Riemannian Geometry IV

Problems, set 18.

Exercise 44. (See also Example 38) For \(r > 0 \), let \(S^2_r := \{ x \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 = r^2 \} \) and \(X : [-\pi/2, \pi/2] \to TS^2_r \) be a vector field along \(c : [-\pi/2, \pi/2] \to S^2_r \) with \(c(t) = (r \cos t, 0, r \sin t) \), defined by

\[
X(t) := (0, \cos t, 0).
\]

Let \(\frac{D}{dt} \) denote covariant derivative on \(S^2_r \) along \(c \).

(a) Calculate \(\frac{D}{dt} X(t) \) and \(\frac{D^2}{dt^2} X(t) \), using the formula for the induced covariant derivative for a surface in \(\mathbb{R}^3 \) (see Example 22).

(b) Show that \(X \) satisfies the Jacobi equation (using the results of Exercise 37).

Exercise 45. (Jacobi fields on manifold of constant curvature) Let \(M \) be a Riemannian manifold of constant sectional curvature \(K \), and \(c : [0, l] \to M \) be a geodesic satisfying \(\| c' \| = 1 \). Let \(J : [0, l] \to TM \) be a orthogonal Jacobi field along \(c \).

(a) Using Proposition 6.4, show that \(R(J, c')c' = KJ \).

(b) Let \(Z_1, Z_2 : [0, l] \to M \) be parallel vector fields along \(c \) with \(Z_1(0) = J(0), \ Z_2(0) = \frac{DJ}{dt}(0) \). Show that

\[
J(t) = \begin{cases}
\cos(t\sqrt{K})Z_1(t) + \frac{\sin(t\sqrt{K})}{\sqrt{K}}Z_2(t) & \text{if } K > 0, \\
Z_1(t) + tZ_2(t) & \text{if } K = 0, \\
\cosh(t\sqrt{-K})Z_1(t) + \frac{\sinh(t\sqrt{-K})}{\sqrt{-K}}Z_2(t) & \text{if } K < 0.
\end{cases}
\]

Exercise 46. Let \(M \) be a Riemannian manifold with non-positive sectional curvatures.
(a) Let \(c : [a, b] \to M \) be a differentiable curve and \(J \) be a Jacobi field along \(c \). Let \(f(t) = \|J(t)\|^2 \). Show that \(f''(t) \geq 0 \), i.e., \(f \) is a convex function.

(b) Derive from (a) that \(M \) does not admit conjugate points.

Exercise 47. (Jacobi fields and conjugate points on locally symmetric spaces) A Riemannian manifold \((M, g)\) is called a *locally symmetric space* if \(\nabla R = 0 \). Let \((M, g)\) be an \(n \)-dimensional locally symmetric space and \(c : [0, \infty) \to M \) be a geodesic with \(p = c(0) \) and \(v = c'(0) \in T_p M \). Prove the following facts:

(a) Let \(X, Y, Z \) be parallel vector fields along \(c \). Show that \(R(X, Y)Z \) is also parallel.

(b) Let \(K_v : T_p M \to T_p M \) be the curvature operator, defined by
\[
K_v(w) = R(w, v)v.
\]
Show that \(K_v \) is symmetric, i.e.,
\[
\langle K_v(w_1), w_2 \rangle = \langle w_1, K_v(w_2) \rangle,
\]
for every pair of vectors \(w_1, w_2 \in T_p M \).

(c) Choose an orthonormal basis \(w_1, \ldots, w_n \in T_p M \) that diagonalises \(K_v \), i.e.,
\[
K_v(w_i) = \lambda_i w_i.
\]
Let \(W_1, \ldots, W_n \) be the parallel vector fields along \(c \) with \(W_i(0) = w_i \). Show that, for all \(t \in [0, \infty) \),
\[
K_{c'(t)}(W_i(t)) = \lambda_i W_i(t).
\]

(d) Let \(J(t) = \sum_i J_i(t)W_i(t) \) be a Jacobi field along \(c \). Show that Jacobi’s equation translates into
\[
J''_i(t) + \lambda_i J_i(t) = 0, \quad \text{for } i = 1, \ldots, n.
\]

(e) Show that the conjugate points of \(p \) along \(c \) are given by \(c(\pi k/\sqrt{\lambda}_i) \), where \(k \) is any positive integer and \(\lambda_i \) is a positive eigenvalue of \(K_v \).