Analysis — Problems 2013/14

 Find all those values of x for which ^{3x+4}/₂ ≤ ^{6-x}/₄.

 Find all those values of x for which x² - x < 2.

 Find all those values of x for which ⁻³/_{x-4} ≤ x.

 Find all those values of x for which ³/_{x-4} < -x.

- 5. Find all real values of x such that $|x^2 + x 4| = 2$.
- 6. For all real x show that |8x 9| < 7x 6 if and only if |x 2| < 1.
- 7. For all real x show that |2x + 1| < 3x if and only if x > 1.
- 8. Find all values of x for which |2x + 5| > 4.
- 9. Find all values of x for which $|2x+1| \le |3x-6|$.
- 10. * Show that the following statements about the real numbers x and y are equivalent: (a) $x \ge y$; (b) For every $\epsilon > 0$, $x > y - \epsilon$; (c) For every $\epsilon > 0$, $x + \epsilon > y$.
- 11. Calculate $\lim_{n\to\infty} x_n$ in each of the following cases (or show that no limit exists). (a) $x_n = \cos(n^2)/\sqrt{n^2 + n}$ (b) $x_n = (3n + 1)^2(4n^4 + 1)^{-1/2}$ (c) $x_n = [(1 + 2n)/(2n)]^n$ (d) $x_n = [(2n + 1)/(n + 1)]^{2n}$ [Hint: show $\frac{2n+1}{n+1} \ge \frac{3}{2}$] (e) $x_n = (n^2 + \log n)/\sqrt{2n^3 - 1}$ (f) $x_n = (n^5 + \log n)^{2/n}$ (g) $x_n = n^2[1/(n + 1) - 1/(n - 1)].$
- 12. Calculate $\lim_{n\to\infty} x_n$ in each of the following cases. (a) $x_n = (2n+1)^2/\sqrt{n^4+1}$ (b) $x_n = n(\sqrt{1+n^2}-n)$ (c) $x_n = \log n - \log(n+1)$ (d) $x_n = (n^2 + e^{-n})/(\log n + 5n^3)$ (e) $x_n = (n!)^2/[(n-2)!(n+2)!]$ (f) $x_n = n! n^{-n}$ (g) $x_n = 2^n/n!$ (h) $x_n = n\sin(\pi/n)$ [Use $\frac{\sin\theta}{\theta} \to 1$ as $\theta \to 0$] (i) $x_n = (1+n^2)^{1/n}$ (j) $x_n = (n+3)!/(n!n^3)$ (k) $x_n = n^2[n^{-1} - (n+1)^{-1}]$.
- 13. Let x_n be as in (d) of the previous question. Given $\epsilon > 0$, show that the distance from x_n to its limit is less than ϵ if $n > 2/(5\epsilon)$.
- 14. Calculate $\lim_{n\to\infty} x_n$ in each of the following cases (or show that no limit exists). (a) $x_n = (n + \log n^2)/\sqrt{n^2 + 2}$ (b) $x_n = \sqrt{n} (n + e^{-n})^{-1} \sin(e^n)$

- 15. Find the limit of each of the following sequences as $n \to \infty$, or show that no limit exists. (a) $x_n = (n^2 + e^n)^{1/n}$ (b) $x_n = \sqrt{n} \left(\sqrt{n+1} \sqrt{n-1}\right)$ (c) $x_n = \left(\frac{n-1}{n+1}\right)^n$
- 16. Compute $\lim_{n\to\infty} x_n$ for the following: (a) $x_n = (n^2 + n)^{1/n}$ (b) $x_n = n\left(\sqrt{n+1} \sqrt{n}\right)^2$
- 17. If $\{x_n\}$ is a sequence such that $x_n \to L$ as $n \to \infty$, and $x_n < 0$ for all n, prove that $L \leq 0$. Is it necessarily true that L < 0?
- 18. Compute $\lim_{n\to\infty} \left[(n+1)^2 (n-1)^2 \right] / (n+\sqrt{n})$, or show that the limit does not exist.
- 19. Find $\lim_{n\to\infty}$ for each of the following sequences, or show that no limit exists. (a) $x_n = (n^2+2)^{1/n}$ (b) $x_n = [(n+2)/(n+1)]^{2n}$ (c) $x_n = n\left(\sqrt{n^2+1} - \sqrt{n^2-1}\right)$
- 20. Compute $\lim_{n\to\infty} \left[(n+1)^2 n^2 \right] / (n+\log n)$, or show that the limit does not exist.
- 21. Find the limit of each of the following sequences as $n \to \infty$, or show that the limit does not exist. (a) $x_n = \left(\frac{n}{n+1}\right)^n$ (b) $x_n = \left(\frac{1}{n+1} - \frac{1}{n-1}\right) / \sin\left(\frac{1}{n^2}\right)$ (c) $x_n = \left(\frac{3n+2}{2n+1}\right)^n$
- 22. Prove that limits are unique: i.e. if $x_n \to l$ and $x_n \to k$ as $n \to \infty$, then l = k.
- 23. Show that if $\{x_n\}$ is a sequence with $x_n \leq b$ for all n, and $\lim_{n\to\infty} x_n = L$, then $L \leq b$.
- 24. * If $\{x_n\}$ is a bounded sequence (ie there is a number K such that $|x_n| \leq K$ for all n), and if $y_n \to 0$ as $n \to \infty$, prove that $x_n y_n \to 0$ as $n \to \infty$.
- 25. Prove that one of the following statements is true and that the other is false. (a) If $x_n \to 1$ as $n \to \infty$, then $(x_n)^n \to 1$ as $n \to \infty$. (b) * If 0 < r < 1 and $x_n \to r$ as $n \to \infty$, then $(x_n)^n \to 0$ as $n \to \infty$.
- 26. ** The sequence $\{x_n\}$ is defined recursively by $x_1 = 10$ and $x_{n+1} = \sqrt{6 + x_n}$. Find $\lim_{n \to \infty} x_n$. [Hint: first find the fixed points of the iteration.]
- 27. Compute $\lim_{n\to\infty} (t+1/n)^n$ for each positive real value of t for which this limit exists.
- 28. Determine for which real values of x the sequence $\{n^{-1}x^n\}$ tends to a limit as $n \to \infty$.
- 29. Compute $\lim_{n\to\infty} x_n$, or show that the limit does not exist, for each of the following. (a) $x_n = (p^n + q^n)^{1/n}$, with $p \ge q \ge 0$
 - (b) $x_n = (1 + 2 + \ldots + n)/n^2$ [Hint: sum this arithmetic series]

- (c) $x_n = n \int_0^n e^{-nx} dx$ [Hint: do the integral] (d) $x_n = (1 + 1/n)^{n^2}$ [Hint: log].
- 30. Determine the sup and inf, where they exist, of the following sets: (a) $S = \{x : |2x - 1| < 11\}$ (b) $S = \{x + |x - 1| : x \in \mathbf{R}\}.$
- 31. Compute the sup and the inf of the function $f(x) = e^x/(1+e^x)$, where $x \in \mathbf{R}$.
- 32. Compute the sup and the inf of the function f(x) = x/(1+|x|), where $x \in \mathbf{R}$.
- 33. Determine the least upper bound and the greatest lower bound of each of the following sets (where n and m range over the positive integers):
 (a) X = {(n² n)/(n² + 1)}
 (b) Y = {(2m + n)/(m + 3n)}.
- 34. Determine the supremum of $g(x) = (x \cos^2 x 2)/(2x \cos^2 x + 2)$ for $x \ge 0$.
- 35. Determine the least upper bound and the greatest lower bound of each of the following functions (where x ranges over the real numbers):
 (a) f(x) = (1 + x² cos x)/(2 + x²)
 (b) g(x) = x² exp(-x²).
- 36. If g is bounded above, and f(x) < g(x) for all x, prove that $\sup f \leq \sup g$. Is it necessarily true that $\sup f < \sup g$?
- 37. Compute the supremum and the infimum of the function $f(x) = x^2/(1+x^2)$ on **R**.
- 38. Compute the supremum and the infimum of the function $f(x) = \sqrt{x}/(2+x)$ for x > 0.
- 39. Compute the supremum and the infimum of the function $f(x) = x/(x^2 + 1)$ for x > 0.
- 40. Determine whether or not the series $\sum_{n=1}^{\infty} (2+n)/\sqrt{4n^4-1}$ converges.
- 41. Determine whether or not the series $\sum_{n=1}^{\infty} \sqrt{n}/(n^3+1)$ converges.
- 42. Determine whether or not the series $\sum_{n=1}^{\infty} \sin(2^n)/2^n$ converges.
- 43. Determine whether or not the series $\sum_{n=1}^{\infty} (n-3)(2+9n^6)^{-1/2}$ converges.

- 44. Use the comparison test to decide whether or not $\sum_{n=1}^{\infty} x_n$ converges in each of the following cases. (You may assume that $\sum_{n=1}^{\infty} n^{-\alpha}$ converges iff $\alpha > 1$.) (a) $x_n = n/\sqrt{1+n^6}$ (b) $x_n = 1/(n+\sqrt{n})$ (c) $x_n = (3-n\sqrt{n})/n^6$ (d) $x_n = n! n^2/(n+3)!$ (e) $x_n = n^2 \exp(-\sqrt{n})$ (f) $x_n = (n \cos n)/(n^3 + \log n)$ (g) $x_n = n^{-1} \sin(n^{-1})$ [Use $\sin \theta < \theta$ for $\theta > 0$] (h) $x_n = n^{-2} (\log n)^4$ (i) $x_n = \sqrt{1+n^2} - n$.
- 45. For which values of α do the following series converge? (a) $\sum_{n=1}^{\infty} (n^2 + 1)^{-\alpha} \log(1 + \frac{1}{n})$ (b) $\sum_{n=1}^{\infty} n^{\alpha} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$.
- 46. Show that the series $(x_1 x_2) + (x_2 x_3) + (x_3 x_4) + \dots$ converges if and only if the sequence $\{x_n\}$ tends to a limit as $n \to \infty$.
- 47. If $\sum_{n=1}^{\infty} x_n$ converges to s, and $y_n = (x_n + x_{n+1})/2$ for all n, does $\sum_{n=1}^{\infty} y_n$ converge, and if so to what?
- 48. Given that $\sum_{n=1}^{\infty} x_n$ converges, and $\sum_{n=1}^{\infty} y_n$ converges absolutely, prove that $\sum_{n=1}^{\infty} x_n y_n$ converges absolutely. If we knew only that $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converged, would it follow that $\sum_{n=1}^{\infty} x_n y_n$ converged as well?
- 49. Determine whether or not each of the following series converges. (a) $\sum_{n=3}^{\infty} \tan(\pi/n) \cos(n\pi)$ (b) $\sum_{n=2}^{\infty} n^{-1} (\log n)^{-3}$ (c) $\sum_{n=1}^{\infty} (2n)! 5^{-n} (n!)^{-2}$
- 50. Determine whether or not each of the following series converges.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{(-1)^n \sqrt{n} \tanh n}$$
 (b) $\sum_{n=1}^{\infty} \frac{2^n (2n)!}{9^n (n!)^2}$ (c) $\sum_{n=1}^{\infty} \frac{n-1}{(n^2+2)(n^2+1)^{1/4}}$

- 51. Discuss whether or not $\sum_{n=1}^{\infty} x_n$ converges in each of the following cases. (a) $x_n = (n!)^2/(2n)!$ (b) $x_n = 1/[(n+1)\log(n+1)]$ (c) $x_n = (\cos \pi n)/(n\log(n+1)).$
- 52. For what values of α does the series ∑_{n=1}[∞] x_n converge, in each of the following cases? [Be careful to investigate all real values of α. In each case except (c), use the ratio test first, and then deal with the remaining values of α separately.]
 (a) x_n = αⁿn^α (b) x_n = αⁿ⁻¹/(n3ⁿ) (c) x_n = n⁻¹(log(n+1))^{-α} (d) x_n = n!αⁿ (e) x_n = nαⁿ/(2ⁿ(3n-1)). [For (c): first compare with y_n = (n+1)⁻¹(log(n+1))^{-α}].
- 53. Find values of z for which the series $\sum a_n(z-z_0)^n$ converges in the following cases: (a) $z_0 = 0$, $a_n = 1/n!$; (b) $z_0 = 1$, $a_n = 1/(n-1)!$, n > 1; (c) $z_0 = 0$, $a_n = c^n$; (d) $z_0 = 0$, $a_n = n$; (e) $z_0 = 0$, $a_n = n!$.