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Abstract

How spacecraft accelerate in planetary flybys is explained clearly. For
a given speed change often two different encounters are possible.

1 Introduction

On 15 October 1997, NASA launched the probe Cassini on a 6.7-year voyage to
Saturn [1, 2]. A Titan/Centaur booster sent the 5700-kg spacecraft from Earth
with speed 4 km/s.

But Saturn is high up the Sun’s gravitational potential well, and to reach it
from Earth’s orbit a spacecraft needs at least 10 km/s.

So Cassini’s flight plan involves acquiring extra speed from four intermediate
planetary encounters — with Venus, Venus again, Earth, and Jupiter (VVEJ]
trajectory) — see Fig. 1.

In each of these flybys, Cassini is boosted by a gravitational ‘slingshot’ in-
teraction with a planet moving in orbit round the Sun at speeds from 13 km/s
(Jupiter) to 35 km/s (Venus).

The first flyby at Venus on 26 April 1998 gave Cassini an extra 7 km/s or so
[4], the third — at Earth on 17 August 1999 — added 5.5 km/s [5].

The fourth and last flyby, at Jupiter on 30 December 2000 [6], added 2 km /s
and set Cassini on course to arrive at Saturn on 1 July 2004.

It is estimated that all four encounters together save about 75 tons of fuel
[1]. NASA now routinely uses such planetary “gravity assists” for economy on
missions to the outer solar system [7], and future Martian expeditions may benefit
from Lunar flybys [8].

At first sight the underlying slingshot mechanism seems puzzling, for there
is an uneasy feeling that something is conjured from nothing. It was presumed
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Figure 1: Cassini’'s VVEJ Gravitational Assist trajectory, as given in ref. [3]

to be rather sophisticated when, despite its obvious importance, NASA’s public
information was either highly technical [9] or somewhat confusing [10].

Although more recently NASA has improved its educational materials [11], a
clear elementary mathematical treatment is less accessible than it might be —
given that by its usage the slingshot effect is a modern triumph of Newtonian
Mechanics.

Few undergraduate texts mention the subject. Of those that do, for instance
Alonso and Finn [13, Ex. 6.4] consider only a 1-dimensional interaction, and
Lockett’s discussion [14, p. 35] is cryptic, to say the least.

Scientific American [12] gives a non-technical introduction, avoiding mathe-
matics — while the article by Diehl [15] at least includes a version of the appro-
priate velocity-addition diagram®.

Marion and Thornton [16, pps. 314-5] make an exemplary statement of the
underlying principles (energy and momentum conservation) and give a clearer
velocity-addition diagram — but omit further development.

A detailed calculation appears in the book by Barger and Olsson? [17]. This
deals with a gravity assist at Jupiter en route to Uranus®. However the formidable
length of the 13-page manipulation [17, pps. 131-44] only reinforces perception
of the slingshot’s subtlety. A shorter calculation in similar vein by Roy [18,

! And several references to historical developments.
2Published just before the first Voyager launch [19].
3The emphasis is on reducing transit time rather than saving fuel.



pps. 366-7] is a masterpiece of obscurity.

Bartlett and Hord [20] give more insight, putting the slingshot into context
of analogous physical effects* and mentioning more early sources — eg. [21]. But
again the explicit example is uncomfortably lengthy [20, Secs. V-VII].

A middle course is taken here. First we set out the basic principles as clearly
as possible:

e momentum conservation — the enormously more massive planet imparts
significant speed to the spacecraft without measurable change in its own
velocity;

e energy conservation — the pull of gravity simply rotates the spacecraft’s
distant-velocity vector in the planet frame, leaving its magnitude unaf-
fected. This acceleration is a speed change relative to the Sun.

Details are in Sec. 2 and Sec. 3, and are summarised in a single diagram — see
Fig. 2 below.

Then we go beyond Marion and Thornton [16, pps. 314-5] by including rel-
evant kinematical formulas in Sec. 4. These in fact can apply to any elastic in-
teraction between objects of very different mass; the dynamics specific to gravity
are given in Sec. 5 for a point planet, and in Sec. 6 for one of finite size.

Some discussions (eg. [10], [12]) allude to change of angular momentum about
the Sun as a fundamental part of the slingshot effect. This is plainly misleading,
and Sec. 7 briefly considers the essential consequences of planet and spacecraft
within the Solar System.

2 Momentum conservation

An interaction between a spacecraft of mass m and a planet of mass M, whether
hard or soft (crash or landing, launch or flyby) obeys Newton’s Third Law and
momentum is conserved:

mvi + ]\4\/1 = mvs + MVf

Here (v;, V;) and (v¢, Vi) are respective velocities before and after the encounter.
Then m
Vi—Vi=
Since m is of order 10 kg while M is typically 10**-10%" kg (Venus-Jupiter range)
the mass ratio m/M is very small indeed: 10-21-10"24.
So, for relevant velocities, we have

Vi — Vf).

Vi=V: ¥V  to1 part in 102 or better. (1)

4Such as adiabatic heating and cooling of a gas.



This is extremely accurate — typically, interaction with a spacecraft affects a
planet at least 25 million times less than impact of a 1-microgram gnat perturbs
the progress of a 40-tonne truck.

NASA remarks that a Voyager flyby [19] slowed Jupiter by about 1 foot every
trillion years, while Galileo [22] slowed Earth by 5 billionths of an inch per year.

Bartlett and Hord’s discussion of ‘The Natural Order of Things’ [20, Sec. VIII]
puts this alongside other momentum-changing perturbations to planets — such
as meteor, comet and asteroid impact. And of course, spacecraft launch itself
perturbs Earth.

In all of what follows, eq. (1) is taken to hold without further comment.

3 Energy conservation

Next, consider energy conservation, as it applies in the planet frame.

The spacecraft’s distant-approach velocity u; = v; — V relative to the planet
is deflected by gravitational pull to a distant-departure velocity us which has the
same magnitude:

e = |usl . (2)

Then vi = us + V in the space frame.

Fig.2 gives an example, where the triangle construction is equivalent to Diehl’s
Fig.1 [15, p. 676] and to Barger and Olsson’s Fig. 4.12 [17, p. 139]. It summarises
the two useful diagrams appearing in NASA’s discussion [10, 11], and is essentially
the same as Marion and Thornton’s Fig. 8-13(b).

Fig. 2 shows that as the spacecraft passes behind the planet, a modest gravi-
tational deflection aligns its velocity closer to that of the planet. Then |v¢| > |v;]
— ie, the spacecraft is swept along, gaining speed.

This is how each encounter in Fig. 1 is arranged®.

Inspection of similar velocity diagrams shows the accessible range of v for
given (vi, V), including:

e maximum boost is when v aligns exactly with V (this is expressed by
eq. (4) below);

e any given submaximal boost can be achieved from either of two flybys,
when corresponding vectors vy are related by reflection in V;

e too large a deflection brakes the spacecraft: |v¢| < |vi| (see eq. (5) be-
low);

e the maximum possible gain is 2|V, for a head-on collision with rotation
through 180°.

5And this is one way that the Moon has over aeons accelerated and ejected dust and debris
from Earth’s neighbourhood.



Figure 2: Velocity triangles for the flyby depicted above them. The triangles’
common base is the planet’s constant velocity V. In the planet frame, the space-
craft’s distant-approach velocity v; — V (dashed) is rotated as arrowed by gravity
to a distant-departure velocity — with magnitude unaltered since energy is con-
served. Addition of V gives v¢. Plainly, |v¢| > |vi|.

If the spacecraft is deflected oppositely — passing in front of the planet® — then
in small-angle encounters its rotated planet-frame velocity tends to oppose V and
so it is hauled back, losing speed”. Fig. 3 illustrates this situation.

Slingshot braking of Cassini presumably saves fuel again at Saturn Orbit
Insertion [23]. The Galileo probe at Jupiter [22] braked with the help of the
satellite moon Io [10] (see also Bartlett and Hord [20, Sec. X]).

4 Kinematics

Explicit formulas corresponding to the observations in Sec. 3 are as follows.
Referring to Fig. 2, let («, o') be the angles between the positive directions
of V and (v;, vy) respectively, and let § be the deflection of the spacecraft in the
planet frame — the positive rotation angle arrowed between the dashed lines.
Let
Vv = |Vi‘ y Vr = |Vf| and V= ‘V‘ .

60r behind in a hypothetical repulsive interaction.
Tt is reduced to rest if v; = 2V in a “tail-on’ collision.



Figure 3: As Fig. 2, but for a braking manouevre, where the spacecraft passes in
front of the planet and so gravity rotates oppositely the spacecraft’s planet-frame
velocity. The formulas of Sec. 4 apply with 5 < 0.

Then straightforward trigonometry gives
vf = v? 4+ 2V {V (1 — cos B) + v; [cos(a — B) — cos o]}, (3)
along with
vecosa' = V(1 — cos B) + v;cos(a — B),
vesina’ = Vsin 8 + v sin(a — S).

Of course, vf = v; and o =« at 5 = 0.
As Fig. 4 shows, with (v;, V, «) fixed, outgoing speed v first increases with
(. It reaches its maximum at 8 = [pax Where
V5 sin o

t max — 1,0 4
an f vicosa —V 4)

when o' = 0 and vy aligns with V.
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Figure 4: Dependence of v¢/V on f given by eq. (3), with (v;/V, ) = (1.5, 40°)
corresponding to the examples in Fig. 2 and Fig. 3.

Fig. 2, Fig. 3 and Fig. 4 are all for a case where v; = 1.5V and o = 40°, when
Brax = 81°.
Further increase of 3 decreases vf, and vy = v; again at 5 = [, where

BO = 2ﬁmax- (5)

Then o/ = —a and v; and v; are related by reflection in V.
Note therefore (Fig. 4) that there are two potential deflection angles 3, o for
each possible submaximal speed boost. They are related by

Bl + BQ = 2ﬁmax- (6)

The smaller is often preferred in practice since it turns out to involve a more
distant flyby, as Sec. 5 shows.

In the example of Fig. 2, where 8 = 3; = 33° and v¢/v; = 1.2, the same 20%
boost is achieved with g = 5, = 129°.

For angles § > By (= 162° in Fig. 4) we have vy < v; and the spacecraft
loses speed in the encounter. Again, practical preference is for a more distant
smaller-angle flyby, braking with § < 0 as in Fig. 3. Note that eq. (6) applies.



In fact Fig. 3 shows 8 = B, = —30° and v¢/v; = 0.75, when identical 25%
braking is obtained with g = [, = 192°. However, angles § > 180° are not,
attainable in an inverse-square interaction — see Sec. 5.

5 Dynamics

The kinematics of Sec. 4 applies to any energy-conserving (elastic) interaction,
and is easily modified for a repulsion.

A spacecraft, however, swings round a planet under gravitational attraction
and in the planet frame follows the Keplerian orbit [24, §15]

h?/GM 2Eh?
7'(9) = #m, where € = 1 + W (7)
Here (r, ) are polar coordinates centred on the planet in the plane of (v;, V),
and (h, &) are the spacecraft’s angular momentum per unit mass and energy per
unit mass respectively, both constant. As before M is the planet’s mass, and G
is the universal gravitational constant.

For an open (hyperbolic) orbit, energy £ > 0 and eccentricity € > 1.

The spacecraft’s closest approach to the planet is at

hQ/GM
1+e¢

T = Tmin — ) (8)
corresponding to # = 0 by choice of reference line.

At large distance, r — oo as polar angle # — 4 arccos(—1/€). Then the
encounter deflects the spacecraft through an angle

f = 2arccos(—1/¢) — . (9)

This is the rotation angle between us and u; — ie, that arrowed in Fig. 2.

Of the two angles § corresponding to a given speed boost (Sec.4) the smaller
evidently involves larger rp,.

The reason is that, for given £, the values of (€, Tmin, 3) together are controlled
by the size of angular momentum parameter h. Inspection of eq. (7), eq. (8) and
eq. (9) shows that smaller A~ means both smaller r;, and larger .

Very large h gives negligible deflection, while the head-on limit is A = 0, giving
maximum deflection 5 = 7, when ¢ = 1 — ie, a parabolic orbit.

6 Finite-size planet
For a given accessible boost, the more distant of the two possible planetary flybys

is usually preferred. For it allows more margin for error — and indeed sometimes
may be the only option.



The reason is that the planet is not a fixed point — ie, although its mass
is effectively infinite, its radius R is not zero — the spacecraft crashes unless
Tmin > R.

With GM = gR?, where g is gravitational acceleration at the planet’s surface,
from eq. (8) this condition is

h2
min — > R,
"min = R £ PR 1 26N

or  h®>2R*E€ +gR).

If the spacecraft approaches the planet with distant speed u def | = |vi — V|

on a line to miss by impact parameter b in the absence of gravity, then

2

E=zu and h = bu,

1
2

and so the condition 7y, > R is

29R
b>R\/1+7. (10)

The flyby in Fig. 2 for a spacecraft at Jupiter, where R = 71400 km, would
involve b = 2.7 million km and rpj, = 2.0 million km. The same boost with
B = [ = 129° has rmin = 87500 km, perhaps a little close for comfort — unless
the opportunity for observation is judged too good to miss.

Note that for a finite planet a parabolic flyby with A = bu = 0 is always ruled
out. Consequently § < 7 and the maximum boost available from any gravity
assist® is less than 2 [V/.

In summary, the spacecraft’s outgoing velocity v¢ is found from (v;, V) with
the equations in Sec. 4, provided angle (3 is given. This comes from the equations
of Sec. 5 after also impact parameter b is specified — and supposing that eq. (10)
holds.

7 Real life

The above description of the slingshot effect is idealised as follows:

e the spacecraft/planet system is isolated — in particular, the planet’s veloc-
ity V is constant;

e the spacecraft’s velocities (v;, v¢) are asymptotic quantities.

8Maximum boost is available in a repulsive interaction such as eg. a soccer ball bouncing
directly from the front of a fast-moving truck [12, 13, 20] or a gas molecule bouncing from an
advancing piston [20].



In reality, Cassini and other probes encounter planets with near-circular orbits
round the Sun, whose velocity vectors V therefore change direction steadily. The
spacecraft is also orbiting the Sun, and its gravitational interactions are infinite-
range and occupy infinite time.

To maintain simplicity of description:

e vectors (v, v¢) must be taken as incoming and outgoing velocities at tran-
sition between the Sun and the planet as dominant influence;

e the flyby then occupies a moderate intervening interval (a few days) dur-
ing which V rotates little (a degree or two) and the spacecraft exchanges
negligible energy with the Sun — ie, eq. (2) effectively remains.

These approximations are used in numerical examples [17, 18, 20].

Then, ignoring much more distant planets etc?, somewhat blurred velocity
triangles of Fig. 2 and Fig. 3 apply in practice.

On the scale of the Solar System the flyby is localised and, for the purpose of
estimating the spacecraft’s subsequent trajectory, quite well approximated by a
point event that instantaneously changes kinetic energy and angular momentum
about the Sun.

NASA’s control of Cassini (eg. [4]) uses very much more detailed computa-
tions, and engine-burns for fine correction.

8 Conclusion

Classical Mechanics originated from attempts to understand planetary and lunar
motion. Its description of spacecraft orbits — including gravity assists — is a
fitting contemporary development.

The diagram in Fig. 2 makes clear the simplicity of the slingshot effect, using
basic conservation laws — of linear momentum, and energy. The main corrections
in practical situations are relatively minor, and the description is suitable for
elementary courses and textbooks.
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