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Riemannian Geometry IV

Solutions, set 18.

Exercise 44.
(a) The tangent space of S? at p € S? is given by

T,5? = p*.

Now, using the results of Example 22, we obtain

%X(t) - (%(O,cost,O)) = ((0, —sint, 0))",

where v is taken at c(t) = (rcost,0,rsint). Since (0,—sint,0)Lec(t), we
conclude that

D
th( ) = (0, —sint, 0).
Similarly, we conclude that
D2
dtQX( ) =(0,—cost,0) = —X(t).
Now, using the notation of Exercise 37, we have
’ (~rsint, 0.rcost) = (1)
— = (—rsin rcost) = ¢
@xl c(t) T ’
0 (0,7 cost,0) = rX(t)
— = r =r )
(91'2 c(t) ’ ’

Using the results of Exercise 37(a), we conclude that
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This implies that
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Bringing everything together, we conclude that
D2
@X(t) + R(X(t),d () (t) = —-X(t) + X(t) =0,

i.e., X satisfies the Jacobi equation.

Exercise 45.
(a) We conclude from Proposition 6.4 that

R(vy,v9)vg = K ((vg, v3)vy — (1, v3)U2).

This implies
R(J,d)d = K({d,d)J — (J,d)).

Since ||d||* = 1 and JL¢/, we obtain
R(J,d)d = K J.

(b) We only consider the case K > 0, all other cases are similar. The

vector field J(t) = cos(tvV'K)Z.(t) + %Zg(t) satisfies J(0) = Z;(0) and

%(t) = —\/Esin(t\/g)zl(t) + COS(t\/?)Z2(t)>

which implies %(O) = Z5(0). Obviously, we have

D%*J
dt?

(t) = —K cos(tVK) Zy(t) — VK sin(tVK) Zy(t) = =K J(t),

and therefore we obtain

D?J
dt?

(t)+ KJ(t) =0,

i.e., J satisfies the Jacobi equation.



Exercise 46.
(a) We have

HOEeH

= 0. I0) = 20, ()

and
o) =2 ({00, 70) + | 570

Using Jacobi’s equation, we conclude

We have (R(J(t),c(t))(t), J(t)) = 0 if J(t),d(t) are linear dependent and,
otherwise, for o = span(J(t),c'(t)) C TewyM,

(R(J(1), () (t), J (1)) = K (o) (ITO 7l @0 = (I (1), ¢ ()))*) <0,

since sectional curvature is non-positive. This shows that f”(¢), as a sum of
two non-negative terms, is greater or equal to zero.

(b) If there were a conjugate point ¢ = ¢(t3) to a point p = ¢(t;) along the
geodesic ¢, then we would have a non-vanishing Jacobi field J along ¢ with
J(t1) = 0 and J(t2) = 0. This would imply that the convex, non-negative
function f(¢) = ||J(¢)||* would have zeroes at ¢t = ¢; and = t5. This would
force f to vanish identically on the interval [ti, 5], which would imply that
J vanishes as well, which is a contradiction.

1(t) =2 (—<R<J(t>, )0, J0) + | 70

Exercise 47.
(a) We know that VR = 0. Let % denote covariant derivative along c.
Then we have, for parallel vector fields X, Y, Z along ¢ that

0= VR(X,Y,Z,d)(t) = CZ RIX(), Y(£)Z()
~ ROGX(0), Y (0)2(0) ~ RIX(0), =Y (0)2() ~ RX(0), Y (1) = Z(1)
D
= D RO, Y () 2(0)

This shows that R(X,Y)Z is parallel.



(b) The symmetries of R yield

(Ky(wr), wy = (R(wy, v)v, ws) = (R(v,ws)wr,v) = —(R(wa, v)ws, v)
= (R(wa, v)v,wy) = (K,(ws), wr).

(c) Since K, is symmetric, we can find an orthonormal basis wy, . .., w, €
T,M with K,(w;) = \w;. We know, by (a), that Ky« (Wi(t)) =
R(W(t),c (t))W;(t) is parallel and, since Ko (o) (W;(0)) = K,(w;) = Aw;, we
must have

Kc’(t)(Wi(t)) - /\z‘VVz‘(t)a

since parallel vector fields V' along c are uniquely determined by their initial
values V' (0) € T,M.
(d) Let J be a Jacobi field along c¢. Then J satisfies the Jacobi equation

D?J ~ )
I J+ R(J,d)d =0.
Since Wy, ..., W, are a parallel on-basis along ¢, we obtain, by taking inner

product with W;:

D2%J
<WJ7 WZ> + <R(J, C,)C,, Wz>

d2
=72 Z Ji (Wi, Wi) + Z Ji(R(W;, ¢)c', Wi)
J J

=T+ TN (W W) = T+ A
J

(e) The unique solution of J!'(t) + \;J;(t) = 0, J;(0) = 0 (up to scalar
multiples) is given by

Ji(t) =<t if \;, =0,
sinh(tv/—X;) if A <O0.
So J; has zeroes for positive ¢t only if A\; > 0, and these are precisely at

t = mk/+/X;. The corresponding Jacobi fields with J(0) = 0 and ZZ(0) = w;
produce the conjugate points c(mk/v/A;).



