical lines in the z-plane map under
z 7→ ez, and compare with the animations of ez on the course webpage.

Some properties:

1. Note that
ez+2πi = ez.

In other words, the exponential function is periodic, with imaginary period 2πi.

2. For any complex numbers z, w we have

ez+w = ezew.

3. The complex conjugate is
(ez) = ez.

3.4.2 Trigonometric (circular) and hyperbolic functions

These will all be defined using the exponential function. We define

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

This makes sense because we have just defined ez (and therefore eiz), and it agrees with
the usual expression in the case when z is real. It is an exercise to verify (using the
properties of the complex exponential function) that sine and cosine have all the usual
properties of the real case: periodicity with period 2π, addition formulae and so on.

Example 3.10. Show that sin(z + w) = sin z cosw + cos z sinw.

RHS = 1
2i

(eiz − e−iz)1
2
(eiw + e−iw) + 1

2
(eiz + e−iz) 1

2i
(eiw − e−iw)

= 1
4i

(ei(z+w) + ei(z−w) − ei(w−z) − e−i(w+z)) + (similar terms)
= 1

2i
(ei(z+w) − e−i(z+w)) = sin(z + w) = LHS.

While we’re about it we should also define:

cosh z =
ez + e−z

2
, sinh z =

ez − e−z

2
.
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These have exactly the same addition formulae, and so on, as for the real case. Unlike
the real case, sinh and cosh are now periodic, with period 2πi.

In fact, you can see that for any complex number z,{
cos iz = cosh z

sin iz = i sinh z,

{
cosh iz = cos z

sinh iz = i sin z.

In other words, the hyperbolic functions are obtained from the circular functions by a
90◦ rotation of the complex plane, and vice versa.

Let’s calculate the real and imaginary parts of the function sin z. (Cosine and the
hyperbolic functions are entirely similar.)

sin z = sin(x+ iy)
= sin x cos(iy) + cos x sin(iy)
= sin x cosh y + i cosx sinh y.

This says that for z = x+ iy,

Re sin z = sinx cosh y, Im sin z = cosx sinh y.

Can you visualise the graphs of these two (real) functions over the complex plane? Here
is the real part, in the range 0 < x < 4π and −3 < y < 3. Notice that the profile in the
real direction is that of sinx, and in the imaginary direction is that of cosh y.

What about the modulus? This is given by:

| sin z|2 = (sin x cosh y)2 + (cosx sinh y)2

= sin2 x(1 + sinh2 y) + cos2 x sinh2 y

= sin2 x+ (sin2 x+ cos2 x) sinh2 y

= sin2 x+ sinh2 y.
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Hence

| sin z| =
√

sin2 x+ sinh2 y.

Note that, as the picture above also suggests, | sin z| → ∞ as z → ∞ in the imaginary
direction.

3.4.3 The derivative of eiθ

Recall the definition:
eiθ = cos θ + i sin θ

Taking the derivative with respect to θ,

d

dθ
eiθ = − sin θ + i cos θ = i(cos θ + i sin θ) = ieiθ

and so
d

dθ
eiθ = ieiθ

By the chain rule, this implies d
dθ
eiλθ = iλeiλθ, and, differentiating again, d2

dθ2
eiλθ =

−λ2eiλθ. All of this means that the function eiλθ solves

d2

dθ2
f + λ2f = 0 ,

an equation which crops up all the time in physics.

3.5 Equations in a complex variable

3.5.1 Transcendental equations

A good way to get to know these complex functions is to try solving some equations
involving them, and I’ll give some examples. The first example is fundamental, and will
be used repeatedly in what follows.

Example 3.11. The Basic Example. Find all complex solutions of the equation

ez = 1.

Of course, the only real solution is z = 0. But the complex plane is a bigger place. And
to start with, periodicity (i.e. ez+2πi = ez) already tells us that there must be infinitely
many solutions

(?) z = 2πim, for any whole number m.

So: are there any other solutions? If z = x + iy then (by definition of the exponential
function) we have to solve

1 = ex cos y + iex sin y.

Equating real and imaginary parts, this gives two equations{
ex cos y = 1

ex sin y = 0.
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Now x is real, so ex > 0 is real and positive. Therefore
the second equation says that sin y = 0, and hence
(since y is real) y = nπ for some whole number n.
But cosnπ = (−1)n, so the first equation says

(−1)nex = 1.

This forces n to be even, n = 2m say, and x = 0.
Hence z = 2mπi, and we conclude that all the solu-
tions are those given by (?).

0

4�i

2�i

�2�i

�4�i

Example 3.12. Find all complex solutions of the equation

sinh z = 0.

Again, in the confines of the real world you will only see one solution z = 0—but don’t
be satisfied with that. We have to solve

ez − e−z

2
= 0,

or, multiplying through by 2ez,

e2z = 1.

Example 3.11 tells us that the solutions of this are
precisely:

2z = 2πim, for any whole number m,

or in other words, z = mπi for any whole number m.

0

2�i

�i

��i

�2�i

Example 3.13. Solve the equation

cos z = 0.

This is very similar to the previous example. We have to solve

eiz + e−iz

2
= 0,

or equivalently,
e2iz = −1.

As in the last example, we would like to use the result of Example 3.11, but in this case
we can’t do so directly. To get the equation into the right form, we write −1 = eπi. Then
the equation says e2iz = eπi, or

e2iz−πi = 1,

and now we can use Example 3.11:

2iz−πi = 2mπi, for any whole number m.

Tidying this up, it says that the general
solution is

z = π(m+
1

2
) for any whole number m.

5�

2

3�

2

�

2

�

�

2

�

3�

2
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In other words, the solutions of cos z = 0 are exactly the real solutions you already
know, and no others.

Example 3.14. Find all complex solutions of the equation

ez = 1 + i.

We want to use a similar method to the previous example - so we first write the the
right-hand side in polar form. The equation then becomes

ez =
√

2eiπ/4.

We really want this in the form e?? = 1, and to do this we write

√
2 = 21/2 = e

1
2
ln 2,

so that the original equation reads

ez = e
1
2
ln 2 ei

π
4 = e

1
2
ln 2+iπ

4 .

Dividing by the right-hand side, we get

ez−
1
2
ln 2−iπ

4 = 1.

We can now use Example 3.11. This says that
z − 1

2
ln 2− iπ

4
= 2mπi or:

z =
1

2
ln 2+iπ

(
2m+

1

4

)
, for any whole number m.

9�

4

i

i

�

4

�

7�

4

i

1

2

ln 2

3.5.2 Algebraic equations

The examples above, involving the exponential function and so on, are examples of
transcendental equations, and typically they have infinitely many solutions. Algebraic
equations involve just polynomials, and have only finitely many solutions.

Here is the general method for solving equations of the form

zn = a,

where a is some (real or) complex number.
First write a in polar form as a = reiθ, but, remembering the periodicity of ez we

have that a = rei(θ+2πm) for m = 0, 1, 2, . . .. The equation now becomes

zn = rei(θ+2πm) for m = 0, 1, 2, . . . ,

so the solutions are

z = n
√
r eiθ/n, n

√
r ei

θ+2π
n n
√
r ei

θ+4π
n , n
√
r ei

θ+6π
n , . . . .

Notice, though, that after you’ve written down the first n solutions then the periodicity
of e tells you that you are repeating solutions you’ve already written down.

An example should (as usual) make this rather more clear.

40



Example 3.15. Solve the equation

z3 = 1 + i.

In this case n = 3 and a = 1 + i =
√

2 ei(
π
4
+2πm),

m = 0, 1, 2, . . ..
Hence the solutions are

z = 21/6eiπ/12, 21/6ei3π/4, 21/6ei17π/12,

since the next solution you’d write down would be
for m = 3 which would give z = 21/6ei25π/12 =
21/6eiπ/12.
Here is a picture of the solutions.

1 + i

Complex roots of unity
The complex n-th roots of unity are the solutions of the equation

zn = 1.

To solve this, we write the right hand side in polar form, 1 = ei2πm, m = 0, 1, 2, . . ., so
the equation becomes

zn = ei2πm, m = 0, 1, 2, . . . .

The solutions are
z = 1(= ei0), ei

2π
n , ei

4π
n , . . . ei

2(n−1)π
n .

Note that the solutions are just the powers of ei
2π
n . So, if we put ω = ei

2π
n then the

solutions are
z = 1, ω, ω2, ω3, . . . ωn−1.

For example, taking n = 5 we find that the fifth roots of
unity (ie the solutions to z5 = 1) are

z = 1, ω, ω2, ω3, ω4,

where ω = ei
2π
5 . Here is a picture of these solutions in the

complex plane. They form a regular pentagon with one ver-
tex at z = 1.

This happens in general for complex n-th roots of unity, we get n points, all on the
unit circle forming a regular n-sided polygon, one of whose vertices is at z = 1.

Example 3.16. Find all complex solutions of the equation

z6 − 2z3 + 2 = 0.

As you’ve already noticed (yes?), this is a quadratic in z3 so we can solve for z3 using
the quadratic formula to get

z3 =
2±
√

4− 8

2
= 1± i.

(If you prefer, you can complete the square:

(z3 − 1)2 + 1 = 0,
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so that z3 − 1 = ±i, ie z3 = 1± i, as before.)
So, we now need to solve the two equations

z3 = 1 + i and z3 = 1− i.

The first of these two equations have been solved, by some coincidence, in Exam-
ple 3.15; so let’s consider the second one. Here we can take a = 1 − i =

√
2e−πi/4,

and by the same method as in Example 3.15, we find three solutions

z = 21/6e−iπ/12, 21/6e7iπ/12, 21/6e5iπ/4.

So the six solutions of the original equation are the vertices
of two equilateral triangles on the circle of radius 21/6 centred
at the origin.

Remark Notice that in Example 3.16 the set of solutions is symmetric in the real axis.
This is because if

a0z
n + a1z

n−1 + · · ·+ an−1z + an = 0

is any equation with real coefficients a0, a1, . . . , an, and z is a solution, then the complex
conjugate z is also a solution. (To see this, just conjugate the whole equation.) If the
coefficients are not all real (as in Example 3.15) then this is no longer true.

Finally, we quote one of the most important facts about complex numbers.

3.5.3 The Fundamental Theorem of Algebra

Theorem 3.2 (The fundamental theorem of algebra). Every polynomial equation

a0z
n + a1z

n−1 + · · ·+ an−1z + an = 0

with (real or) complex coefficients a0, a1, . . . , an ∈ C has a (real or) complex solution z.

Remark Once one root, say z0, is known, the polynomial can be divided by (z− z0) and
the theorem used again to find another root, and so on. Hence the theorem implies that,
with multiplicities, every polynomial of degree n has n complex roots. As a quick check,
notice that examples 3.15 and 3.16 above involved polynomials of degrees 3 and 6, and
had 3 and 6 complex roots respectively.
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Chapter 4

Analysis of real numbers and
real-valued functions

4.1 Various types of real number

Whole numbers (or integers). . . .− 3,−2,−1, 0, 1, 2, 3, . . .. Although the sum, differ-
ence and product of two integers is an integer, the quotient of two integers is not usually
an integer.
Rational numbers. These are real numbers of the form m/n where m and n are
integers with n 6= 0. So, for example, 2/5, -17/9, 12/8 are all rational numbers. Note
that the sum, difference, product and quotient of two rational numbers is a rational
number (except that you can’t divide by zero!).
Irrational numbers. These are real numbers that are not rational. So, for example,
π, e,

√
2 are all irrational numbers. If you carry out algebraic operations on irrational

numbers the answer could be rational or it could be irrational.
Exercise Assuming that

√
3 and

√
5 are irrational (which they are - see below), show

that
√

3 +
√

5 is irrational.

However, it is easy to find an example of two irrational numbers whose sum is rational;
it is also easy to find an example of two irrational numbers whose product is rational.

Question. What happens if you add (or multiply) a rational with an irrational?

Exercise If a and b are rational with a 6= 0 and b > 0, and if (a +
√
b)2 is rational,

prove that
√
b is rational.

IMPORTANT: Infinity (ie ∞) is NOT a real number!

Here are a couple of facts about integers which will be useful.
(a) If n is an even integer then n2 is also even. (Why this is true?)
(b) If n is an odd integer then n2 is also odd. (Why this is true?)

Theorem 4.1.
√

2 is irrational.

Proof. We assume that there is a rational number whose square is equal to 2 and
obtain a contradiction. Cancelling common factors from the numerator and the de-
nominator, our assumption implies that there exist integers m and n with n 6= 0, and
with no common factors, such that (m

n

)2
= 2.

Then
m2 = 2n2, (4.1)
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so that m2 is even. So, by result (b) from the previous page, we see that m itself is even.
Hence m = 2r for some integer r. Then, from (4.1), 4r2 = 2n2 so that 2r2 = n2. Thus
n2 and hence n is even. Thus 2 divides both m and n which contradicts the statement
that m and n have no common factors. We have seen that our initial assumption leads
to a contradiction, so our initial assumption (the existence of a rational number whose
square is equal to 2) is false. This proves the theorem.

Challenge Try a similar thing for
√

3, 3
√

2 etc.

In fact: If n is an integer then
√

n is irrational unless n is a perfect square.
Question: How are the rational and irrational numbers distributed on the real line?

4.2 Limits of functions of a real variable

Let f be a real valued function, such that f(x) is defined for all x near a point a ∈ R,
but not necessarily defined at the point a itself. If the value of f(x) approaches a real
number l as x approaches a from both sides, then we say that l is the limit of the function
at a and write

lim
x→a

f(x) = l.

Example 4.1. 1. lim
x→2

x2 = 4.

2. lim
x→0

1/(1 + x) = 1.

3. lim
x→0

cosx = 1.

This gives the first method for evaluating limits.
Method 1. If f(x) is continuous at x = a then limx→a f(x) = f(a).

Most decent functions are continuous whenever they are defined. For example, poly-
nomials, trig functions, rational functions (ie quotients of polynomials), hyperbolic func-
tions etc all fall into this category.

Example 4.2. Let

f(x) =

{
1 + x if x ≥ 0,

−1 + x if x < 0,

and let a = 0. In this case f(x) tends to +1 as x approaches
0 from above and tends to a different value −1 as
x approaches 0 from below. So in this case a limit does not exist.

Example 4.3. Let

h(x) = sin
1

x
for x 6= 0.

This has no limit as x→ 0. Here is what the function looks like over (0, 1/π):

–1

–0.5

0

0.5

1

0.05 0.1 0.15 0.2 0.25 0.3
x
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If a function f(x), instead of approaching a real number, becomes arbitrarily large as
x→ a, then we write

lim
x→a

f(x) =∞.

Example 4.4. lim
x→0

1/x2 =∞. Note that this is an example in which the function is not

defined at the point a – but it is defined for all x near the point a.

Finally, instead of a point of the real number line, a might be ±∞. For example,

lim
x→∞

1

x
= 0.

Here are a couple more examples.

Example 4.5. Find lim
x→1

x2 + x− 2

x2 + 2x− 3
. Mmm - get 0/0 at the limit point.

Example 4.6. Find lim
x→0

sinx

x
. Once again we get 0/0 at the limit point.

Question. Why do we care about limits like the above?
Answer. Well, we do think differentiation is useful, don’t we, and we do remember
that the derivative f ′ of a function f at x = a is given by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

We note that this is always 0/0 at the limit point.

Example 4.7. Let f(x) = sinx. Find f ′(0). Well,

lim
h→0

sinh− sin 0

h
= lim

h→0

sinh

h
=?

Example 4.8. Let f(x) = x2. Find f ′(3).

lim
h→0

(3 + h)2 − 32

h
= lim

h→0

6h+ h2

h
= lim

h→0
(6 + h) = 6.

In fact, the method of this above example gives the clue how to do Example 4.5.

Method 2. If, when you put in the limiting value of x you get 0/0, then
try to cancel the (same) factor from the top and bottom that gives these
zeros. Hopefully, what’s left will then be continuous at the limit point, so
can simply be evaluated at the limit point (Method 1).

So, here is how to do Example 4.5.

lim
x→1

x2 + x− 2

x2 + 2x− 3
= lim

x→1

(x− 1)(x+ 2)

(x− 1)(x+ 3)
= lim

x→1

(x+ 2)

(x+ 3)
=

3

4
.

We’ll now move on to another useful method, motivated by the following example.

Example 4.9. Find limx→0 x sin(1/x). Since x → 0 and sin(1/x) is trapped between
±1, the x should kill the sin(1/x) and the limit should be zero.

Method 3. (Pinching Theorem). Suppose that limx→a f(x) = limx→a g(x) = l
and that

f(x) ≤ h(x) ≤ g(x)
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for all x near a (but not necessarily at x = a, where the functions don’t even
need to be defined). Then limx→a h(x) = l.

g(x)

h(x)

f(x)

a

So, going back to Example 4.9

−|x| ≤ x sin(1/x) ≤ |x|,

and limx→0−|x| = limx→0 |x| = 0. So, by the Pinching theorem, x sin(1/x) has a limit
as x→ 0 and, in fact,

lim
x→0

x sin(1/x) = 0.

(For a picture see Example 4.18 below.)

Example 4.10. Find limx→∞
cosx
x

.

Here, −1

x
≤ cosx

x
≤ 1

x
, so, by the Pinching theorem, the required limit is 0.

We still can’t do Example 4.6, but here is a geometrical way to evaluate limx→0
sinx
x

which uses the Pinching theorem.
Consider the following diagram, where the curve AP is an arc of the circle centre

O, radius 1:

O

R

A

P

Q

x

For 0 < x < π/2, trigonometry shows that length QA = tanx and length PR = sinx.
Thus area ∆OAP = 1

2
sinx, area sector OAP = 1

2
x and area ∆OAQ = 1

2
tanx. So, for

0 < x < π/2, we have that sinx < x < tanx. Dividing by sinx we get 1 <
x

sinx
<

1

cosx
,

so taking reciprocals gives

1 >
sinx

x
> cosx, 0 < x < π/2.
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However, 1, sinx
x

and cos x are all even functions so the above inequality is true for
−π

2
< x < π

2
, x 6= 0. But cos x is continuous, so limx→0 cosx = 1. It now follows from

the Pinching theorem that

lim
x→0

sin x

x
= 1

The function sinx
x

is even, and its graph looks like (between ±8π):

–0.2

0

0.2

0.4

0.6

0.8

1

–20 –10 10 20
x

(You could use the Pinching theorem to show that limx→∞
sinx
x

= 0.)

Method 4. Use limx→0
sinx
x

= 1 to find other limits of a similar nature.

Example 4.11.

lim
x→0

sin 3x

x
= lim

x→0
3

sin 3x

3x
= lim

y→0
3

sin y

y
= 3.

A complicated limit can often be broken down into several easier ones using the
following method.

Method 5 (The Calculus of Limits Theorem). Suppose that limx→a f(x) = l
and limx→a g(x) = m with l and m finite. Then:

(i) lim
x→a

(f(x) + g(x)) = l +m;

(ii) lim
x→a

f(x)g(x) = lm;

(iii) lim
x→a

f(x)/g(x) = l/m provided that m 6= 0.

We’ll use methods 4 and 5 to find the following limits.

Example 4.12. Find limx→0
tan 3x
x

.

Here, limx→0
tan 3x
x

= limx→0
sin 3x
x

1
cos 3x

. We know from Example 4.11 that limx→0
sin 3x
x

=
3 and continuity of cos 3x at x = 0 shows that limx→0

1
cos 3x

= 1. So, by COLT, the re-
quired limit is 3.1=3.

Example 4.13. Find limx→0
1−cos 2x

x2
.

Both top and bottom tend to 0 as x→ 0. Start with the double angle formula:

cos 2x = 1− 2 sin2 x.

Using this identity and the limit in Method 4, we find:

lim
x→0

1− cos 2x

x2
= lim

x→0
2

(
sinx

x

)2

= 2.12 = 2.
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Example 4.14. Find lim
x→∞

2x2 − 7x+ 2

3x2 + 4
.

The x2 term on the top and bottom makes them both go to infinity as x → ∞. To
get over this we divide top and bottom by this nasty term so that all limits become finite.
Here goes:

lim
x→∞

2x2 − 7x+ 2

3x2 + 4
= lim

x→∞

2− (7/x) + (2/x2)

3 + (4/x2)
=

2− 0 + 0

3 + 0
=

2

3
.

Example 4.15. Find lim
x→∞

2x

x+ cosx
.

Here, it is the x term on the top and bottom which makes them both go to infinity
as x→∞, so we divide top and bottom by this. We get

lim
x→∞

2x

x+ cosx
= lim

x→∞

2

1 + cosx
x

=
2

1 + 0
= 2, using Example 4.10.

4.3 Continuous functions

A function f : I → R is continuous at a point a in its domain I = (x0, x1) (or I = [x0, x1])
or I = R etc.) if

lim
x→a

f(x) = f(a).

Example 4.16. The function f given by

f(x) =

{
1 + x if x ≥ 0,

−1 + x if x < 0,

is defined at the origin but is not continuous there, by Example 4.2.

Example 4.17. The function f given by

f(x) =

{
sin 1

x
if x 6= 0,

0 if x = 0,

is also discontinuous at the origin because of Example 4.3.

Example 4.18. The function f given by

f(x) =

{
x sin 1

x
if x 6= 0,

0 if x = 0,

on the other hand, is continuous at the origin, by Example 4.9. Here is the graph (plotted
between ±1/3π):
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Theorem 4.2 (Intermediate value theorem, or
IVT). If f is continuous between a and b
(f : [a, b] → R is continous) and if d lies between
f(a) and f(b) then f(c) = d for at least one num-
ber c between a and b. (So, a continuous function
takes all values between its starting value and its
end value.)

d

a b

Example 4.19. Show that x8 − 9x2 + 6 = 0 has at least one solution x between x = 1
and x = 2.

To see this we note that f : R→ R given by f(x) = x8− 9x2 + 6 is continuous. Since
0 lies between f(1) = −2 and f(2) = 226 we see that f(c) = 0 for some c between x = 1
and x = 2. This is the required solution.

4.4 Differentiable functions

A function f is differentiable at a point a ∈ R if f is defined near a and if there exists a
limit

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

Letting h = x− a, we can also write this as

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Example 4.20.

1. The function f : R → R given by f(x) = |x| is continuous at x = 0, but not
differentiable there.

2. The function f : R→ R given by

f(x) =

{
x sin 1

x
if x 6= 0,

0 if x = 0,

also fails to be differentiable at x = 0, by Example 4.3.

3. The function f : R→ R given by

f(x) =

{
x2 sin 1

x
if x 6= 0,

0 if x = 0,

on the other hand, is differentiable at the origin, with derivative

f ′(0) = lim
x→0

x2 sin(1/x)

x
= lim

x→0
x sin(1/x) = 0,

(by Example 4.9). Here is a plot of this function between ±1/4π:
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0.002
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Remark. If a function f is differentiable at a point a then it is automatically continuous
there too. This is because for the limit of (f(x) − f(a))/(x − a) as x → a to exist, we
must have (f(x)− f(a))→ 0 as x→ a, or in other words limx→a f(x) = f(a).

One can show that all the usual functions f given by f(x) = xn, f(x) = ex, and the
trigonometric (circular) and hyperbolic functions are differentiable (and hence continu-
ous) at all points at which they are defined.

Example 4.21. Let’s compute the derivative of sin. We have to consider

f(x+ h)− f(x)

h
=

sinx cosh+ cosx sinh− sinx

h

=

(
cosh− 1

h

)
sinx+

(
sinh

h

)
cosx.

You could use Method 4 to show that (cosh − 1)/h → 0 as h → 0 (use cosh = 1 −
2 sin2(h/2)), and we know that (sinh)/h → 1 as h → 0. Hence, by COLT, the limit as
h→ 0 is

f ′(x) = cos x.

4.5 Three important theorems

Definition. Let f(x) be defined in some open interval (a, b), and let c ∈ (a, b). We say
that f has a local maximum at c if there exists a number δ > 0 such that f(x) ≤ f(c)
for all x ∈ (c− δ, c+ δ). There is a similar definition for local minimum.

Theorem 4.3 ( Theorem.). If f(x) is differentiable at x = c, and has a local maximum
or minimum at c, then f ′(c) = 0.

Proof. Suppose that f has a local maximum at c (the proof for local minimum is
similar). So there exists δ > 0 such that f(c + h) ≤ f(c) provided |h| < δ. Consider
the function R(h) = [f(c + h) − f(c)]/h. When h > 0, we have R(h) ≤ 0, and when
h < 0, we have R(h) ≥ 0. But since f is differentiable at c, limh→0R(h) exists and is
f ′(c). If we take a sequence of values {hn} with hn < 0 and hn → 0 as n → ∞, we get
limn→∞R(hn) = f ′(c) ≥ 0; and if we take a sequence of values {hn} with hn > 0, tending
to 0, then we get limn→∞R(hn) = f ′(c) ≤ 0. Thus f ′(c) = 0.

In each of the following theorems we assume that f ,g are continuous functions
defined and differentiable for all x between x = a and x = b, where a < b.

Theorem 4.4 (Rolle’s theorem). Suppose that
f(a) = f(b). Then there is at least one point c
between x = a and x = b for which

f ′(c) = 0.
bca

If we apply Rolle’s theorem to the function h given by

h(x) = f(x)−
(
f(b)− f(a)

b− a

)
(x− a)

then we get the following generalisation:
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Theorem 4.5 (Mean value theorem, or MVT).
There is at least one point c between x = a and
x = b for which

f ′(c) =
f(b)− f(a)

b− a
,

(ie the derivative takes on its mean value at
some point c between x = a and x = b).

a b

This theorem is important for its consequences, several of which you already know.
For example, a function f is increasing between x = a and x = b if f(x2) > f(x1)
whenever x2 > x1 lie between x = a and x = b. It is a consequence of MVT that if
f ′(x) > 0 between x = a and x = b then f is increasing between x = a and x = b.
(Similar remarks hold for decreasing).

Example 4.22. Let f(x) = x3+3x2−9x+6. Show that f is decreasing between x = −3
and x = 1.

Well, f ′(x) = 3x2 + 6x− 9 = 3(x+ 3)(x− 1) which is less than zero between x = −3
and x = 1. So f(x) is decreasing between x = −3 and x = 1. we also see that f ′(x) > 0
for x > 1 and for x < −3, so that f(x) is increasing on both these intervals.

Example 4.23. If x > 1, show that lnx > 1− 1

x
.

Let f(x) = lnx − (1 − 1
x
). Then f(1) = 0 and f ′(x) =

1

x
− 1

x2
> 0 for x > 1. The

MVT shows that f(x) is increasing for x > 1, so that f(x) > f(1) = 0 for x > 1. Thus

lnx > 1− 1

x
for x > 1.

4.6 l’Hôpital’s Rule

This is a ubiquitous tool for computing limits of quotients in which numerator and
denominator both → 0. A function f is called continuously differentiable at a point x0
if it is differentiable (in a neighbourhood of x0) and its derivative f ′ is continuous at x0.
L’Hôpital’s Rule is proved by using the Mean Value Theorem.

Theorem 4.6 (l’Hopital’s rule). Suppose that f and g are continuously differentiable at
a point a, that f(a) = g(a) = 0 and that f ′(x)/g′(x) has a limit as x→ a. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Note: it is important that the limit of f ′(x)/g′(x) as x → a exists – if not, l’Hôpital’s
rule can’t be used.

Example 4.24. Find

lim
x→0

e2x − 1

x
.

Here, f(x) = e2x − 1 and g(x) = x satisfy the requirements of l’Hôpital at a = 0, so the
limit is equal to

lim
x→0

2e2x

1
= 2.
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Example 4.25. Find

lim
x→1

sin πx

lnx
.

Both top and bottom go to 0 as x→ 1, so by l’Hôpital the limit is

lim
x→1

π cosπx

(1/x)
= −π.

Example 4.26. Find

lim
x→0

cosx− 1

x2

For this case we can apply l’Hôpital twice:

lim
x→0

cosx− 1

x2
= lim

x→0

− sinx

2x

= lim
x→0

− cosx

2

= −1
2
.

Example 4.27. Find the limit

E = lim
x→∞

(
1 +

1

x

)x
.

Let f(x) = x ln
(
1 + 1

x

)
. Then E = limx→∞ e

f(x), and since ex defines a continuous
function this is the same as eL where L = limx→∞ f(x). But this is

lim
x→∞

f(x) = lim
u→0

ln(1 + u)

u
where u =

1

x
,

= lim
u→0

1

1 + u
by l’Hôpital’s Rule,

= 1.

Hence E = e1 = e.
Letting x run through the natural numbers, this shows that e is the limit of the

sequence:

2,

(
3

2

)2

,

(
4

3

)3

,

(
5

4

)4

,

(
6

5

)5

, . . .

Try this on a calculator!

Some A level revision. Here’s a reminder for the use of differentiation to find
maximum and minimum values of a function.

Example 4.28. Find the max and min values taken by f(x) = 2x3 − 3x2 − 12x + 7
between x = 0 and x = 3.

Solution: The max/min values are taken at the end points of the interval or at points
inside the interval where f ′(x) = 0. Here, f ′(x) = 6x2 − 6x − 12 = 6(x − 2)(x + 1), so
that the max/min values are taken at either x = 0 or x = 2 or x = 3. It is quick to check
that f(0) = 7, f(2) = −13 and f(3) = −2. So max value taken between x = 0 and x = 3
is 7, while the min value is −13.
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Rubric on the Collection Exam for SMA in January:

Time allowed: 45 minutes. Answer all questions. Electronic calculators may not be used.

Note:

There will be 8 questions altogether. All will be worth an equal amount of credit.
That’s all folks! And finally. . . I hope you all have a very happy Christmas.
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