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Riemannian Geometry IV

Solutions, set 17.

Exercise 42. We know from Exercise 41 that the tensor R’ is parallel, i.e.,
VR = 0. We conclude from Exercise 39 that R = fR’, and therefore

VR(X,Y,Z,W,U) = (Uf)R(X,Y, Z,W).
The Second Bianchi Identity tells us that
VR(X,Y,Z W, T)+VR(X,Y,W,T,Z)+ VR(X,Y, T, Z, W) = 0,
which yields, using the definition of R':

0= (TfI{X, W)Y, Z) — (X, Z)(Y,IV))
+ (Zf)(<X7 T><Y7 W> - <X7 W><Y7
+ (WHEX, 2)(Y,T) = (X, T) Y, Z)).

Using the relations (Z(p), W(p)) = (Z(p), Y (p)) = (Y(p), W(p)) = 0, [[Y (p)|| =
1 and T'=Y, we conclude that, at p

0= (TF)(p)(X(p),W(p))-0—(X(p),Z(p))-0)
+(Zf)(p)(X(p), T(p))-0—(X(p), W(p))-1)
+(WHP)X(p), Z(p) -1 —(X(p),T(p))-0)

Since Z(p) and W(p) are linearly independent and X (p) € TpM was arbi-
trary, we conclude that both (W f)(p) =0 and (Zf)(p) = 0. Slnce Z(p) was
arbitrary, f must be locally constant. Since M is connected, f is globally
constant.



COLLECTIVE HOMEWORK OVER PREVIOUS WEEKS

Exercise 36.
(a) Let grad f(p) = Y., aze;. In order to calculate the coefficients a,

we take inner product with ey:

= (grad f(p), ex) = ex(f).
This proves (a).
(b) We have

n n n

div (fX)(p) = D (Ve f X, e0) = D {eil )X (), ei) + [(p) D (Ve X, i) =
(X(p).) e fles) + f(p)div X (p) = (X(p), grad f(p)) + f(p)div X (p).

i=1

(c) We have
Af(p) = —div (i Ei(f)E;) = i@radE ), ei) Z F)div E;(p
_ —Z B iexf);wwhe»
— _i@i( Ei(f)) + Zlez (e:, Ve, E;)
~ =3B s £V ) = = 3 (e = T )
(d) We have h

A(fg) = —div(grad (fg)) = —div(f grad g) — div(g grad f)
—(grad f, grad g) — f div (grad g) — (grad g, grad f) — g div (grad f)
= fAg+ gAf —2(grad f, grad g).

Finally, we have

(Af,g) = /M(Af)gdvol = —/Mdiv(gradf)gdvol

= —/ div(ggrad f)—(grad f, grad g) dvol = / (grad f, grad g) dvol = (grad f, grad g) .
M M
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The full result follows now by symmetry between f and g.

Exercise 40.
Let M be n-dimensional, and assume K (X) = K for all 2-dimensional
subspaces of T'M. Then, by Exercise 39, we have

(R(v1,v2)v3, v4) = Ko ((v1, v4)(va, v3) — (01, 03) (2, 04)) .
Let p € M and e, ..., e, be an orthonormal basis of 7),M. Then

n

Ric(v,w) = Z(R(ei,v)w, e;) = Ky Z ((es, e) (v, w) — {(e;, w) (v, e;))

=1

= K, <<Z<U’w>> — <Z<w,ej>ej,2(v,ek)ek>>

i=1 j=1 k=1

= Ky (n{v,w) — (w,v)) = (n — 1) Ko(v,w),

i.e., M is an Einstein manifold with constant (n — 1)K,. Above, we used

<Z<w> 6]')63" Z<U’ ek>ek> Z<w’ 6j><1), ek>5jk = Z<w> 6i><vj ei)'

j=1 k=1 ik i

Exercise 43.
Since I(s) = fb(a—F(s t), 25 (s, t))!/2dt, we obtain using the Riemannian
property,

o= 2O 1), 25,1
]‘9Fst ds ot o Y )

Differentiating the integrand with respect to s, using the Symmetry Lemma,

and setting then s = 0 yields
1 D OF o\ 1 9 D OF OF
T a3 O 0 0) + ol (T 00 )

Using ||| =1 and 2£(0,¢) = X (t) yields

1"(0) = /ab (— <%X(t), c/(t)>2 + aﬁ

DOF, . OF
<dt g5 &gt ’t)>> -



Using, again, the Riemannian property and the Symmetry Lemma, we con-
clude that

D OF oF
s=0 <@$(S7t)u E(S7t)>

_/P
~ \dsls=

D OF , D D
. O%g(s,t),c (t)> + <@X(t), EX(t)> )

9
O0s

Now we make use of Lemma 7.4 to interchange the order of covariant deriva-
tives, and obtain

5o (o0 G0
= <R (%—f(o,t),%—f(o,t)) ZF(O ), e ()>+<£cll?s - 0?98 > H
= (R(X(t), ()X (1), (1)) + <D : - oaaf > H

dt ds
Now, since X+ = X — (X, )¢ and c is a geodesic, we obtain

0

DX+ DX DX ,\ ,
dt  dt a '/

and, consequently,
Bk
Putting everything together, we obtain
b D 29

1"(0) = X(t),c(t —
0-/ ( (Zx0.C0) + 1
(HDXL

HDXl

DX / ? DX / ? /112
<W’C> +<WJC> 1]

_lpx | /bx \*
T i)

D oF OF
5=0 <£%(S’t) ot —- (s, t)>> dt

oF ,
SZO%(S, t),c (t)>) dt.
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R(X(t),d ()X (t),c(t)) + <%£




Since (R(vy,vy)vs, vy) vanishes if v; = vy or vz = vy, and (R(vq, v2)vs, v4) =
—(R(v1, v9)vy, v3), we conclude that

(R(X,d)X,d) = —(R(X*,d)d, X+)

—K(span{X", ¢} [ IXH|Pl|']| = (X=.¢)° | = —K(span{X -, || X"

=0

Moreover, since c¢ is a geodesic, we have

[ (Gl geacoye= 5 (2] 560 ew))

(2l Fenew) - (2] Greac@).

s=0 s
Since F is a proper variation, we have 2£ (s, a) = 0 and %—Z(s, b) =0, and we

Os
conclude that
DD
t dt = 0.
/<ﬁ% o500 ) di =0

Combining these results, we end up with

(5T

oF
s=0 08

2

K (span{X™, ?NXiW>dt



