## Analysis - Problems 2013/14

1. Find all those values of $x$ for which $\frac{3 x+4}{2} \leq \frac{6-x}{4}$.
2. Find all those values of $x$ for which $x^{2}-x<2$.
3. Find all those values of $x$ for which $\frac{-3}{x-4} \leq x$.
4. Find all those values of $x$ for which $\frac{3}{x-4}<-x$.
5. Find all real values of $x$ such that $\left|x^{2}+x-4\right|=2$.
6. For all real $x$ show that $|8 x-9|<7 x-6$ if and only if $|x-2|<1$.
7. For all real $x$ show that $|2 x+1|<3 x$ if and only if $x>1$.
8. Find all values of $x$ for which $|2 x+5|>4$.
9. Find all values of $x$ for which $|2 x+1| \leq|3 x-6|$.
10.     * Show that the following statements about the real numbers $x$ and $y$ are equivalent:
(a) $x \geq y$;
(b) For every $\epsilon>0, x>y-\epsilon$;
(c) For every $\epsilon>0, x+\epsilon>y$.
11. Calculate $\lim _{n \rightarrow \infty} x_{n}$ in each of the following cases (or show that no limit exists).
(a) $x_{n}=\cos \left(n^{2}\right) / \sqrt{n^{2}+n}$
(b) $x_{n}=(3 n+1)^{2}\left(4 n^{4}+1\right)^{-1 / 2}$
(c) $x_{n}=[(1+2 n) /(2 n)]^{n}$
(d) $x_{n}=[(2 n+1) /(n+1)]^{2 n}\left[\right.$ Hint: show $\left.\frac{2 n+1}{n+1} \geq \frac{3}{2}\right]$
(e) $x_{n}=\left(n^{2}+\log n\right) / \sqrt{2 n^{3}-1}$
(f) $x_{n}=\left(n^{5}+\log n\right)^{2 / n}$
(g) $x_{n}=n^{2}[1 /(n+1)-1 /(n-1)]$.
12. Calculate $\lim _{n \rightarrow \infty} x_{n}$ in each of the following cases.
(a) $x_{n}=(2 n+1)^{2} / \sqrt{n^{4}+1}$
(b) $x_{n}=n\left(\sqrt{1+n^{2}}-n\right)$
(c) $x_{n}=\log n-\log (n+1)$
(d) $x_{n}=\left(n^{2}+\mathrm{e}^{-n}\right) /\left(\log n+5 n^{3}\right)$
(e) $x_{n}=(n!)^{2} /[(n-2)!(n+2)!]$
(f) $x_{n}=n!n^{-n}$
(g) $x_{n}=2^{n} / n$ !
(h) $x_{n}=n \sin (\pi / n)\left[U s e \frac{\sin \theta}{\theta} \rightarrow 1\right.$ as $\left.\theta \rightarrow 0\right]$
(i) $x_{n}=\left(1+n^{2}\right)^{1 / n}$
(j) $x_{n}=(n+3)!/\left(n!n^{3}\right)$
(k) $x_{n}=n^{2}\left[n^{-1}-(n+1)^{-1}\right]$.
13. Let $x_{n}$ be as in (d) of the previous question. Given $\epsilon>0$, show that the distance from $x_{n}$ to its limit is less than $\epsilon$ if $n>2 /(5 \epsilon)$.
14. Calculate $\lim _{n \rightarrow \infty} x_{n}$ in each of the following cases (or show that no limit exists).
(a) $x_{n}=\left(n+\log n^{2}\right) / \sqrt{n^{2}+2}$
(b) $x_{n}=\sqrt{n}\left(n+\mathrm{e}^{-n}\right)^{-1} \sin \left(\mathrm{e}^{n}\right)$
15. Find the limit of each of the following sequences as $n \rightarrow \infty$, or show that no limit exists. (a) $x_{n}=\left(n^{2}+\mathrm{e}^{n}\right)^{1 / n} \quad$ (b) $x_{n}=\sqrt{n}(\sqrt{n+1}-\sqrt{n-1}) \quad$ (c) $x_{n}=\left(\frac{n-1}{n+1}\right)^{n}$
16. Compute $\lim _{n \rightarrow \infty} x_{n}$ for the following: (a) $x_{n}=\left(n^{2}+n\right)^{1 / n} \quad$ (b) $x_{n}=n(\sqrt{n+1}-\sqrt{n})^{2}$
17. If $\left\{x_{n}\right\}$ is a sequence such that $x_{n} \rightarrow L$ as $n \rightarrow \infty$, and $x_{n}<0$ for all $n$, prove that $L \leq 0$. Is it necessarily true that $L<0$ ?
18. Compute $\lim _{n \rightarrow \infty}\left[(n+1)^{2}-(n-1)^{2}\right] /(n+\sqrt{n})$, or show that the limit does not exist.
19. Find $\lim _{n \rightarrow \infty}$ for each of the following sequences, or show that no limit exists.
(a) $x_{n}=\left(n^{2}+2\right)^{1 / n}$
(b) $x_{n}=[(n+2) /(n+1)]^{2 n}$
(c) $x_{n}=n\left(\sqrt{n^{2}+1}-\sqrt{n^{2}-1}\right)$
20. Compute $\lim _{n \rightarrow \infty}\left[(n+1)^{2}-n^{2}\right] /(n+\log n)$, or show that the limit does not exist.
21. Find the limit of each of the following sequences as $n \rightarrow \infty$, or show that the limit does not exist.
(a) $x_{n}=\left(\frac{n}{n+1}\right)^{n}$
(b) $x_{n}=\left(\frac{1}{n+1}-\frac{1}{n-1}\right) / \sin \left(\frac{1}{n^{2}}\right)$
(c) $x_{n}=\left(\frac{3 n+2}{2 n+1}\right)^{n}$
22. Prove that limits are unique: i.e. if $x_{n} \rightarrow l$ and $x_{n} \rightarrow k$ as $n \rightarrow \infty$, then $l=k$.
23. Show that if $\left\{x_{n}\right\}$ is a sequence with $x_{n} \leq b$ for all $n$, and $\lim _{n \rightarrow \infty} x_{n}=L$, then $L \leq b$.
24.     * If $\left\{x_{n}\right\}$ is a bounded sequence (ie there is a number $K$ such that $\left|x_{n}\right| \leq K$ for all $n$ ), and if $y_{n} \rightarrow 0$ as $n \rightarrow \infty$, prove that $x_{n} y_{n} \rightarrow 0$ as $n \rightarrow \infty$.
25. Prove that one of the following statements is true and that the other is false.
(a) If $x_{n} \rightarrow 1$ as $n \rightarrow \infty$, then $\left(x_{n}\right)^{n} \rightarrow 1$ as $n \rightarrow \infty$.
(b) * If $0<r<1$ and $x_{n} \rightarrow r$ as $n \rightarrow \infty$, then $\left(x_{n}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$.
26. ** The sequence $\left\{x_{n}\right\}$ is defined recursively by $x_{1}=10$ and $x_{n+1}=\sqrt{6+x_{n}}$. Find $\lim _{n \rightarrow \infty} x_{n}$. [Hint: first find the fixed points of the iteration.]
27. Compute $\lim _{n \rightarrow \infty}(t+1 / n)^{n}$ for each positive real value of $t$ for which this limit exists.
28. Determine for which real values of $x$ the sequence $\left\{n^{-1} x^{n}\right\}$ tends to a limit as $n \rightarrow \infty$.
29. Compute $\lim _{n \rightarrow \infty} x_{n}$, or show that the limit does not exist, for each of the following.
(a) $x_{n}=\left(p^{n}+q^{n}\right)^{1 / n}$, with $p \geq q \geq 0$
(b) $x_{n}=(1+2+\ldots+n) / n^{2}$ [Hint: sum this arithmetic series]
(c) $x_{n}=n \int_{0}^{n} \mathrm{e}^{-n x} d x$ [Hint: do the integral]
(d) $x_{n}=(1+1 / n)^{n^{2}}$ [Hint: log].
30. Determine the sup and inf, where they exist, of the following sets:
(a) $S=\{x:|2 x-1|<11\}$
(b) $S=\{x+|x-1|: x \in \mathbf{R}\}$.
31. Compute the sup and the inf of the function $f(x)=e^{x} /\left(1+e^{x}\right)$, where $x \in \mathbf{R}$.
32. Compute the sup and the inf of the function $f(x)=x /(1+|x|)$, where $x \in \mathbf{R}$.
33. Determine the least upper bound and the greatest lower bound of each of the following sets (where $n$ and $m$ range over the positive integers):
(a) $X=\left\{\left(n^{2}-n\right) /\left(n^{2}+1\right)\right\}$
(b) $Y=\{(2 m+n) /(m+3 n)\}$.
34. Determine the supremum of $g(x)=\left(x \cos ^{2} x-2\right) /\left(2 x \cos ^{2} x+2\right)$ for $x \geq 0$.
35. Determine the least upper bound and the greatest lower bound of each of the following functions (where $x$ ranges over the real numbers):
(a) $f(x)=\left(1+x^{2} \cos x\right) /\left(2+x^{2}\right)$
(b) $g(x)=x^{2} \exp \left(-x^{2}\right)$.
36. If $g$ is bounded above, and $f(x)<g(x)$ for all $x$, prove that $\sup f \leq \sup g$. Is it necessarily true that $\sup f<\sup g$ ?
37. Compute the supremum and the infimum of the function $f(x)=x^{2} /\left(1+x^{2}\right)$ on $\mathbf{R}$.
38. Compute the supremum and the infimum of the function $f(x)=\sqrt{x} /(2+x)$ for $x>0$.
39. Compute the supremum and the infimum of the function $f(x)=x /\left(x^{2}+1\right)$ for $x>0$.
40. Determine whether or not the series $\Sigma_{n=1}^{\infty}(2+n) / \sqrt{4 n^{4}-1}$ converges.
41. Determine whether or not the series $\sum_{n=1}^{\infty} \sqrt{n} /\left(n^{3}+1\right)$ converges.
42. Determine whether or not the series $\sum_{n=1}^{\infty} \sin \left(2^{n}\right) / 2^{n}$ converges.
43. Determine whether or not the series $\sum_{n=1}^{\infty}(n-3)\left(2+9 n^{6}\right)^{-1 / 2}$ converges.
44. Use the comparison test to decide whether or not $\sum_{n=1}^{\infty} x_{n}$ converges in each of the following cases. (You may assume that $\sum_{n=1}^{\infty} n^{-\alpha}$ converges iff $\alpha>1$.)
(a) $x_{n}=n / \sqrt{1+n^{6}}$
(b) $x_{n}=1 /(n+\sqrt{n})$
(c) $x_{n}=(3-n \sqrt{n}) / n^{6}$
(d) $x_{n}=n!n^{2} /(n+3)$ !
(e) $x_{n}=n^{2} \exp (-\sqrt{n})$
(f) $x_{n}=(n \cos n) /\left(n^{3}+\log n\right)$
(g) $x_{n}=n^{-1} \sin \left(n^{-1}\right)$ [Use $\sin \theta<\theta$ for $\left.\theta>0\right]$
(h) $x_{n}=n^{-2}(\log n)^{4}$
(i) $x_{n}=\sqrt{1+n^{2}}-n$.
45. For which values of $\alpha$ do the following series converge?
(a) $\sum_{n=1}^{\infty}\left(n^{2}+1\right)^{-\alpha} \log \left(1+\frac{1}{n}\right)$
(b) $\sum_{n=1}^{\infty} n^{\alpha}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$.
46. Show that the series $\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)+\left(x_{3}-x_{4}\right)+\ldots$ converges if and only if the sequence $\left\{x_{n}\right\}$ tends to a limit as $n \rightarrow \infty$.
47. If $\sum_{n=1}^{\infty} x_{n}$ converges to $s$, and $y_{n}=\left(x_{n}+x_{n+1}\right) / 2$ for all $n$, does $\sum_{n=1}^{\infty} y_{n}$ converge, and if so to what?
48. Given that $\sum_{n=1}^{\infty} x_{n}$ converges, and $\sum_{n=1}^{\infty} y_{n}$ converges absolutely, prove that $\sum_{n=1}^{\infty} x_{n} y_{n}$ converges absolutely. If we knew only that $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ converged, would it follow that $\sum_{n=1}^{\infty} x_{n} y_{n}$ converged as well?
49. Determine whether or not each of the following series converges.
(a) $\sum_{n=3}^{\infty} \tan (\pi / n) \cos (n \pi)$
(b) $\sum_{n=2}^{\infty} n^{-1}(\log n)^{-3}$
(c) $\sum_{n=1}^{\infty}(2 n)!5^{-n}(n!)^{-2}$
50. Determine whether or not each of the following series converges.
(a) $\sum_{n=1}^{\infty} \frac{1}{(-1)^{n} \sqrt{n} \tanh n}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n}(2 n)!}{9^{n}(n!)^{2}}$
(c) $\sum_{n=1}^{\infty} \frac{n-1}{\left(n^{2}+2\right)\left(n^{2}+1\right)^{1 / 4}}$.
51. Discuss whether or not $\sum_{n=1}^{\infty} x_{n}$ converges in each of the following cases.
(a) $x_{n}=(n!)^{2} /(2 n)$ !
(b) $x_{n}=1 /[(n+1) \log (n+1)]$
(c) $x_{n}=(\cos \pi n) /(n \log (n+1))$.
52. For what values of $\alpha$ does the series $\sum_{n=1}^{\infty} x_{n}$ converge, in each of the following cases? [Be careful to investigate all real values of $\alpha$. In each case except (c), use the ratio test first, and then deal with the remaining values of a separately.]
(a) $x_{n}=\alpha^{n} n^{\alpha}$
(b) $x_{n}=\alpha^{n-1} /\left(n 3^{n}\right)$
(c) $x_{n}=n^{-1}(\log (n+1))^{-\alpha}$
(d) $x_{n}=n!\alpha^{n}$
(e) $x_{n}=n \alpha^{n} /\left(2^{n}(3 n-1)\right)$. [For (c): first compare with $\left.y_{n}=(n+1)^{-1}(\log (n+1))^{-\alpha}\right]$.
53. Find values of $z$ for which the series $\sum a_{n}\left(z-z_{0}\right)^{n}$ converges in the following cases:
(a) $z_{0}=0, a_{n}=1 / n!$;
(b) $z_{0}=1, a_{n}=1 /(n-1)!, n>1$;
(c) $z_{0}=0, a_{n}=c^{n}$;
(d) $z_{0}=0, a_{n}=n$;
(e) $z_{0}=0, a_{n}=n!$.
