Riemannian Geometry IV

Solutions, set 17.

Exercise 42. We know from Exercise 41 that the tensor \(R' \) is parallel, i.e., \(\nabla R' = 0 \). We conclude from Exercise 39 that \(R = f R' \), and therefore

\[
\]

The Second Bianchi Identity tells us that

\[
\nabla R(X, Y, Z, W, T) + \nabla R(X, Y, W, T, Z) + \nabla R(X, Y, T, Z, W) = 0,
\]

which yields, using the definition of \(R' \):

\[
0 = (T f)((X, W)\langle Y, Z\rangle - \langle X, Z\rangle\langle Y, W\rangle)
+ (Z f)((X, T)\langle Y, W\rangle - \langle X, W\rangle\langle Y, T\rangle)
+ (W f)((X, Z)\langle Y, T\rangle - \langle X, T\rangle\langle Y, Z\rangle).
\]

Using the relations \(\langle Z(p), W(p)\rangle = \langle Z(p), Y(p)\rangle = \langle Y(p), W(p)\rangle = 0, \|Y(p)\| = 1 \) and \(T = Y \), we conclude that, at \(p \)

\[
0 = (T f)(p)((X(p), W(p)) \cdot 0 - \langle X(p), Z(p)\rangle \cdot 0)
+ (Z f)(p)((X(p), T(p)) \cdot 0 - \langle X(p), W(p)\rangle \cdot 1)
+ (W f)(p)((X(p), Z(p)) \cdot 1 - \langle X(p), T(p)\rangle \cdot 0)
= ((W f)(p)Z(p) - (Z f)(p)W(p), X(p)).
\]

Since \(Z(p) \) and \(W(p) \) are linearly independent and \(X(p) \in T_pM \) was arbitrary, we conclude that both \((W f)(p) = 0 \) and \((Z f)(p) = 0 \). Since \(Z(p) \) was arbitrary, \(f \) must be locally constant. Since \(M \) is connected, \(f \) is globally constant.
COLLECTIVE HOMEWORK OVER PREVIOUS WEEKS

Exercise 36.

(a) Let \(\text{grad } f(p) = \sum_{i=1}^{n} \alpha_i e_i \). In order to calculate the coefficients \(\alpha_i \), we take inner product with \(e_k \):

\[
\alpha_k = \langle \text{grad } f(p), e_k \rangle = e_k(f).
\]

This proves (a).

(b) We have

\[
\text{div } (f X)(p) = \sum_{i=1}^{n} \langle \nabla_{e_i} f X, e_i \rangle = \sum_{i=1}^{n} \langle e_i(f) X(p), e_i \rangle + f(p) \sum_{i=1}^{n} \langle \nabla_{e_i} X, e_i \rangle = \langle X(p), \sum_{i=1}^{n} e_i(f) e_i \rangle + f(p) \text{div } X(p) = \langle X(p), \text{grad } f(p) \rangle + f(p) \text{div } X(p).
\]

(c) We have

\[
\Delta f(p) = -\text{div} \left(\sum_{i=1}^{n} E_i(f) E_i \right) = -\sum_{i=1}^{n} \langle \text{grad } E_i(f)(p), e_i \rangle - \sum_{i=1}^{n} e_i(f) \text{div } E_i(p)
\]

\[
= -\sum_{i=1}^{n} \langle e_j(E_i(f)) e_j, e_i \rangle - \sum_{i=1}^{n} e_i(f) \sum_{j=1}^{n} \langle \nabla_{e_j} E_i, e_j \rangle
\]

\[
= -\sum_{i=1}^{n} \langle e_i(E_i(f)) + \sum_{i,j=1}^{n} e_i(f) \langle e_i, \nabla_{e_j} E_j \rangle
\]

\[
= -\sum_{i=1}^{n} \langle \langle e_i(E_i(f)) - \langle \text{grad } f, \nabla_{e_i} E_i \rangle \rangle - \sum_{i=1}^{n} \langle \langle e_i(E_i(f)) - \nabla_{e_i} E_i(f) \rangle \rangle.
\]

(d) We have

\[
\Delta (f g) = -\text{div}(\text{grad } (f g)) = -\text{div}(f \text{ grad } g) - \text{div}(g \text{ grad } f)
\]

\[
= -\langle \text{grad } f, \text{ grad } g \rangle - f \text{ div } (\text{grad } g) - \langle \text{grad } g, \text{ grad } f \rangle - g \text{ div } (\text{grad } f)
\]

\[
= f \Delta g + g \Delta f - 2\langle \text{grad } f, \text{ grad } g \rangle.
\]

Finally, we have

\[
(\Delta f, g) = \int_M (\Delta f) g \, dv = -\int_M \text{div} (\text{grad } f) g \, dv
\]

\[
= -\int_M \text{div}(g \text{grad } f) - \langle \text{grad } f, \text{ grad } g \rangle \, dv = \int_M \langle \text{grad } f, \text{ grad } g \rangle \, dv = (\text{grad } f, \text{ grad } g).
\]
The full result follows now by symmetry between f and g.

Exercise 40.

Let M be n-dimensional, and assume $K(\Sigma) = K_0$ for all 2-dimensional subspaces of TM. Then, by Exercise 39, we have

$$\langle R(v_1, v_2)v_3, v_4 \rangle = K_0 \left(\langle v_1, v_4 \rangle \langle v_2, v_3 \rangle - \langle v_1, v_3 \rangle \langle v_2, v_4 \rangle \right).$$

Let $p \in M$ and e_1, \ldots, e_n be an orthonormal basis of $T_p M$. Then

$$\text{Ric}(v, w) = \sum_{i=1}^n \langle R(e_i, v)w, e_i \rangle = K_0 \sum_{i=1}^n \left(\langle e_i, e_i \rangle \langle v, w \rangle - \langle e_i, w \rangle \langle v, e_i \rangle \right) = K_0 \left(n \langle v, w \rangle - \langle w, v \rangle \right) = (n - 1)K_0 \langle v, w \rangle,$$

i.e., M is an Einstein manifold with constant $(n - 1)K_0$. Above, we used

$$\sum_{j=1}^n \langle w, e_j \rangle \sum_{k=1}^n \langle v, e_k \rangle \delta_{jk} = \sum_i \langle w, e_i \rangle \langle v, e_i \rangle.$$

Exercise 43.

Since $l(s) = \int_a^b \frac{\partial F}{\partial t}(s, t), \frac{\partial F}{\partial t}(s, t) \rangle^{1/2} dt$, we obtain using the Riemannian property,

$$l'(s) = \int_a^b \frac{1}{\|F\|_{s,t}} \left(\frac{D \partial F}{ds \partial t} (s, t), \frac{\partial F}{\partial t} (s, t) \right).$$

Differentiating the integrand with respect to s, using the Symmetry Lemma, and setting then $s = 0$ yields

$$- \frac{1}{\|c'(t)\|^3} \left(\frac{D \partial F}{dt} (0, t), c'(t) \right)^2 + \frac{1}{\|c'(t)\| s=0} \left(\frac{D \partial F}{dt} (s, t), \frac{\partial F}{\partial t} (s, t) \right).$$

Using $\|c'\| = 1$ and $\frac{\partial F}{ds}(0, t) = X(t)$ yields

$$l''(0) = \int_a^b \left(- \left(\frac{D \partial F}{dt} X(t), c'(t) \right)^2 + \left. \frac{\partial}{\partial s} \right|_{s=0} \left(\frac{D \partial F}{dt} (s, t), \frac{\partial F}{\partial t} (s, t) \right) \right) dt.$$
Using, again, the Riemannian property and the Symmetry Lemma, we conclude that
\[
\frac{\partial}{\partial s} \left. \left| \frac{D}{dt} \frac{\partial F}{\partial s}(s,t), \frac{\partial F}{\partial t}(s,t) \right| \right|_{s=0} = \left\langle \frac{D}{ds} \frac{D}{dt} \frac{\partial F}{\partial s}(s,t), c'(t) \right\rangle + \left\langle \frac{D}{dt} X(t), \frac{D}{dt} X(t) \right\rangle.
\]
Now we make use of Lemma 7.4 to interchange the order of covariant derivatives, and obtain
\[
\frac{\partial}{\partial s} \left. \left| \frac{D}{dt} \frac{\partial F}{\partial s}(s,t), \frac{\partial F}{\partial t}(s,t) \right| \right|_{s=0} = \left\langle R \left(\frac{\partial F}{\partial s}(0,t), \frac{\partial F}{\partial t}(0,t) \right) \frac{\partial F}{\partial s}(0,t), c'(t) \right\rangle + \left\langle \frac{D}{dt} X(t), \frac{D}{dt} X(t) \right\rangle^2 + \left\langle \frac{D}{dt} \frac{D}{ds} \frac{\partial F}{\partial s}(s,t), c'(t) \right\rangle + \left\langle \frac{D}{dt} X(t), \frac{D}{dt} X(t) \right\rangle^2.
\]
Now, since \(X^\perp = X - \left\langle X, c' \right\rangle c' \) and \(c \) is a geodesic, we obtain
\[
\frac{DX^\perp}{dt} = \frac{DX}{dt} - \left\langle \frac{DX}{dt}, c' \right\rangle c',
\]
and, consequently,
\[
\left\| \frac{DX^\perp}{dt} \right\|^2 = \left\| \frac{DX}{dt} \right\|^2 - 2\left\langle \frac{DX}{dt}, c' \right\rangle^2 + \left\langle \frac{DX}{dt}, c' \right\rangle^2 \left\| c' \right\|^2 = \left\| \frac{DX}{dt} \right\|^2 - \left\langle \frac{DX}{dt}, c' \right\rangle^2.
\]
Putting everything together, we obtain
\[
l''(0) = \int_a^b \left(- \left\langle \frac{D}{dt} X(t), c'(t) \right\rangle^2 + \frac{\partial}{\partial s} \left. \left| \frac{D}{dt} \frac{\partial F}{\partial s}(s,t), \frac{\partial F}{\partial t}(s,t) \right| \right|_{s=0} \right) dt
\]
\[
= \int_a^b \left(\left\| \frac{DX^\perp}{dt} \right\|^2 + \left\langle R(X(t), c'(t)) X(t), c'(t) \right\rangle + \left\langle \frac{D}{dt} \frac{D}{ds} \frac{\partial F}{\partial s}(s,t), c'(t) \right\rangle \right) dt.
\]
Since $\langle R(v_1, v_2) v_3, v_4 \rangle$ vanishes if $v_1 = v_2$ or $v_3 = v_4$, and $\langle R(v_1, v_2) v_3, v_4 \rangle = -\langle R(v_1, v_2) v_4, v_3 \rangle$, we conclude that

$$\langle R(X, c') X, c' \rangle = -\langle R(X^\perp, c') c', X^\perp \rangle$$

$$= -K(\text{span}\{X^\perp, c'\}) \left(\|X^\perp\|^2 \|c'\| - \langle X^\perp, c' \rangle^2 \right) = -K(\text{span}\{X^\perp, c'\}) \|X^\perp\|^2.$$

Moreover, since c is a geodesic, we have

$$\int_a^b \langle \frac{D}{dt} \frac{D}{ds} |_{s=0} \frac{\partial F}{\partial s}(s, t), c'(t) \rangle \, dt = \int_a^b \frac{\partial}{\partial t} \left(\langle \frac{D}{ds} |_{s=0} \frac{D}{ds} (s, t), c'(t) \rangle \right) \, dt$$

$$= \left\langle \frac{D}{ds} |_{s=0} \frac{\partial F}{\partial s} (s, b), c'(b) \right\rangle - \left\langle \frac{D}{ds} |_{s=0} \frac{\partial F}{\partial s} (s, a), c'(a) \right\rangle.$$

Since F is a proper variation, we have $\frac{\partial F}{\partial s}(s, a) = 0$ and $\frac{\partial F}{\partial s}(s, b) = 0$, and we conclude that

$$\int_a^b \langle \frac{D}{dt} \frac{D}{ds} |_{s=0} \frac{\partial F}{\partial s}(s, t), c'(t) \rangle \, dt = 0.$$

Combining these results, we end up with

$$l''(0) = \int_a^b \left(\left\| \frac{D X^\perp}{dt} \right\|^2 - K(\text{span}\{X^\perp, c'\}) \|X^\perp\|^2 \right) \, dt.$$